JPH02275760A - Production of fiber-reinforced b4c composite - Google Patents

Production of fiber-reinforced b4c composite

Info

Publication number
JPH02275760A
JPH02275760A JP1096907A JP9690789A JPH02275760A JP H02275760 A JPH02275760 A JP H02275760A JP 1096907 A JP1096907 A JP 1096907A JP 9690789 A JP9690789 A JP 9690789A JP H02275760 A JPH02275760 A JP H02275760A
Authority
JP
Japan
Prior art keywords
composite
slurry
powder
toughness
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1096907A
Other languages
Japanese (ja)
Other versions
JP2696387B2 (en
Inventor
Kikuo Nakano
中野 喜久男
Akira Kamiya
神谷 晶
Hiroshi Okuda
宏 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tokai Carbon Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1096907A priority Critical patent/JP2696387B2/en
Publication of JPH02275760A publication Critical patent/JPH02275760A/en
Application granted granted Critical
Publication of JP2696387B2 publication Critical patent/JP2696387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain fiber-reinforced B4C composite of high strength and toughness by immersing carbon or SiC continuous fibers in a slurry containing B4C powder and Al sintering aid in a thermosetting resin solution and hot-pressing the products under certain conditions. CONSTITUTION:A B4C powder and an Al sintering aid (such as AlB2) are admixed to a thermosetting resin solution in an organic solvent (such as polysila- styrene resin or phenolic resin) to form a mud slurry. Then continuous fibers of carbon or SiC are dipped in the slurry to form prepregs. The prepregs are hot-pressed in a nonoxidative atmosphere at 1,600 to 2,000 deg.C under pressure of 150 kg/cm<2> to give the subject B4C composite material. The resultant composite is suitably used as a high-performance ceramic material in the field of structural materials or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、高強度・高靭性を有する連続繊維で強化した
B4C?1合体の製造方法に関する。
[Detailed description of the invention] [Industrial application field] The present invention provides B4C? reinforced with continuous fibers having high strength and high toughness. The present invention relates to a method for manufacturing a single unit.

〔従来の技術] 84C(炭化ホウ素)は、熱的安定性、化学的耐食性、
中性子吸収能力に優れるうえに高硬度、低比重などの特
性を保存しているが、靭性に乏しいため構造材料への実
用化が遅れている。
[Prior art] 84C (boron carbide) has thermal stability, chemical corrosion resistance,
Although it has excellent neutron absorption capacity, high hardness, and low specific gravity, its practical application as a structural material has been delayed due to its poor toughness.

近年、セラミックスの高靭化を目的とした各種の複合材
研究がなされている。B4C系については、例えばA1
系の焼結助剤を用いた焼結体とその製造方法(特開昭5
9−184767号公報)、「粒子分散強化によるB4
Cセラミックスの高靭化〔日本セラミックス協会、第2
7回セラミックス基礎科学討論会要旨集P212 (1
989) )などが報告されているが、強度と靭性の調
和がとれた焼結体は未だに得られていない。
In recent years, various types of composite materials have been researched to improve the toughness of ceramics. For B4C series, for example, A1
A sintered body using a sintering aid and its manufacturing method (Unexamined Japanese Patent Publication No. 5
9-184767), “B4 by particle dispersion reinforcement
High toughness of C-ceramics [Japan Ceramics Association, No. 2]
7th Ceramics Basic Science Conference Abstracts P212 (1
989) ), but a sintered body with a good balance of strength and toughness has not yet been obtained.

(発明が解決しようとする課題〕 84C焼結体は他のセラミックスと同様に本来的に脆弱
な材料であり、−度発生した亀裂は容易に焼結体組織全
体に伝播して破壊に至る。これはB4C焼結体の低い破
壊エネルギーに基づいて起こる現象であるため、十分な
高靭化を得るためには粒子あるいは繊維などによる強化
相を複合化することにより破壊エネルギーの増大化を図
ることが有効である。但し、この場合に導入される強化
相は、亀裂の進行に対して強い抵抗を示し、マトリック
スであるB4Cと化学的に反応しないが反応しても強化
相の特性劣化を伴わず、さらに熱膨張率の違いによって
マトリックスとの間に生じる残留熱応力の影響で焼結体
構造に複合欠陥の発生を招くことのない物質であること
が望ましい。
(Problems to be Solved by the Invention) Like other ceramics, the 84C sintered body is an inherently brittle material, and cracks that occur easily propagate throughout the structure of the sintered body, leading to destruction. This is a phenomenon that occurs due to the low fracture energy of B4C sintered bodies, so in order to obtain sufficient toughness, it is necessary to increase the fracture energy by combining a reinforcing phase with particles or fibers. However, the reinforcing phase introduced in this case shows strong resistance to crack propagation and does not chemically react with the matrix B4C, but even if it does, the properties of the reinforcing phase will deteriorate. First, it is desirable that the material is one that does not cause complex defects in the sintered structure due to residual thermal stress generated between the material and the matrix due to the difference in coefficient of thermal expansion.

本発明は、上記の観点から強化相の形成について多角的
に研究を重ねた結果得られたもので、その目的とすると
ころは連続繊維を複合化することによって破壊エネルギ
ーの大きな、ずなわち靭性の高いB4C焼結体の製造方
法を提供することにある。
The present invention was obtained as a result of multifaceted research on the formation of reinforcing phases from the above-mentioned viewpoints, and its purpose is to improve the toughness of the reinforcing phase, which has a large fracture energy, by compositing continuous fibers. An object of the present invention is to provide a method for manufacturing a B4C sintered body with high B4C.

(課題を解決するための手段〕 L記の目的を達成するための本発明による繊維強化B4
C複合体の製造方法は、熱硬化性樹脂溶液にB4C粉末
およびAl系焼結助剤を添加混合して泥漿スラリーを形
成し、該泥漿スラリーに炭素あるいはSiCの連続繊維
を浸漬してプリプレグ化したのち、非酸化性雰囲気中で
温度1600〜2000’C5圧力150 ’Kg/c
M以−にの熱圧条件によりホソトプし・スすることを構
成上の特徴とする。
(Means for Solving the Problems) Fiber-reinforced B4 according to the present invention to achieve the object L
The method for manufacturing the C composite is to form a slurry by adding and mixing B4C powder and an Al-based sintering aid to a thermosetting resin solution, and then immerse continuous fibers of carbon or SiC in the slurry to form a prepreg. After that, temperature 1600-2000'C5 pressure 150'Kg/c in non-oxidizing atmosphere
The structural feature is that it can be heated under heat and pressure conditions of M or higher.

マトリックスとなる[1.Cには可及的に微細な粉末が
適用され、平均粒子径として50μmを越えるわ)宋で
は焼結性が悪く十分な強度特性は得られない。好ましい
粉末粒度は、平均粒子径で1101z以Fとすることで
ある。
Becomes a matrix [1. For C, as fine a powder as possible is applied, and the average particle size exceeds 50 μm.) Song has poor sinterability and cannot provide sufficient strength. The preferred powder particle size is an average particle size of 1101z or less.

焼結助剤としては、AlまたはA!82のようなAl系
の化合物が使用される。この添加量はB4C粉末に対し
^l量として10重量%以下になるように設定すること
が好適であり、10重量%を上田る添加は焼結中に繊維
物質と反応を起こして強化特性を低下させる危険性を招
く。
As a sintering aid, Al or A! Al-based compounds such as No. 82 are used. It is preferable to set the amount of this addition to be 10% by weight or less relative to the B4C powder, and adding 10% by weight causes a reaction with the fiber material during sintering, resulting in poor reinforcing properties. poses a risk of deterioration.

これら84G粉末およびAl系焼結助剤は、熱硬化性樹
脂溶液に混合分散させて泥漿スラリーを形成する。熱硬
化性樹脂溶液は、例えばポリシラスチレン樹脂、エポキ
シ樹脂、フェノール樹脂等の熱硬化性樹脂を適宜な有機
溶媒に溶解希釈して作成されるが、この際に使用する熱
硬化性樹脂は熱処理時の炭素残留率が低いものを選択す
ることが望ましい。この理由は、後工程の熱圧処理時に
多量の炭素成分が生成残留すると焼結性を阻害する原因
になるからである。
These 84G powder and Al-based sintering aid are mixed and dispersed in a thermosetting resin solution to form a slurry. A thermosetting resin solution is created by dissolving and diluting a thermosetting resin such as polysilastyrene resin, epoxy resin, or phenol resin in an appropriate organic solvent, but the thermosetting resin used at this time is heat-treated. It is desirable to select one with a low carbon residual rate. The reason for this is that if a large amount of carbon components are formed and remain during the post-process heat-pressure treatment, it will impede sinterability.

強化材となる繊維物質には、ピッチ系またはポリアクリ
ロニトリル系の炭素繊維あるいはSiC繊維が長尺な連
続繊維の形態で使用される。
As the fibrous material serving as the reinforcing material, pitch-based or polyacrylonitrile-based carbon fibers or SiC fibers are used in the form of long continuous fibers.

複合化は、これらの連続繊維を上記の泥漿スラリーに浸
ンaし°でフ゛すプレグ化することによりおこなわれる
。具体的手段としては、例えば泥漿スラリーに繊維を連
続的に浸しながらフィラメントワインディング法を用い
て成形体とし、ついで半硬化してプリプレグ化する方法
などが採られる。
Composite formation is carried out by soaking these continuous fibers in the above-mentioned slurry and forming them into a preg. As a specific method, for example, a method may be adopted in which fibers are continuously immersed in slurry to form a molded body using a filament winding method, and then semi-cured to form a prepreg.

プリプレグは所望の形態に積層成形したのち揮発成分を
十分に脱脂し、Arあるいは真空などの非酸化性雰囲気
中で温度1600〜2000℃、圧力150 kg/c
r1以上の熱圧条件によりホントブレスする。温度が1
600’c未満で圧力が150 kg/cJを上廻る条
件では焼結が円滑に進行せず、また2000°Cを越え
る加熱はもはや複合材の焼結性の向上にはつながらない
After the prepreg is laminated and molded into the desired shape, volatile components are thoroughly degreased, and the prepreg is molded in a non-oxidizing atmosphere such as Ar or vacuum at a temperature of 1600 to 2000°C and a pressure of 150 kg/c.
Really breathe under heat and pressure conditions of r1 or higher. temperature is 1
Sintering does not proceed smoothly under conditions where the temperature is less than 600'C and the pressure exceeds 150 kg/cJ, and heating above 2000C no longer leads to improvement in the sinterability of the composite material.

本発明の繊維強化B4C複合体は、」−記のホットプレ
ス焼結によって製造される。
The fiber-reinforced B4C composite of the present invention is manufactured by hot press sintering.

[作 用〕 一般に、繊維をマトリックスに複合強化する場合の特性
向−ヒの度合は、繊維とマトリックス物質問の熱膨張率
の違いによって生じる残留応力などによる力学的な要因
と、化学的な反応性に基づく要因の兼ね合いにより大き
く支配される。
[Function] In general, the degree of property improvement when compositely reinforcing fibers with a matrix is determined by mechanical factors such as residual stress caused by the difference in thermal expansion coefficient between the fibers and the matrix material, and chemical reactions. It is largely controlled by a trade-off of gender-based factors.

例えば、熱膨張率が極端に異なる物質を複合化する場合
には製造工程における加熱・冷却過程においてクラック
や気孔の発生を促して機械的特性の低下を招き、他方、
繊維とマトリックスとの化学的な反応が著しくなると強
化作用を減退させて同様に機械的特性を低下させる。
For example, when materials with extremely different coefficients of thermal expansion are combined, cracks and pores are generated during the heating and cooling processes in the manufacturing process, leading to a decrease in mechanical properties.
A significant chemical reaction between the fibers and the matrix reduces the reinforcing effect and likewise reduces the mechanical properties.

本発明の方法によると、連続繊維とマトリックスとの間
に強化機構に有効な力学的、化学的な作用が生じ、更に
焼結助剤を構成するA1系成分が84Cの焼結を促進す
るばかりでなく適度な界面反応を起こして結合を向上さ
せるために機能する。
According to the method of the present invention, mechanical and chemical effects effective for the reinforcing mechanism occur between the continuous fibers and the matrix, and furthermore, the A1-based component constituting the sintering aid only accelerates the sintering of 84C. Instead, it functions to improve bonding by causing an appropriate interfacial reaction.

これらの作用が相乗的に寄与して材質強度ならびに靭性
の向上改善をもたらす。
These effects contribute synergistically to improve material strength and toughness.

[実施例] マトリックスとして平均粒子径1μmおよび2μmの8
4C粉末〔共立窯業■製〕、焼結助剤に平均粒子径40
μmのへIおよび/またはAlBz粉末(セランク社製
)を用い、これらをボールミルで24時間に亘り混合し
たのちポリシラスチレン樹脂(日本曹達■製)またはフ
ェノール樹脂の溶液を加え、真空混合機により30分間
処理して泥漿スラリーを作成した。
[Example] 8 with an average particle size of 1 μm and 2 μm as a matrix
4C powder [manufactured by Kyoritsu Ceramics], sintering aid with average particle size of 40
Using μm HeI and/or AlBz powder (manufactured by Selunk), these were mixed in a ball mill for 24 hours, then a solution of polysilastyrene resin (manufactured by Nippon Soda) or phenol resin was added, and the mixture was mixed with a vacuum mixer. A slurry was prepared by processing for 30 minutes.

上記の泥漿スラリーに、ピッチ系の炭素繊維(ベト力・
カーボニック社製)、ポリアクリロニトリル系の炭素繊
維[東邦レーヨン■製]およびSiC繊維の連続フィラ
メント(トウ)を十分に浸しながらフィラメントワイン
ディングによりボビンに巻き付け、半硬化してプリプレ
グ化した。引続き半乾きの状態で金属プレスにより板状
に成形し、溶媒を揮発させたのち1500kg/cdの
圧力で静水圧プレスした。 成形体をArガスに保持さ
れた炉中でゆっくり昇温し700 ’Cで1時間焼成し
たのち、1600〜2000°Cの温度段階で繊維方向
と垂直に加圧するホットプレスにより200 kg/c
Jの圧力を適用して焼結処理をおこなった。
Pitch-based carbon fiber (stickiness and
Continuous filaments (tow) of polyacrylonitrile-based carbon fibers (manufactured by Carbonic Co., Ltd.), polyacrylonitrile-based carbon fibers (manufactured by Toho Rayon ■), and SiC fibers were wound around a bobbin by filament winding while sufficiently immersed, and semi-cured to form a prepreg. Subsequently, it was formed into a plate shape using a metal press in a semi-dry state, and after the solvent was evaporated, it was hydrostatically pressed at a pressure of 1500 kg/cd. The molded body was slowly heated in a furnace kept in Ar gas and fired at 700'C for 1 hour, and then heated to 200 kg/c by hot pressing perpendicular to the fiber direction at temperature steps of 1600 to 2000°C.
The sintering process was carried out by applying a pressure of J.

なお、焼結体中の繊維含有量は全て35vo 1%とじ
た。
Note that the fiber content in the sintered bodies was all 35vo 1%.

このようにして製造した各複合体について、焼結密度、
気孔率、曲げ強さ、靭性値などの特性を測定した。この
うち、曲げ強さはJIS R1601による三点曲げ強
度測定法により、また靭性値は試片(4X3X36胴)
の中央に幅0.1胴、切り込み深さ1IIlffiのノ
ツチを導入し4点曲げ(クロスヘツドスピード0.5 
mm/m1n)SENB法により測定した。
For each composite thus produced, the sintered density,
Properties such as porosity, bending strength, and toughness values were measured. Among these, the bending strength was determined by the three-point bending strength measurement method according to JIS R1601, and the toughness was determined by the test piece (4X3X36 shell).
A notch with a width of 0.1 mm and a cutting depth of 1 IIlffi was introduced in the center of the 4-point bend (crosshead speed 0.5
mm/m1n) measured by the SENB method.

得られた結果を適用した条件と対比させて第1表に示し
た。
The obtained results are shown in Table 1 in comparison with the applied conditions.

第1表の結果から、本発明で得られる繊維強化84G複
合体はいずれも良好な強度ならびに靭性値を示した。ま
た、UPMAの観察では繊維の表層部にA1が固溶して
いることが認められ、試片破断面観察では高靭化に有効
とされるクラックディフレクションおよびプルアウト効
果が6fI mWされた。
From the results in Table 1, all the fiber-reinforced 84G composites obtained in the present invention showed good strength and toughness values. In addition, observation of UPMA showed that A1 was dissolved in the surface layer of the fiber, and observation of the fractured surface of the specimen showed that crack deflection and pull-out effects, which are effective for increasing toughness, were 6 fI mW.

比較例 平均粒子径2μmのBaC粉末に焼結助剤として平均粒
子径40μmのAl82粉末を5重量%混合し、これを
温度1800℃、圧力200kg/cm”の条件で焼結
した。
Comparative Example BaC powder with an average particle diameter of 2 μm was mixed with 5% by weight of Al82 powder with an average particle diameter of 40 μm as a sintering aid, and this was sintered at a temperature of 1800° C. and a pressure of 200 kg/cm”.

この例で得られたB4C焼結体の特性は、焼結密度2.
47g/cc、気孔率0.43%、曲げ強度54.3k
g/mmz、靭性値3.2MPa、 1mで靭性の改善
は認められなかった。
The characteristics of the B4C sintered body obtained in this example are that the sintered density is 2.
47g/cc, porosity 0.43%, bending strength 54.3k
g/mmz, toughness value 3.2 MPa, and no improvement in toughness was observed at 1 m.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば従来技術において困難と
されていた84Cの靭性改善を効果的に達成することが
できる。したがって、高機能セラミック材料として広汎
な用途が期待される。
As described above, according to the present invention, it is possible to effectively improve the toughness of 84C, which has been difficult in the prior art. Therefore, it is expected to have a wide range of uses as a high-performance ceramic material.

Claims (1)

【特許請求の範囲】[Claims] 1.熱硬化性樹脂溶液にB_4C粉末およびAl系焼結
助剤を添加混合して泥漿スラリーを形成し、該泥漿スラ
リーに炭素あるいはSiCの連続繊維を浸漬してプリプ
レグ化したのち、非酸化性雰囲気中で温度1600〜2
000℃、圧力150kg/cm^2以上の熱圧条件に
よりホットプレスすることを特徴とする繊維強化B_4
C複合体の製造方法。
1. A slurry is formed by adding and mixing B_4C powder and an Al-based sintering aid to a thermosetting resin solution. Continuous carbon or SiC fibers are immersed in the slurry to form a prepreg, and then heated in a non-oxidizing atmosphere. at a temperature of 1600~2
Fiber-reinforced B_4 characterized by hot pressing under heat and pressure conditions of 000℃ and pressure 150kg/cm^2 or more
Method for producing C complex.
JP1096907A 1989-04-17 1989-04-17 Method for producing fiber reinforced B 4C composite Expired - Lifetime JP2696387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096907A JP2696387B2 (en) 1989-04-17 1989-04-17 Method for producing fiber reinforced B 4C composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096907A JP2696387B2 (en) 1989-04-17 1989-04-17 Method for producing fiber reinforced B 4C composite

Publications (2)

Publication Number Publication Date
JPH02275760A true JPH02275760A (en) 1990-11-09
JP2696387B2 JP2696387B2 (en) 1998-01-14

Family

ID=14177434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096907A Expired - Lifetime JP2696387B2 (en) 1989-04-17 1989-04-17 Method for producing fiber reinforced B 4C composite

Country Status (1)

Country Link
JP (1) JP2696387B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120426A (en) * 2007-11-13 2009-06-04 Covalent Materials Corp Long fiber reinforced ceramic composite material and its manufacturing method
JP2012153601A (en) * 2012-04-11 2012-08-16 Covalent Materials Corp Long fiber reinforced ceramic composite material and method of manufacturing the same
CN103668382A (en) * 2012-09-05 2014-03-26 中国工程物理研究院核物理与化学研究所 Surface treatment method of B4C-Al composite material
CN106498470A (en) * 2016-10-24 2017-03-15 中国工程物理研究院核物理与化学研究所 B4C Al neutron absorber material surface protection film generation methods
CN109852850A (en) * 2019-03-20 2019-06-07 中国工程物理研究院材料研究所 A kind of preparation method of structure-function integration neutron absorber material
CN113004041A (en) * 2021-03-09 2021-06-22 贵州木易精细陶瓷有限责任公司 Gradient carbide ceramic and preparation method thereof
CN116802168A (en) * 2021-01-26 2023-09-22 三菱电机株式会社 Composite ceramic material and method for producing composite ceramic material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120426A (en) * 2007-11-13 2009-06-04 Covalent Materials Corp Long fiber reinforced ceramic composite material and its manufacturing method
JP2012153601A (en) * 2012-04-11 2012-08-16 Covalent Materials Corp Long fiber reinforced ceramic composite material and method of manufacturing the same
CN103668382A (en) * 2012-09-05 2014-03-26 中国工程物理研究院核物理与化学研究所 Surface treatment method of B4C-Al composite material
CN103668382B (en) * 2012-09-05 2016-08-03 安徽应流久源核能新材料科技有限公司 B4C-Al composite material surface processing method
CN106498470A (en) * 2016-10-24 2017-03-15 中国工程物理研究院核物理与化学研究所 B4C Al neutron absorber material surface protection film generation methods
CN109852850A (en) * 2019-03-20 2019-06-07 中国工程物理研究院材料研究所 A kind of preparation method of structure-function integration neutron absorber material
CN116802168A (en) * 2021-01-26 2023-09-22 三菱电机株式会社 Composite ceramic material and method for producing composite ceramic material
CN113004041A (en) * 2021-03-09 2021-06-22 贵州木易精细陶瓷有限责任公司 Gradient carbide ceramic and preparation method thereof
CN113004041B (en) * 2021-03-09 2023-04-07 贵州木易精细陶瓷有限责任公司 Gradient carbide ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2696387B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP3096716B1 (en) Method for producing fiber-reinforced silicon carbide composite
JP2000169249A (en) Ceramic composite material
US7404922B2 (en) Method for producing SiC fiber-reinforced SiC composite material by means of hot press
JP2002097074A (en) Manufacture of silicon carbide composite material by applying radiation to silicon-based polymer
JPH08157273A (en) Unidirectional carbon fiber reinforced carbon composite material and its production
CA2088383C (en) A method of manufacturing parts made of ceramic matrix composite material
JP3127371B2 (en) Ceramic-containing carbon / carbon composite material and method for producing the same
JPH02275760A (en) Production of fiber-reinforced b4c composite
JPH08143364A (en) Production of fiber reinforced silicon carbide composite ceramic molded body
US4929472A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
JP2009274889A (en) Carbon fiber-reinforced silicon carbide composite material, and method for producing the same
JP2000344582A (en) Fiber/reinforced composite material
WO2021206168A1 (en) C/c composite and method for producing same, and heat-treatment jig and method for producing same
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
US4975302A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP2000160474A (en) Coated ceramic fiber
JPH02129071A (en) Production of silicon carbide ceramics
CN117383940A (en) High-strength and high-toughness silicon carbide ceramic material and preparation method thereof
JP3756583B2 (en) Ceramic-based fiber composite material and manufacturing method thereof
CN117776750A (en) C/SiC composite material, preparation method thereof, heat conduction member and heating furnace
JP2003129199A (en) New composite material and manufacturing method therefor
JPH0483757A (en) Production of sintered composite silicon carbide
JPH06116034A (en) Silicon carbide-based composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term