JPH0227597B2 - FUINTSUKINETSUKOKANKI - Google Patents

FUINTSUKINETSUKOKANKI

Info

Publication number
JPH0227597B2
JPH0227597B2 JP11244585A JP11244585A JPH0227597B2 JP H0227597 B2 JPH0227597 B2 JP H0227597B2 JP 11244585 A JP11244585 A JP 11244585A JP 11244585 A JP11244585 A JP 11244585A JP H0227597 B2 JPH0227597 B2 JP H0227597B2
Authority
JP
Japan
Prior art keywords
heat exchanger
fins
tubes
tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11244585A
Other languages
Japanese (ja)
Other versions
JPS61272594A (en
Inventor
Hiroyoshi Tanaka
Masaaki Adachi
Yoshuki Tsuda
Tomoaki Ando
Fumitoshi Nishiwaki
Shigeo Aoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP11244585A priority Critical patent/JPH0227597B2/en
Priority to KR1019860002760A priority patent/KR900006245B1/en
Priority to US06/851,507 priority patent/US4715437A/en
Priority to AU56131/86A priority patent/AU585970B2/en
Priority to CA000506667A priority patent/CA1269975A/en
Priority to CN86102670A priority patent/CN1014632B/en
Publication of JPS61272594A publication Critical patent/JPS61272594A/en
Publication of JPH0227597B2 publication Critical patent/JPH0227597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調、冷凍等に使用され冷媒と空気
等の流体間で熱の授受を行う熱交換器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger used in air conditioning, refrigeration, etc., which transfers heat between a refrigerant and a fluid such as air.

従来の技術 従来、この種の熱交換器は第6図に示したよう
に、Uベンドにより互いに接続された銅管1とア
ルミ等を材料とするフイン2よりなり、銅管1の
内部を流れる冷媒とフイン2間を流れる空気3が
熱交換を行う構成を有していた。この様な熱交換
器は近年、小型、高性能化が要求されているが、
騒音等の観点からフイン間の空気流速は低く押え
られているため管内側の熱抵抗に比して空気側の
熱抵抗は高い。そこで現在は空気側の伝熱面積を
拡大することで管内側の熱抵抗との差を減少させ
る様に工夫している。しかしながら、伝熱面を拡
大することには物理的な限界が存在するととも
に、経済性、省スペース性等の点から問題もあ
り、空気側の熱抵抗を低下させることがこの様な
熱交換器に於て重要な課題となつている。
BACKGROUND ART Conventionally, as shown in FIG. 6, this type of heat exchanger consists of a copper tube 1 and a fin 2 made of aluminum or the like, which are connected to each other by a U-bend. The air 3 flowing between the refrigerant and the fins 2 exchanged heat. In recent years, such heat exchangers have been required to be smaller and have higher performance.
Since the air flow velocity between the fins is kept low from the viewpoint of noise etc., the thermal resistance on the air side is higher than the thermal resistance on the inside of the tube. Therefore, efforts are currently being made to reduce the difference in thermal resistance from the inside of the tube by expanding the heat transfer area on the air side. However, there are physical limits to enlarging the heat transfer surface, and there are also problems in terms of economy and space saving, so it is important to reduce the thermal resistance on the air side. This has become an important issue in the world.

第5図は、従来の熱交換器の一例を示したもの
である。aは平面図、bは側面図である。銅管4
の内部はフロン等の冷媒が循環しており、その冷
媒の熱が銅管4からフインカラー5へ伝わり、フ
イン6へ伝わる。フイン6の前方からは空気7が
流動してフイン6間を通過するが、その際に温度
の異なつたフイン6の表面から冷媒から伝わる熱
の授受を行うのである。この作用によつて冷媒と
空気の熱交換が連続的に行われる。
FIG. 5 shows an example of a conventional heat exchanger. A is a plan view, and b is a side view. copper tube 4
A refrigerant such as fluorocarbon is circulating inside the fin, and the heat of the refrigerant is transmitted from the copper tube 4 to the fin collar 5 and then to the fin 6. Air 7 flows from in front of the fins 6 and passes between the fins 6, and at that time, heat transmitted from the refrigerant is transferred from the surfaces of the fins 6, which have different temperatures. Due to this action, heat exchange between the refrigerant and the air is performed continuously.

発明が解決しようとする問題点 第5図に示した従来例はちどり管配列のフラツ
トフインと呼ばれるものであるが、この管配列は
基盤目状に管を配列したものより熱伝達率が高
く、一般によく使用されている。しかしながら近
年、より性能の向上を目差すため、フイン表面に
スリツト、ルーバ等の加工を施したものが使用さ
れているがヒートポンプ室外機用の熱交換器とし
て使用すると冬期に着霜が著しく、フラツトフイ
ンの場合より頻繁に除霜の必要が生じ、季間効率
(SEER)が低下する。それ故もつぱらヒートポ
ンプ室外機用の熱交換器にはフラツトフインが使
用されている。このため、室外機が大きくなり、
コスト的にも高くつくことから何らかの改善が期
待されている。
Problems to be Solved by the Invention The conventional example shown in Fig. 5 is a flat fin with a vertical tube arrangement, but this tube arrangement has a higher heat transfer coefficient than one in which the tubes are arranged in a grid pattern, and is generally Commonly used. However, in recent years, with the aim of further improving performance, fins with slits, louvers, etc. processed on the surface of the fins have been used, but when used as heat exchangers for outdoor heat pump units, frost builds up significantly in the winter. Defrosting will be required more frequently than normal, reducing seasonal efficiency (SEER). For this reason, flat fins are commonly used as heat exchangers for outdoor heat pump units. For this reason, the outdoor unit becomes larger,
Since the cost is high, some kind of improvement is expected.

そこで本発明は伝熱管の配置を工夫することに
よつてフラツトフインの熱伝達率を向上させ、コ
ンパクトで高性能なフイン付熱交換器を得ようと
するものである。
Therefore, the present invention aims to improve the heat transfer coefficient of flat fins by devising the arrangement of heat transfer tubes, thereby obtaining a compact and high-performance heat exchanger with fins.

問題点を解決するための手段 本発明の技術的手段は、複数枚のフインに、気
流方向に並んだ複数本の伝熱管にて構成される伝
熱管群を貫通嵌合させ、伝熱管群間のピツチを、
伝熱管群内の隣り合う伝熱管の距離より大きく取
るとともに、下流側の伝熱管が上流のどれかの伝
熱管の投影面と部分的に重なるように構成するも
のである。
Means for Solving the Problems The technical means of the present invention is to allow a plurality of fins to penetrate and fit a heat transfer tube group composed of a plurality of heat transfer tubes lined up in the air flow direction, and to The pitch of
The distance is set larger than the distance between adjacent heat exchanger tubes in the heat exchanger tube group, and the downstream heat exchanger tube is configured to partially overlap the projected plane of any upstream heat exchanger tube.

作 用 すなわち、各伝熱管群内の伝熱管がわずかづ
つ気流と垂直方向にずらして設置されているため
上流側の管とフインの存在により発生する馬蹄渦
が下流側の管へ衝突し、管表面に高い熱伝達域を
生じる。前記の上流側から発生する馬蹄渦が、
管表面に衝突し、管両側へ分岐するため止水域が
少くなり有効な伝熱面積が増加する。伝熱管群
間の距離が伝熱管群内の伝熱管間の距離より広い
ので圧力損失が少ない。伝熱管群内の伝熱管が
気流方向と垂直方向にずれて配置されているの
で、気流方向に管を一列に並べた場合より伝熱管
間の距離が広くなり、水滴が付着した場合に落下
しやすく露付き時の伝熱性能が高い。また製造時
の問題であるが、伝熱管が気流方向と垂直にや
やずれて配置されているので、フイン端部に取り
付けられるUベンドのろう付け時に炎がまわりや
すく、ろうのまわりが良く不良ろう付け箇所が少
なくなる。
In other words, since the heat exchanger tubes in each heat exchanger tube group are installed slightly offset in the direction perpendicular to the airflow, the horseshoe vortices generated by the presence of the upstream tubes and fins collide with the downstream tubes, causing the tubes to Creates a high heat transfer zone on the surface. The horseshoe vortex generated from the upstream side is
Since it collides with the tube surface and branches to both sides of the tube, the stopping area decreases and the effective heat transfer area increases. Since the distance between the heat exchanger tube groups is wider than the distance between the heat exchanger tubes within the heat exchanger tube group, pressure loss is small. Since the heat exchanger tubes in the heat exchanger tube group are arranged vertically to the airflow direction, the distance between the heat exchanger tubes is wider than when the tubes are lined up in the airflow direction. It is easy to use and has high heat transfer performance when dew forms. Another problem during manufacturing is that the heat exchanger tubes are arranged slightly offset perpendicular to the airflow direction, so flames tend to spread when brazing the U-bend attached to the end of the fin, and the solder is well-circumscribed and defective. There are fewer attachment points.

実施例 以下、本発明の一実施例を添付図面にもとづい
て説明する。第1図は本発明の一実施例の熱交換
器でありaは平面図、bは側面図である。8a,
8bは銅管であり内部を冷媒が循環している。そ
の熱は、銅管8からフインカラー9、フイン10
へと順次伝えられ、前方から流動する空気11と
熱の授受を行う。銅管8の配置は銅管8aと8b
の関係のごとく上流側の銅管8aの投影面12に
部分的に銅管8bが重なる様に構成されかつ銅管
群間のピツチbは隣接銅管相互間の距離cより大
きい。つまり常に上流側のどれかの銅管8の投影
面と下流側の銅管が重なる様に構成されている。
この一対の銅管の中心距離aと熱伝達率及び圧力
損失の関係は第4図の如くなる。圧力損失はb/
cが小さくなれば増大するため、本実施例ではb
>cと取つている。また一方中心距離がフインカ
ラー直径の1/2近辺で熱伝達率は最大となる。本
実施例ではaを直径の1/2としているが、直径の
2/5〜2/8近辺ではほぼ同等の効果が期待できる。
この場合の圧損はちどり配列より小さい。また、
本実施例のごとく銅管距離が空気流と斜めになり
基盤目配列と比べて広くなるため露落ちが良い。
また止水域も碁盤目配列にするとほぼ銅管後流全
域に渡つて現われるが、この実施例のごとき銅管
配列では著しく減少する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings. FIG. 1 shows a heat exchanger according to an embodiment of the present invention, in which a is a plan view and b is a side view. 8a,
8b is a copper pipe in which a refrigerant circulates. The heat is transferred from the copper pipe 8 to the fin collar 9 and the fin 10.
The heat is transferred to and from the air 11 in sequence, and exchanges heat with the air 11 flowing from the front. The arrangement of the copper tubes 8 is copper tubes 8a and 8b.
As shown in the following relationship, the copper tubes 8b are constructed so as to partially overlap the projection plane 12 of the upstream copper tubes 8a, and the pitch b between the copper tube groups is larger than the distance c between adjacent copper tubes. In other words, the projection plane of any copper tube 8 on the upstream side always overlaps with the copper tube on the downstream side.
The relationship between the center distance a of this pair of copper tubes, the heat transfer coefficient, and the pressure loss is as shown in FIG. The pressure loss is b/
Since it increases as c becomes smaller, in this example, b
>c. On the other hand, the heat transfer coefficient is maximum when the center distance is around 1/2 of the fin collar diameter. In this embodiment, a is set to 1/2 of the diameter, but approximately the same effect can be expected in the vicinity of 2/5 to 2/8 of the diameter.
The pressure drop in this case is smaller than that in the chidori array. Also,
As in this embodiment, the distance between the copper tubes is oblique to the airflow and is wider than the base grid arrangement, so dew removal is good.
Furthermore, when the grid pattern is used, the water stop area appears over almost the entire downstream area of the copper pipes, but in the case of the copper pipe arrangement as in this embodiment, the water stop area is significantly reduced.

第2図は本発明の他の一実施例でaは平面図、
bは側面図である。本実施例に於てもその効果は
第1図に示した本発明の一実施例とほぼ同一であ
るが異なる点は銅管12の配置、及び突起の有無
である。銅管12bは銅管12aの投影面17と
部分的な重なりを有している。またフイン14に
加工された突起15もいずれかの銅管の投影面と
部分的に重なる様に配置されている。この様に突
起15を設けることによつて上流側の管とフイン
の間から発生する馬蹄渦が銅管12a,12b,
12c,12dで構成される銅管群の内部へ入り
込み、銅管群の内部の熱伝達が著しく向上すると
ともに止水域が減少し、有効な伝熱面積も増加す
る。
FIG. 2 is another embodiment of the present invention, in which a is a plan view;
b is a side view. The effects of this embodiment are almost the same as those of the embodiment of the present invention shown in FIG. 1, but the differences are in the arrangement of the copper tube 12 and the presence or absence of protrusions. The copper tube 12b partially overlaps the projection plane 17 of the copper tube 12a. Further, the protrusions 15 formed on the fins 14 are also arranged so as to partially overlap the projection plane of one of the copper tubes. By providing the protrusion 15 in this way, the horseshoe vortex generated from between the upstream pipe and the fin can be
It enters the inside of the copper tube group consisting of 12c and 12d, and the heat transfer inside the copper tube group is significantly improved, the cut-off area is reduced, and the effective heat transfer area is also increased.

第3図は本発明の第3番目の一実施例でaは平
面図、bはaのAA断面図である。本実施例に於
る効果も前述の本発明の他の2つの実施例とほぼ
同じであるが、異なる点は銅管群にまたがる直線
状の突起21を設けた点にある。この突起は、露
付き運転時の水滴の落下を促進し、水膜による熱
伝達率の悪化及び圧損の増大を押え、低圧損かつ
高熱伝達率の蒸発器用フインを実現するためのも
のである。本実施例では直線状の突起21は銅管
18aと18cというように隣りの銅管群の一つ
上流側の銅管を結ぶごとくに構成されているが、
この突起21は、銅管18aと18dを結ぶごと
く、つまり空気流22方向と垂直であつても良
い。またこの突起21は空気に乱れを与え同時に
止水域を減少させる効果もあり、高い熱伝達率と
広い有効伝熱面積を実現することができるもので
ある。
FIG. 3 is a third embodiment of the present invention, in which a is a plan view and b is a sectional view taken along line AA of a. The effects of this embodiment are almost the same as those of the other two embodiments of the present invention described above, but the difference lies in that a linear protrusion 21 is provided spanning the group of copper tubes. These protrusions promote the falling of water droplets during operation with dew, suppress deterioration of heat transfer coefficient and increase of pressure drop due to water film, and realize an evaporator fin with low pressure drop and high heat transfer coefficient. In this embodiment, the linear protrusion 21 is configured to connect copper pipes one upstream of adjacent copper pipe groups, such as copper pipes 18a and 18c.
This protrusion 21 may be perpendicular to the direction of the air flow 22, so as to connect the copper tubes 18a and 18d. Furthermore, the protrusions 21 have the effect of turbulating the air and reducing the water stop area at the same time, making it possible to achieve a high heat transfer coefficient and a wide effective heat transfer area.

発明の効果 本発明は、複数本の伝熱管群を複数枚のフイン
に貫通嵌合させて構成し伝熱管群間のピツチを伝
熱管群内の隣り合う伝熱管の距離より大きく取る
とともに下流側の伝熱管が上流のどれかの伝熱管
の投影面と部分的に重なる様構成しているので次
の様な効果がある。上流側のフインと伝熱管の
存在によつて発生する馬蹄渦が後流の管表面に著
しく高い熱伝達域を生じさせる。上記馬蹄渦が
後流の管によつて分散され、伝熱管群間へ入り込
むため止水域が減少し、有効伝熱面が増加する。
伝熱管が空気流に対して斜めに設置されるため
に伝熱管間距離が広くなり露落ちが良くなり露付
き時の圧力損失が低下し熱伝達率が増加する。以
上の効果によつてフイン性能が向上し、高性能で
コンパクトなフイン付熱交換器が実現できる。
Effects of the Invention The present invention consists of a plurality of heat exchanger tube groups that are fitted through a plurality of fins, and the pitch between the heat exchanger tube groups is made larger than the distance between adjacent heat exchanger tubes in the heat exchanger tube group. Since the heat exchanger tube is configured to partially overlap the projection plane of any upstream heat exchanger tube, the following effects are achieved. The horseshoe vortex generated by the presence of the upstream fins and heat transfer tubes creates a significantly high heat transfer zone on the downstream tube surface. The horseshoe vortex is dispersed by the trailing tubes and enters between the groups of heat transfer tubes, reducing the stopping area and increasing the effective heat transfer surface.
Since the heat transfer tubes are installed obliquely to the air flow, the distance between the heat transfer tubes is wide, which improves dew removal, reduces pressure loss when dew forms, and increases heat transfer coefficient. Due to the above effects, the fin performance is improved, and a high-performance and compact heat exchanger with fins can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のフイン付熱交換器
構成図、第2図及び第3図は本発明の他の実施例
のフイン付熱交換器の構成図、第4図は同熱交換
器の動作説明図、第5図は従来例のフイン付熱交
換器の構成図、第6図は従来例のフイン付熱交換
器斜視図である。 1,4,8,12,18……銅管、2,6,1
0,14,20……フイン、15……突起、21
……直線状突起。
Fig. 1 is a block diagram of a heat exchanger with fins according to an embodiment of the present invention, Figs. 2 and 3 are block diagrams of a heat exchanger with fins according to another embodiment of the present invention, and Fig. 4 is a block diagram of a heat exchanger with fins according to another embodiment of the present invention. An explanatory diagram of the operation of the exchanger, FIG. 5 is a configuration diagram of a conventional heat exchanger with fins, and FIG. 6 is a perspective view of a conventional heat exchanger with fins. 1, 4, 8, 12, 18...Copper pipe, 2, 6, 1
0,14,20...Fin, 15...Protrusion, 21
...Straight protrusion.

Claims (1)

【特許請求の範囲】 1 複数枚のフインに気流方向に並んだ複数本の
伝熱管により構成される伝熱管群を複数群貫通し
嵌合させ、前記伝熱管群間のピツチを、前記伝熱
管群内の隣り合う前記伝熱管間の距離より大きく
取るとともに、同一伝熱管群内の伝熱管相互が前
記気流の上流側にあるいずれかの前記伝熱管の下
流側への投影面と部分的な重なりを有して構成さ
れたフイン付熱交換器。 2 伝熱管群内の前記伝熱管を気流方向に傾斜し
て直線状に配列した特許請求の範囲第1項記載の
フイン付熱交換器。 3 伝熱管群内の前記伝熱管を非直線状に配置し
た特許請求の範囲第1項記載のフイン付熱交換
器。 4 伝熱管の気流の下流側への投影面内のフイン
に突起を設けた特許請求の範囲第1項記載のフイ
ン付熱交換器。 5 伝熱管群間の前記フインに、前記伝熱管群間
にまたがる直線状の突起を設けた特許請求の範囲
第1項記載のフイン付熱交換器。
[Scope of Claims] 1. A plurality of groups of heat exchanger tubes constituted by a plurality of heat exchanger tubes arranged in the air flow direction are fitted through a plurality of fins, and the pitches between the heat exchanger tube groups are defined by the heat exchanger tubes. The distance between the adjacent heat exchanger tubes in the group is set larger than the distance between the heat exchanger tubes in the same group, and the distance between the heat exchanger tubes in the same heat exchanger tube group is partially with respect to the downstream projection plane of any of the heat exchanger tubes on the upstream side of the air flow. A heat exchanger with fins configured with overlap. 2. The heat exchanger with fins according to claim 1, wherein the heat exchanger tubes in the heat exchanger tube group are arranged in a straight line at an angle in the airflow direction. 3. The heat exchanger with fins according to claim 1, wherein the heat exchanger tubes in the heat exchanger tube group are arranged in a non-linear manner. 4. The heat exchanger with fins according to claim 1, wherein projections are provided on the fins in the plane of projection of the heat transfer tube toward the downstream side of the airflow. 5. The heat exchanger with fins according to claim 1, wherein the fins between the heat exchanger tube groups are provided with linear projections extending between the heat exchanger tube groups.
JP11244585A 1985-04-19 1985-05-24 FUINTSUKINETSUKOKANKI Expired - Lifetime JPH0227597B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11244585A JPH0227597B2 (en) 1985-05-24 1985-05-24 FUINTSUKINETSUKOKANKI
KR1019860002760A KR900006245B1 (en) 1985-04-19 1986-04-11 Heat exchanger
US06/851,507 US4715437A (en) 1985-04-19 1986-04-14 Heat exchanger
AU56131/86A AU585970B2 (en) 1985-04-19 1986-04-15 Heat exchanger
CA000506667A CA1269975A (en) 1985-04-19 1986-04-15 Heat exchanger
CN86102670A CN1014632B (en) 1985-04-19 1986-04-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11244585A JPH0227597B2 (en) 1985-05-24 1985-05-24 FUINTSUKINETSUKOKANKI

Publications (2)

Publication Number Publication Date
JPS61272594A JPS61272594A (en) 1986-12-02
JPH0227597B2 true JPH0227597B2 (en) 1990-06-18

Family

ID=14586807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11244585A Expired - Lifetime JPH0227597B2 (en) 1985-04-19 1985-05-24 FUINTSUKINETSUKOKANKI

Country Status (1)

Country Link
JP (1) JPH0227597B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646699A (en) * 1987-06-26 1989-01-11 Matsushita Refrigeration Heat exchanger with fin
CN102628658A (en) * 2012-01-01 2012-08-08 黄华 Method for separating ice and frost from surface of heat exchanger and application
JP7049923B2 (en) * 2018-05-31 2022-04-07 昭和電工株式会社 Cooler and refrigerator

Also Published As

Publication number Publication date
JPS61272594A (en) 1986-12-02

Similar Documents

Publication Publication Date Title
US5329988A (en) Heat exchanger
US4715437A (en) Heat exchanger
JP3068761B2 (en) Heat exchanger
JPH09189493A (en) Heat exchanger with fins
JP3048614B2 (en) Heat exchanger
JPH0227597B2 (en) FUINTSUKINETSUKOKANKI
JPH0410530Y2 (en)
JPH0684876B2 (en) Heat exchanger with fins
JPH06147532A (en) Air conditioner
JP2003083690A (en) Corrugated fin heat-exchanger
JPS58214783A (en) Heat exchanger
JPH0160759B2 (en)
CN214333492U (en) Reinforced heat exchange fin and finned tube heat exchanger
CN102538306A (en) Heat exchanger structure
JP2588114Y2 (en) Automotive heat exchanger
JPH09196585A (en) Heat exchanger with fins
JPS6152589A (en) Air-to-air heat exchanger
JP2730649B2 (en) Heat exchanger
JP2508631Y2 (en) Heat exchanger
JPS63197884A (en) Finned heat exchanger
KR20230153157A (en) Heat exchange fin and heat exchanger including the same
JPS61240099A (en) Heat exchanger
JPH0419344Y2 (en)
JPH02171596A (en) Heat exchanger with fins
JP2000039282A (en) Heat exchanger including fin having louver

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees