JPH02271634A - Formation of multi-layer wiring - Google Patents

Formation of multi-layer wiring

Info

Publication number
JPH02271634A
JPH02271634A JP9182989A JP9182989A JPH02271634A JP H02271634 A JPH02271634 A JP H02271634A JP 9182989 A JP9182989 A JP 9182989A JP 9182989 A JP9182989 A JP 9182989A JP H02271634 A JPH02271634 A JP H02271634A
Authority
JP
Japan
Prior art keywords
wiring material
substrate
connection hole
step coverage
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9182989A
Other languages
Japanese (ja)
Other versions
JP2832990B2 (en
Inventor
Kazuhide Koyama
一英 小山
Yukiyasu Sugano
菅野 幸保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1091829A priority Critical patent/JP2832990B2/en
Publication of JPH02271634A publication Critical patent/JPH02271634A/en
Application granted granted Critical
Publication of JP2832990B2 publication Critical patent/JP2832990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable a multi-layer wire to be formed by a wiring material made of Al or an alloy which mainly consists of Al being superb in step coverage to a connection hole by performing vacuum deposition of the wiring material while heating a substrate below a melting point of the wiring material exceeding 450 deg.C. CONSTITUTION:Vacuum deposition is performed while heating a substrate 1 below the melting point of Al or an alloy which mainly consists of Al, exceeding 450 deg.C. When the heating temperature of the substrate 1 is lower than 450 deg.C, step coverage of an accumulation film of a wiring material 4 at a connection hole part 3 is not sufficient. On the other hand, when the melting point of the wiring material 4 is exceeded, evenness deteriorates due to surface tension or viscous flow of the wiring material 4 which turned into liquid. Heating method of the substrate 1 is not limited particularly. But methods such as the one using a resistance heating heater and the one using radiation by a halogen lamp and an arc lamp are used. Thus, it becomes possible to form a multi-layer wiring which is superb in evenness on the film surface of wiring material accumulation at the connection hole 3 and which is superb in step coverage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置製造工程における多層配線形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming multilayer wiring in a semiconductor device manufacturing process.

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置製造工程における多層配線形成方
法に関し、更に詳しくは、半導体装置の内部多層配線に
おいて、アルミニウム(AI)またはAIを主体とする
合金からなる配線材料で接続孔を埋め込む、ステップカ
バレッジに優れた多層配線形成方法に関する。
The present invention relates to a method for forming multilayer wiring in a semiconductor device manufacturing process, and more specifically to a step coverage method for filling contact holes with wiring material made of aluminum (AI) or an alloy mainly composed of AI in internal multilayer wiring of a semiconductor device. The present invention relates to a method for forming multilayer interconnects with excellent performance.

〔従来の技術〕[Conventional technology]

LSI等の半導体装置は、素子の高集積度化および多層
化に伴い、内部配線幅が微細化し、接続孔のアスペクト
比すなわち孔の深さと直径の比は例えば1以上と大きな
値が採用されつつある。この接続孔を例えば八1または
A1を主体とする合金等からなる配線材料で埋め込む多
層配線形成方法の重要性が高まってきた。
As semiconductor devices such as LSIs become more highly integrated and multi-layered, the internal wiring width becomes finer, and the aspect ratio of the contact hole, that is, the ratio of the depth to the diameter of the hole, is becoming larger, for example, 1 or more. be. The importance of a multilayer wiring formation method in which the connection hole is filled with a wiring material made of, for example, an alloy mainly composed of 81 or A1 has been increasing.

従来よりAIまたはAIを主体とする合金からなる配線
材料を、薄膜の形状で基体上に形成する方法は、平行平
板型等のスパッタリング法が主として用いられてきた。
Conventionally, as a method for forming a wiring material made of AI or an alloy mainly composed of AI on a substrate in the form of a thin film, a parallel plate sputtering method or the like has been mainly used.

しかし、従来からのスパッタリング法においても、アス
ペクト比の大きな接続孔になると、その内部にはいわゆ
るシャドウィング効果のため配線材料が入って行けず、
接続孔の底部や側壁でのステップカバレッジ特性に劣っ
ていた。この様子を従来のスパッタリング法における接
続孔への配線材料のステップカバレッジを示す断面図で
ある第7図、および同じく接続孔部分のシャドウィング
効果の説明図である第8図に基づき説明する。
However, even in the conventional sputtering method, when a contact hole has a large aspect ratio, the wiring material cannot enter inside the hole due to the so-called shadowing effect.
The step coverage characteristics at the bottom and side walls of the connection hole were poor. This situation will be explained based on FIG. 7, which is a cross-sectional view showing the step coverage of the wiring material to the connection hole in the conventional sputtering method, and FIG. 8, which is also a diagram illustrating the shadowing effect in the connection hole portion.

第7図aは、平行平板型等従来の通常のスパッタリング
法におけるステップカバレッジである。
FIG. 7a shows step coverage in a conventional conventional sputtering method such as a parallel plate type sputtering method.

同図に示される通り、接続孔3部分の配線材料4のステ
ップカバレッジは悪く、埋め込み特性が良くない。この
原因の一つは、ターゲットの直径が基体の直径に比べて
大きいため、ターゲットからスパッタリングされた配線
材料の粒子、すなわち原子またはその集合体であるクラ
スタの、基体への斜め入射成分が多いことにある。また
他の原因として、スパッタリング法におけるアルゴン(
Ar)等のスパッタリングガス圧力が通常、例えば数m
Torrと比較的高いことがあげられる。このため、ス
パッタリングされた配線材料の粒子の空間における平均
自由行程が小さい。すなわち、粒子はスパッタリングガ
スと衝突を繰り返しながら、基体表面へ入射することに
なる。これら二つの原因は換言すれば、基体面垂直方向
に対する粒子の入射角度をαとした場合、このαの値が
0°以上90゜未満の広い範囲に分布すということであ
る。例えばα−30°の粒子に着目すると、第8図に示
すごとく、接続孔の斜線を施した部分には粒子は入射し
にくく、斜線が重なった部分にはほとんど入射しない。
As shown in the figure, the step coverage of the wiring material 4 in the connection hole 3 portion is poor, and the embedding characteristics are not good. One of the reasons for this is that because the diameter of the target is larger than the diameter of the substrate, there are many particles of the wiring material sputtered from the target, that is, atoms or clusters that are aggregates thereof, that are incident obliquely on the substrate. It is in. Another cause is argon (
The sputtering gas pressure such as Ar) is usually several meters, for example.
Torr is relatively high. Therefore, the mean free path in space of the particles of the sputtered wiring material is small. That is, the particles enter the substrate surface while repeatedly colliding with the sputtering gas. In other words, these two causes mean that, when α is the incident angle of particles relative to the direction perpendicular to the substrate surface, the value of α is distributed over a wide range of 0° to less than 90°. For example, focusing on particles at α-30°, as shown in FIG. 8, particles are difficult to enter the hatched portion of the connection hole, and almost never enter the hatched portion.

このシャドウィング効果につき、更に接続孔への配線材
料のステップカバレッジの粒子入射角度依存性のシミュ
レーション図である第5図を参照して説明する。同図す
は前記αがOoから60mまで分布している、スパッタ
リング法を想定した場合である。同図に見られる通り、
接続孔への配線材料のステップカバレッジは悪(、先に
述べた第7図aの結果と良い一致が得られた。
This shadowing effect will be further explained with reference to FIG. 5, which is a simulation diagram of the dependence of the step coverage of the wiring material on the connection hole on the particle incident angle. The figure shows a case where the sputtering method is assumed, in which the α is distributed from Oo to 60 m. As seen in the same figure,
The step coverage of the wiring material to the connection hole was poor (although good agreement was obtained with the results shown in FIG. 7a described above).

前記した通常のスパッタリング法での埋め込み特性の悪
さを改良する方法として、基体に負のDCバイアス電圧
またはRFバイアス電圧を印加しながらスパッタリング
を行うバイアススパッタリング法、基体を加熱しながら
成膜する高温スパッタリング法あるいはこの両方法を併
用する高温バイアススパッタリング法がある(例えば発
明者らによる総説、月刊Sem1conductor 
World誌、1988年2月号、P、77参照)。
As methods for improving the poor embedding characteristics of the above-mentioned normal sputtering method, there are two methods: bias sputtering, in which sputtering is performed while applying a negative DC bias voltage or RF bias voltage to the substrate, and high-temperature sputtering, in which a film is formed while heating the substrate. There is a high-temperature bias sputtering method that uses a method or a combination of both methods (for example, a review by the inventors, Monthly Sem1conductor).
(See World magazine, February 1988 issue, p. 77).

これらの方法は、いずれも基体上に堆積したAIやAl
を主体とした合金等の配線材料の再スパツタリングや、
あるいは熱エネルギーによる表面マイグレーションを促
進して、埋め込み特性を改善して平坦化を達成しようと
いうものである。
These methods all remove AI or Al deposited on the substrate.
Re-sputtering of wiring materials such as alloys mainly based on
Alternatively, the idea is to promote surface migration using thermal energy to improve the embedding characteristics and achieve planarization.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これらの改良方法を用いても、アスペクト比が
1以上の接続孔になると、孔内部へ入射する配線材料粒
子の量が不足し、第7図すに示すごとく接続孔内部に空
隙を残したまま、堆積膜の表面のみが連結してしまう。
However, even if these improvement methods are used, when a connection hole has an aspect ratio of 1 or more, the amount of wiring material particles entering the hole is insufficient, leaving a void inside the connection hole as shown in Figure 7. As a result, only the surfaces of the deposited films are connected.

この状態になると、接続孔部分でのエレクトロマイグレ
ーションや断線の発生等、多層配線の信幀性が極端に低
下する。
In this state, the reliability of the multilayer wiring is extremely reduced due to occurrence of electromigration and disconnection in the connection hole portion.

従って、本発明の課題は、半導体等の基体上に形成され
た接続孔へのステップカバレッジに優れた、AIまたは
AIを主体とする合金からなる配線材料による、多層配
線形成方法を提供することである。
Therefore, an object of the present invention is to provide a method for forming multilayer wiring using a wiring material made of AI or an alloy mainly composed of AI, which has excellent step coverage to connection holes formed on a substrate such as a semiconductor. be.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題について研究を重ねた結果、本発明者らは、接
続孔内部へのステップカバレッジは、基体への粒子の垂
直入射成分の多い真空蒸着法がスパッタリング法に比べ
て優れているとの計算結果を得るに至った。このシミュ
レーション結果を第5図aに示す。同図はαがOoから
10’までの狭い範囲に分布している場合のステップカ
バレッジであり、垂直入射成分の多い真空蒸着法を想定
したものである。ここで見られる通り、真空蒸着法によ
る接続孔への配線材料のステップカバレッジは、先に述
べた第5図すのスパッタリング法のシミュレーション結
果に比べて良好である。
As a result of repeated research on the above-mentioned problem, the present inventors have calculated that the vacuum evaporation method, in which there is a large number of particles perpendicularly incident on the substrate, is superior to the sputtering method in terms of step coverage inside the connection hole. I ended up getting this. The simulation results are shown in FIG. 5a. The figure shows step coverage when α is distributed in a narrow range from Oo to 10', assuming a vacuum evaporation method with many normal incidence components. As seen here, the step coverage of the wiring material to the connection hole by the vacuum evaporation method is better than the simulation results of the sputtering method shown in FIG. 5 described above.

すなわち、本発明による多層配線形成方法は、接続孔を
有する半導体等の基体にAIまたはAlを主体とする合
金からなる配線材料を真空蒸着すると同時に、堆積膜の
ステップカバレッジを確実なちとするため、基体を45
0℃以上AIまたはAlを主体とする合金の融点以下に
加熱しながら、前記真空蒸着を行うものである。
That is, in the multilayer wiring forming method according to the present invention, a wiring material made of AI or an alloy mainly composed of Al is vacuum-deposited on a substrate such as a semiconductor having contact holes, and at the same time, in order to ensure step coverage of the deposited film, 45 base
The vacuum evaporation is performed while heating to a temperature of 0° C. or higher and lower than the melting point of the alloy mainly composed of AI or Al.

基体の加熱温度は、450℃未満では接続孔部分での配
線材料の堆積膜のステップカバレッジが充分でなく、一
方、配線材料の融点を越えると、液体となった配線材料
の表面張力や粘性流動のため平坦性が悪化し、共に本発
明の効果を発揮することができない。
If the heating temperature of the substrate is lower than 450°C, the step coverage of the deposited film of the wiring material in the connection hole portion will not be sufficient, whereas if it exceeds the melting point of the wiring material, the surface tension and viscous flow of the liquid wiring material will occur. Therefore, the flatness deteriorates, and the effects of the present invention cannot be exhibited.

基体の加熱方法は、特に限定されるものではないが、例
えば抵抗加熱ヒータによる方法、ハロゲンランプやアー
クランプ照射による方法等が用いられる。
The method of heating the substrate is not particularly limited, but for example, a method using a resistance heater, a method using irradiation with a halogen lamp or an arc lamp, etc. are used.

真空蒸着装置は、これも特に限定されるものではな(、
例えば抵抗加熱、電子ビーム加熱、高周波加熱等の手段
によりA1またはAIを主体とする合金からなる配線材
料を蒸発させる装置が用いられる。真空蒸着時のチャン
バ内圧力は、通常の真空蒸着で用いられる真空度で充分
であり、−例として10− ’Torrであれば良い。
The vacuum evaporation equipment is not particularly limited either (
For example, an apparatus is used that evaporates a wiring material made of an alloy mainly composed of A1 or AI by means of resistance heating, electron beam heating, high frequency heating, or the like. The pressure inside the chamber during vacuum evaporation is sufficient to be the degree of vacuum used in normal vacuum evaporation, and may be, for example, 10' Torr.

要は配線材料の蒸発粒子の平均自由行程が大きく、基体
に対する垂直入射成分がスパッタリング法に比べて充分
大きな割合を占めるような真空度ならば良いのであり、
本発明の効果を損なわない範囲内で、任意に選定するこ
とが可能である。
In short, the degree of vacuum is sufficient as long as the mean free path of the evaporated particles of the wiring material is large and the normal incidence component to the substrate accounts for a sufficiently large proportion compared to the sputtering method.
It can be arbitrarily selected within a range that does not impair the effects of the present invention.

〔作用〕[Effect]

真空蒸着法は、蒸発源の面積が基体の面積に比べて小さ
い、また堆積膜形成時のチャンバ内の真空度は例えば1
0− ’Torrとスパッタリング法と比較してはるか
に高真空度であり、このため蒸発源からの粒子の平均自
由行程が大きく、基体面垂直方向に対する粒子の入射角
度αが小さい。すなわち基体面への粒子の垂直入射成分
が多い。よって基体面に垂直に形成された深い接続孔の
底部にも容易に配線材料の粒子が入射でき、接続孔の内
部に配線材料を堆積することができる。
In the vacuum evaporation method, the area of the evaporation source is small compared to the area of the substrate, and the degree of vacuum in the chamber during deposition film formation is, for example, 1.
The degree of vacuum is much higher than that of the sputtering method at 0-' Torr, and therefore the mean free path of the particles from the evaporation source is large, and the incident angle α of the particles with respect to the direction perpendicular to the substrate surface is small. That is, there are many components of particles that are perpendicularly incident on the substrate surface. Therefore, particles of the wiring material can easily enter the bottom of the deep connection hole formed perpendicular to the base surface, and the wiring material can be deposited inside the connection hole.

さらに基体を450℃以上AIまたはAIを主体とする
合金からなる配線材料の融点以下に加熱する方法を併用
しているので、堆積した配線材料の表面マイグレーシヨ
ンが同時に行われ、堆積膜のステップカバレッジはさら
に優れたものとなる。
Furthermore, since a method of heating the substrate to 450°C or higher and below the melting point of the wiring material made of AI or an alloy mainly composed of AI is used, surface migration of the deposited wiring material is performed at the same time, resulting in step coverage of the deposited film. becomes even better.

以上の作用により、半導体等の基体上の深い接続孔をA
IまたはAIを主体とする合金からなる配線材料で埋め
込む多層配線形成方法において、接続孔への埋め込み特
性に優れ、しかも接続孔部分の配線材料堆積膜表面の平
坦性の良いステップカバレッジに優れた多層配線の形成
が可能となる。
Due to the above action, deep connection holes on substrates such as semiconductors can be
In a multilayer wiring formation method in which wiring material is filled with a wiring material made of an alloy mainly composed of I or AI, the multilayer wiring has excellent embedding characteristics in connection holes and excellent step coverage with good flatness of the surface of the wiring material deposited film in the connection hole portion. It becomes possible to form wiring.

〔実施例〕〔Example〕

以下、本発明の実施例につき図面を参照しながら説明を
加える。
Hereinafter, embodiments of the present invention will be explained with reference to the drawings.

裏施皿土 シリコン等の基体1に例えばCVD法により酸化シリコ
ン(SiO□)からなる絶縁膜2を約0.83μmの厚
さに形成したのち、ここに直径約0.43μm、アスペ
クト比約1.9の接続孔3を開口する。
After forming an insulating film 2 made of silicon oxide (SiO□) to a thickness of about 0.83 μm on a substrate 1 made of silicon or the like using a CVD method, a film with a diameter of about 0.43 μm and an aspect ratio of about 1 is formed. .9 connection hole 3 is opened.

次に本発明の第1の実施例による多層配線形成方法を示
す概略断面図である第1図のごとく、前記基体1を真空
蒸着装置11のチャンバ内のヒータブロック5に密着し
て設置し、soo”cに加熱する。
Next, as shown in FIG. 1, which is a schematic cross-sectional view showing the multilayer wiring forming method according to the first embodiment of the present invention, the base 1 is placed in close contact with the heater block 5 in the chamber of the vacuum evaporation apparatus 11, Heat to soo”c.

チャンバ内圧力は、真空ポンプ10により例えば10−
 bTorrに減圧する。純度ファイブナインの高純度
AIを電子ビーム9の照射によりハース8内で溶解し、
蒸発源7とする。なお、蒸発源7から基体1を臨む見込
み角度αは略10°以内となるようにした。
The pressure inside the chamber is set to, for example, 10 - by the vacuum pump 10.
Reduce pressure to bTorr. High-purity AI with a purity of five nines is melted in the hearth 8 by irradiation with an electron beam 9,
Let it be evaporation source 7. Note that the expected angle α of the substrate 1 from the evaporation source 7 was set to within approximately 10°.

なお、この見込み角度は、前述した基体面垂直方向に対
する粒子の入射角度と実質的に同一である。
Note that this angle of view is substantially the same as the incident angle of the particles with respect to the direction perpendicular to the substrate surface described above.

以上の方法により、基体l上に高純度旧からなる配線材
料4を真空蒸着し接続孔3への埋め込みを行った。この
結果を、本発明の実施例による接続孔への配線材料のス
テップカバレッジを示す断面図である第3図に基づいて
説明する。同図に示されるようにアスペクト比約1.9
の接続孔3内部は高純度AIからなる配線材料4により
充分に埋め込まれており、堆積した配線材料4の表面の
平坦性もよく、ステップカバレッジに優れたものであっ
た。
By the method described above, the wiring material 4 made of high-purity copper was vacuum-deposited on the substrate 1 and filled into the connection hole 3. The results will be explained based on FIG. 3, which is a cross-sectional view showing the step coverage of the wiring material to the connection hole according to the example of the present invention. As shown in the figure, the aspect ratio is approximately 1.9.
The inside of the contact hole 3 was sufficiently filled with the wiring material 4 made of high-purity AI, and the surface of the deposited wiring material 4 had good flatness and excellent step coverage.

叉脂斑主 第2図は本発明の第2の実施例による多層配線形成方法
を示す概略断面図である。本実施例では、基体Iの直径
りが実施例Iよりも大きい基体に、均一な真空蒸着を施
す場合について述べる。
Figure 2 is a schematic cross-sectional view showing a method for forming multilayer wiring according to a second embodiment of the present invention. In this example, a case will be described in which uniform vacuum deposition is performed on a substrate whose diameter is larger than that in Example I.

本実施例による多層配線形成方法は、前記実施例1に準
拠しており、次の3つの点においてのみ実施例1と相違
している。
The multilayer wiring forming method according to this embodiment is based on the first embodiment, and differs from the first embodiment only in the following three points.

1、基体lをヒータブロック5に密着設置したまま、回
転軸6を中心として、真空蒸着が行われている間回転さ
せる。
1. The substrate 1 is placed in close contact with the heater block 5 and rotated about the rotating shaft 6 while vacuum deposition is being performed.

2、回転軸6と、蒸発源7の中心部にたてた垂線との距
離が、基体1の直径りの略2となる位置に、蒸発源7の
位置を第2図のごとくずらす。
2. The position of the evaporation source 7 is shifted to a position where the distance between the rotating shaft 6 and a perpendicular line drawn to the center of the evaporation source 7 is approximately 2 the diameter of the base 1, as shown in FIG.

3、遮蔽板12を配設し、真空蒸着中の基体1の略半分
が蒸発源7から隠れるようにする。すなわち、蒸発源7
からの見込み角度が略10’以内となる基体1部分にの
み、真空蒸着が行われるように装置を構成する。
3. A shielding plate 12 is provided so that approximately half of the substrate 1 during vacuum evaporation is hidden from the evaporation source 7. That is, evaporation source 7
The apparatus is configured so that vacuum deposition is performed only on a portion of the substrate 1 whose viewing angle is within approximately 10'.

以上説明した真空蒸着装置により、実施例1で述べた方
法に準じて、基体1上に貰純度AIからなる配線材料4
を真空蒸着し、接続孔3への埋め込みを行った。本実施
例による結果は、同じく第3図に示される通りであり、
広い基体1全面にわたり接続孔3内へ配線材料4が良好
に埋め込まれており、堆積した配線材料4の表面の平坦
性もよく、ステップカバレッジに優れていた。なお、遮
蔽板12はこれを設けなくても接続孔3内への埋め込み
特性は充分に良好であったが、遮蔽板12を設けて、蒸
発源7から基体1を臨む見込み角度αを略10゜以内に
制限することによって、大きな直径りを有する基体lの
全面にわたり、より良好な配線材料の埋め込みが可能と
なる。
Using the vacuum evaporation apparatus described above, according to the method described in Example 1, a wiring material 4 made of high-purity AI is deposited on the substrate 1.
was vacuum-deposited and filled into the connection hole 3. The results of this example are as shown in FIG.
The wiring material 4 was well embedded into the connection hole 3 over the entire surface of the wide base 1, and the surface of the deposited wiring material 4 had good flatness and excellent step coverage. Note that the characteristics of embedding the shielding plate 12 into the connection hole 3 were sufficiently good even without providing the shielding plate 12; By limiting the diameter to within 100°, it is possible to better embed the wiring material over the entire surface of the substrate l having a large diameter.

本実施例による方法は、ヒータブロック5に小さな直径
を有する基体を複数個設置し、各基体に均一な真空蒸着
を施して配線材料を埋め込む場合にも、優れた効果を発
揮した。
The method according to the present example also exhibited excellent effects when a plurality of substrates having small diameters were installed in the heater block 5 and wiring material was embedded in each substrate by uniform vacuum deposition.

13および ゞ 本実施例3においては、基体加熱温度を450″Cおよ
び550℃に選び、一方比較例においては基体加熱温度
を400℃および基体加熱なしで略室温のまま真空蒸着
を行った。その他真空蒸着装置および真空蒸着の方法は
、実施例1に準拠した。
13 and ゞIn Example 3, the substrate heating temperature was selected to be 450''C and 550°C, while in the comparative example, the substrate heating temperature was 400°C, and vacuum deposition was performed at approximately room temperature without substrate heating.Others The vacuum evaporation device and the vacuum evaporation method were based on Example 1.

以上述べた実施例3および比較例による多層配線形成方
法の結果を、先に述べた実施例1および実施例2の結果
とあわせて、接続孔への配線材料の埋め込みにおける基
体加熱温度と平坦度の関係図である第4図に示す。同図
において平坦度とは、接続孔3の深さをdl、接続孔部
分の配線材料4の堆積層の凹みの深さをd2とした場合
、1  di/d+で定義される値を意味するものとす
る。つまり、平坦度1が完全な平坦性をもった埋め込み
が行われ、ステップカバレッジに優れていることを意味
し、平坦度0ではd、−dtであり、平坦化の効果がほ
とんど得られないことを意味する。この平坦度が略0.
9以上あれば、多層配線形成における接続孔の平坦性に
優れたステップカバレッジの良い埋め込みが達成された
と考えられる。
The results of the multilayer wiring forming method according to Example 3 and Comparative Example described above are combined with the results of Example 1 and Example 2 described above to determine the substrate heating temperature and flatness when embedding the wiring material into the connection hole. This is shown in FIG. 4, which is a relationship diagram. In the figure, flatness means a value defined by 1 di/d+, where dl is the depth of the connection hole 3 and d2 is the depth of the depression in the deposited layer of the wiring material 4 in the connection hole portion. shall be taken as a thing. In other words, a flatness of 1 means that embedding is performed with perfect flatness and excellent step coverage, while a flatness of 0 means d, -dt, which means that almost no flattening effect is obtained. means. This flatness is approximately 0.
If it is 9 or more, it is considered that filling with good step coverage and excellent flatness of contact holes in multilayer wiring formation has been achieved.

第4図に見られる通り、基体加熱温度450℃以上で平
坦度0.9以上が達成されており、接続孔内部における
空隙も観察されなかった。基体加熱温度500℃以上で
は、平坦度1.0と完全平坦化が達成されている。平坦
化の効果は、第4図には550℃までしか示していない
が、純AIの融点である660℃に至るまで平坦度が略
1.0と優れた値を示した。しかし融点を越えると、基
体1上に堆積した配線材料4は液体として存在するため
、その表面張力と粘性流動のため凝集塊を形成する傾向
が表れ、本発明の効果を達成することができなかった。
As seen in FIG. 4, a flatness of 0.9 or higher was achieved at a substrate heating temperature of 450° C. or higher, and no voids were observed inside the connection holes. At a substrate heating temperature of 500° C. or higher, complete flatness with a flatness of 1.0 is achieved. Although the flattening effect is only shown up to 550° C. in FIG. 4, the flatness showed an excellent value of approximately 1.0 up to 660° C., which is the melting point of pure AI. However, when the melting point is exceeded, the wiring material 4 deposited on the substrate 1 exists as a liquid, and therefore tends to form aggregates due to its surface tension and viscous flow, making it impossible to achieve the effects of the present invention. Ta.

このIFRINは、純A1に限らず、配線材料としてA
Iを主体とした合金、すなわちAI−Cu(銅)合金、
^1−Si (シリコン)合金等においても、融点の値
は若干具なるものの、同じ結果を示した。
This IFRIN is not limited to pure A1, but can also be used as a wiring material.
I-based alloy, i.e. AI-Cu (copper) alloy,
The same results were obtained for ^1-Si (silicon) alloys, etc., although the melting point values were slightly different.

一方、同じく第4図に示されるごとく、基体加熱温度が
450℃に満たない比較例においては、平坦度は0.9
未満の値に急激に低下し、やはり本発明の目的を達成す
ることができなかった。特に基体加熱をせず、略室温で
真空蒸着を行った場合は、比較例による接続孔への配線
材料のステップカバレッジを示す断面図である第6図に
示されるように、接続孔3内部に大きな空隙が存在した
。これは基体加熱と真空蒸着法とを併用するときのみに
得られる本発明による多層配線形成方法の優れた効果を
立証するものである。
On the other hand, as shown in FIG. 4, in the comparative example where the substrate heating temperature was less than 450°C, the flatness was 0.9.
As a result, the object of the present invention could not be achieved. In particular, when vacuum deposition is performed at approximately room temperature without heating the substrate, the inside of the connection hole 3 is A large void existed. This proves the excellent effect of the multilayer wiring forming method according to the present invention, which can be obtained only when substrate heating and vacuum evaporation are used together.

以上、本発明の実施例について説明を加えたが、本発明
の趣旨は、接続孔を有する基体を450℃以上AIまた
はAIを主体とする合金からなる配線材料の融点以下に
加熱しながら、該配線材料の真空蒸着を行うことに特徴
がある。この際、蒸発源からの基体被蒸着部分を臨む見
込み角度は、略10°以内にとどめることが望ましい。
Although the embodiments of the present invention have been described above, the gist of the present invention is to heat the substrate having connection holes to 450°C or higher and lower than the melting point of the wiring material made of AI or an alloy mainly composed of AI. The feature is that the wiring material is vacuum evaporated. At this time, it is desirable that the viewing angle from the evaporation source toward the portion of the substrate to be evaporated is kept within approximately 10 degrees.

しかし、真空蒸着装置内への基体収容枚数や基体直径の
大型化の趨勢に鑑みて、工業的実用化の見地からは、こ
の見込み角度の値は特に制限を加えるものではな(、本
発明の効果を損なわない範囲内で任意に選定することが
可能である。
However, in view of the trend of increasing the number of substrates accommodated in a vacuum evaporation apparatus and the diameter of the substrate, from the viewpoint of industrial practical application, the value of this angle of view is not particularly limited (the present invention It can be arbitrarily selected within a range that does not impair the effect.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、半導体等からなる基体上に形成され
た接続孔をAIまたはAIを主体とする合金からなる配
線材料で埋め込む多層配線形成方法において、基体を4
50℃以上該配線材料の融点以下に加熱しながら配線材
料を真空蒸着することにより、接続孔への埋め込み特性
に優れ、しかも接続孔部分の配線材料堆積膜表面の平坦
性の良いステップカバレッジに優れた多層配線の形成が
可能となった。
As detailed above, in the multilayer wiring forming method in which contact holes formed on a substrate made of a semiconductor or the like are filled with wiring material made of AI or an alloy mainly composed of AI, the substrate is
By vacuum-depositing the wiring material while heating it to a temperature above 50°C and below the melting point of the wiring material, it has excellent embedding characteristics in the connection hole, and also has excellent step coverage with good flatness of the surface of the wiring material deposited film in the connection hole area. It became possible to form multilayer wiring.

本発明によれば、従来の通常のスパッタリング法はもと
より、バイアススパッタリング法等、ステップカバレッ
ジに優れているとされていた方法によっても困難であっ
た、アスペクト比が1を越える接続孔をも良好に埋め込
むことが可能となる。
According to the present invention, connection holes with an aspect ratio exceeding 1 can be formed successfully, which has been difficult not only with conventional sputtering methods but also with methods that are considered to have excellent step coverage, such as bias sputtering methods. It becomes possible to embed it.

しかも接続孔内部の配線材料に空隙が存在することもな
く、エレクトロマイグレーションや断線の懸念のない信
頼性に冨んだ多層配線の形成が可能となり、半導体装置
製造工程における本発明の寄与は大きい。
In addition, there are no voids in the wiring material inside the contact hole, making it possible to form highly reliable multilayer wiring without concerns about electromigration or disconnection, and the present invention greatly contributes to the semiconductor device manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例による多層配線形成方法
を示す概略断面図、第2図は本発明の第2の実施例によ
る多層配線形成方法を示す概略断面図、第3図は本発明
の実施例による接続孔への配線材料のステップカバレッ
ジを示す断面図、第4図は接続孔への配線材料の埋め込
みにおける基体加熱温度と平坦度の関係図、第5図は接
続孔への配線材料のステップカバレッジの粒子入射角度
依存性のシミュレーション図、第6図は比較例による接
続孔への配線材料のステップカバレッジを示す断面図、
第7図は従来のスパッタリング法における接続孔への配
線材料のステップカバレッジを示す断面図、そして第8
図は従来のスパッタリング法における接続孔部分のシャ
ドウィング効果の説明図である。 1・・・−・−一−−−−−−基体 2−−−−−−−−−−−−一絶縁膜 3−・−一−−−−・・−・−接続孔 4−   ・配線材料 5−・−・−−一−−−・−ヒータブロック7・・−・
−−−一−−−一−−蒸発源本発明の第1の実施例1:
:J:る 多層配線形域方法玉示す椰賂頚面図 本発明の実施例にJる接続孔への 配線材料のステップカバレッジと示す断面口筒3図 71       1冒本η0熟泪υ文(℃)接続孔へ
の配線材料の埋めこみにおける 基体加熱温度と平土踪の関係図 第4叉 本発明の第2の実施例による 多層配線形成衣ラムと示す砥路断面回 a、α=a′Nia°      b、cC=0’−6
0’揚続孔への配線材料のステップカバレッジの粒子入
射角度依存l庄のシミュレーション図“第5図 比較例による接続jしへの配線材料の ステップ乃ノ〈レッジと示す断面図 第6図
FIG. 1 is a schematic sectional view showing a method for forming multilayer wiring according to a first embodiment of the present invention, FIG. 2 is a schematic sectional view showing a method for forming multilayer wiring according to a second embodiment of the invention, and FIG. A cross-sectional view showing the step coverage of the wiring material into the connection hole according to an embodiment of the present invention, FIG. 4 is a diagram showing the relationship between substrate heating temperature and flatness in embedding the wiring material into the connection hole, and FIG. 5 shows the step coverage of the wiring material into the connection hole. Fig. 6 is a cross-sectional view showing the step coverage of the wiring material to the connection hole according to a comparative example;
Figure 7 is a cross-sectional view showing the step coverage of wiring material to contact holes in the conventional sputtering method;
The figure is an explanatory diagram of the shadowing effect of the connection hole portion in the conventional sputtering method. 1...---1--Base 2--Insulating film 3--1--Connection hole 4-- Wiring material 5-----1---Heater block 7...
---1--1--Evaporation source First embodiment of the present invention 1:
: J: A cross-sectional view showing the step coverage of the wiring material to the connection hole in the embodiment of the present invention. ℃) Relationship diagram between substrate heating temperature and flat surface during embedding of wiring material into the connection hole 4th cross-sectional diagram of the grinding path showing the multilayer wiring forming coat ram according to the second embodiment of the present invention, α=a' Nia° b, cC=0'-6
Figure 5 is a simulation diagram showing the dependence of the step coverage of the wiring material on the 0' lift hole on the particle incident angle.

Claims (1)

【特許請求の範囲】[Claims] 基体上に形成された接続孔に、アルミニウムまたはアル
ミニウムを主体とした合金からなる配線材料を埋め込む
多層配線形成方法であって、基体を450℃以上前記配
線材料の融点以下に加熱しながら、該配線材料を真空蒸
着することを特徴とする多層配線形成方法。
A multilayer wiring forming method in which a wiring material made of aluminum or an aluminum-based alloy is embedded in a connection hole formed on a substrate, the wiring being heated to a temperature of 450° C. or more and below the melting point of the wiring material. A multilayer wiring formation method characterized by vacuum evaporation of materials.
JP1091829A 1989-04-13 1989-04-13 Multilayer wiring forming method and vacuum deposition apparatus used for the same Expired - Fee Related JP2832990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091829A JP2832990B2 (en) 1989-04-13 1989-04-13 Multilayer wiring forming method and vacuum deposition apparatus used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091829A JP2832990B2 (en) 1989-04-13 1989-04-13 Multilayer wiring forming method and vacuum deposition apparatus used for the same

Publications (2)

Publication Number Publication Date
JPH02271634A true JPH02271634A (en) 1990-11-06
JP2832990B2 JP2832990B2 (en) 1998-12-09

Family

ID=14037494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091829A Expired - Fee Related JP2832990B2 (en) 1989-04-13 1989-04-13 Multilayer wiring forming method and vacuum deposition apparatus used for the same

Country Status (1)

Country Link
JP (1) JP2832990B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525158A (en) * 1992-10-26 1996-06-11 Mitsubishi Denki Kabushiki Kaisha Thin film deposition apparatus
JP2002151438A (en) * 2000-09-04 2002-05-24 Nippon Soken Inc Method of manufacturing semiconductor device
WO2017081798A1 (en) * 2015-11-12 2017-05-18 株式会社島津製作所 Semiconductor device and semiconductor detector, methods for manufacturing same, and semiconductor chip or substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287019A (en) * 1987-05-19 1988-11-24 Nec Corp Manufacture of semiconductor device
JPS6474739A (en) * 1987-09-17 1989-03-20 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287019A (en) * 1987-05-19 1988-11-24 Nec Corp Manufacture of semiconductor device
JPS6474739A (en) * 1987-09-17 1989-03-20 Fujitsu Ltd Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525158A (en) * 1992-10-26 1996-06-11 Mitsubishi Denki Kabushiki Kaisha Thin film deposition apparatus
JP2002151438A (en) * 2000-09-04 2002-05-24 Nippon Soken Inc Method of manufacturing semiconductor device
WO2017081798A1 (en) * 2015-11-12 2017-05-18 株式会社島津製作所 Semiconductor device and semiconductor detector, methods for manufacturing same, and semiconductor chip or substrate
JPWO2017081798A1 (en) * 2015-11-12 2018-08-30 株式会社島津製作所 Semiconductor device, semiconductor detector and manufacturing method thereof, semiconductor chip or substrate
US10468365B2 (en) 2015-11-12 2019-11-05 Shimadzu Corporation Semiconductor device and semiconductor detector, methods for manufacturing same, and semiconductor chip or substrate

Also Published As

Publication number Publication date
JP2832990B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
JP3193875B2 (en) Method and apparatus for low cost metal filling and planarization of contacts, vias and trenches in semiconductor wafers
US6057237A (en) Tantalum-containing barrier layers for copper
JP4240570B2 (en) {111} Ti / TiN / TiNx layer that realizes highly oriented aluminum interconnect
JP2951636B2 (en) Method for manufacturing a metallization structure
KR100359590B1 (en) Semiconductor device and method for manufacturing the same
US20070243708A1 (en) Manufacturing method for an integrated semiconductor contact structure having an improved aluminum fill
US6114764A (en) Semiconductor device and process for fabricating the same
US6113750A (en) Method of forming thin metal films
JPH02271634A (en) Formation of multi-layer wiring
KR100439475B1 (en) Method and apparatus for depositing a metal layer
US20030186498A1 (en) Method for fabricating metal interconnection with reliability using ionized physical vapor deposition
JP3732010B2 (en) Method for depositing low resistivity titanium oxynitride (TiON) film that gives excellent texture to the conductor layer deposited in a later step
JPS61183433A (en) Thin film of aluminum alloy and its production
KR100200499B1 (en) Method of manufacturing inter-connector in semiconductor device
JPH10172923A (en) Forming mehtod for metallic wiring for semiconductor device
JP2928057B2 (en) Method for manufacturing semiconductor device
US20050181600A1 (en) Method of forming a semiconductor device having a Ti/TiN/Ti<002>/a1<111> laminate
JP3607515B2 (en) Semiconductor device and manufacturing method thereof
JP2684621B2 (en) Aluminum alloy material for wiring of semiconductor devices
JPH0314233A (en) Formation of wiring
JPH08186114A (en) Wiring thin film and manufacture thereof
JPH09171976A (en) Method and device for making coating film capable of thick film control adhere to side face and bottom part of high aspect ratio feature
JP2000306862A (en) Stepwise coating of sidewall of contact hole
JP2684622B2 (en) Aluminum alloy material for wiring of semiconductor devices
JP3638678B2 (en) Wiring hole and method for manufacturing wiring hole

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees