JPH02271517A - Detection of pattern position - Google Patents

Detection of pattern position

Info

Publication number
JPH02271517A
JPH02271517A JP1092471A JP9247189A JPH02271517A JP H02271517 A JPH02271517 A JP H02271517A JP 1092471 A JP1092471 A JP 1092471A JP 9247189 A JP9247189 A JP 9247189A JP H02271517 A JPH02271517 A JP H02271517A
Authority
JP
Japan
Prior art keywords
pattern
alignment
film
marks
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1092471A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1092471A priority Critical patent/JPH02271517A/en
Publication of JPH02271517A publication Critical patent/JPH02271517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enhance a detection accuracy of a pattern position by a method wherein marks composed of a substance whose electron reflectance is larger than that of a thin film to be aligned are formed on sidewalls of a groove of a pattern for alignment use. CONSTITUTION:Marks 5 composed of a substance whose electron reflectance is higher than that of a thin film 3 to be aligned are formed on sidewalls of a groove of a pattern 2 for alignment use; when an electron beam is scanned along the pattern 2 for alignment use, a reflection electron intensity is intensified locally on the marks 5 and a difference in the reflection electron intensity between the marks and a scanned region of the pattern 2 for alignment use becomes large. Accordingly, it is possible to obtain a large differential intensity as compared with a case where the marks 5 do not exist. Thereby, positions of the sidewalls of the pattern can be detected clearly and an alignment accuracy can be enhanced.

Description

【発明の詳細な説明】 〔概 要〕 電子ビーム露光法を用いたパターン位置検出方法に関し
、 位置合わせ用パターンの溝の側壁にマークを形成して該
側壁における反射電子強度を強め、以てパターン位置検
出精度の向上を図ることを目的とし、 位置合わせ用パターンの溝の側壁に位置合わせされる薄
膜より電子反射率の高い物質からなるマークを形成し、
該マークをパターン位置の検出部として用いるか、ある
いは位置合わせ用パターンの溝の側壁に沿って上方に突
出するマークを形成し、該マークをパターン位置の検出
部として用いるように構成する。
[Detailed Description of the Invention] [Summary] Regarding a pattern position detection method using an electron beam exposure method, a mark is formed on the side wall of a groove of an alignment pattern to increase the intensity of reflected electrons on the side wall. With the aim of improving position detection accuracy, marks made of a material with higher electron reflectance than the thin film to be aligned are formed on the side walls of the alignment pattern grooves.
The mark is used as a pattern position detection section, or a mark is formed that projects upward along the side wall of the groove of the alignment pattern, and the mark is used as a pattern position detection section.

〔産業上の利用分野〕[Industrial application field]

本発明はパターン位置合わせ方法に関する。 The present invention relates to a pattern alignment method.

EB(電子ビーム)露光技術を用いたパターンの微細加
工はICの高集積化を進める上で不可欠の技術であるが
、ICは数種類のパターンを重ね合わせて構成されるも
のであり、パターンを正確に位置合わせすることも要求
される。そのためにはパターン位置を正確に検知するこ
とが必要である。
Microfabrication of patterns using EB (electron beam) exposure technology is an essential technology for promoting higher integration of ICs. alignment is also required. For this purpose, it is necessary to accurately detect the pattern position.

〔従来の技術〕[Conventional technology]

第3図はEB露光法を用いた従来のパターン位置検出方
法を説明するための断面図であり、21はSi基板、2
2は位置合わせ用の酸化膜パターン、23は金属膜、2
4はレジスト膜である。同図において酸化膜パターン2
2の位置を検知するために上方から電子ビームを走査す
ると、照射された電子ビームはレジスト膜24を透過し
、酸化膜パターン22を覆っている金属膜23の表面で
反射されて再びレジスト膜24の表面に出射する。この
反射電子強度及びその微分強度を観測すると同図に示し
たような分布が得られる。即ち、酸化膜パターン22の
凹部領域上では凸部領域上に比べてレジスト膜が厚いた
めレジスト膜による吸収電子量が増えて反射電子強度が
減少する。その結果、酸化膜パターン22の溝の側壁位
置では反射電子強度の変化量に比例した微分強度が得ら
れ、この微分強度を位置合わせ信号として用いることに
よって該酸化膜パターン22に位置合わせされたレジス
ト膜24のパターンを得ることができ、さらにこれをマ
スクとして金属膜23を選択エツチングすれば配線金属
パターンが得られる。
FIG. 3 is a cross-sectional view for explaining the conventional pattern position detection method using the EB exposure method, in which 21 is a Si substrate;
2 is an oxide film pattern for alignment, 23 is a metal film, 2
4 is a resist film. In the same figure, oxide film pattern 2
When an electron beam is scanned from above to detect the position of 2, the irradiated electron beam passes through the resist film 24, is reflected by the surface of the metal film 23 covering the oxide film pattern 22, and returns to the resist film 24. emitted onto the surface of Observation of this reflected electron intensity and its differential intensity results in a distribution as shown in the figure. That is, since the resist film is thicker on the concave regions of the oxide film pattern 22 than on the convex regions, the amount of electrons absorbed by the resist film increases and the intensity of reflected electrons decreases. As a result, a differential intensity proportional to the amount of change in reflected electron intensity is obtained at the side wall position of the groove of the oxide film pattern 22, and by using this differential intensity as an alignment signal, the resist is aligned with the oxide film pattern 22. A pattern of the film 24 can be obtained, and if the metal film 23 is selectively etched using this pattern as a mask, a wiring metal pattern can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが上記の例においてレジスト膜24と金属膜23
とのエツチング選択比が小さい場合には金属膜23とと
もにマスクとなるレジスト膜24も同時にエツチングさ
れる。従ってレジスト膜24が薄い場合には上記エツチ
ングによってレジスト膜24のパターンが変形して金属
膜23のパターン加工精度が劣化する。これを防ぐため
にレジスト膜24を厚くするとレジスト膜24内におけ
る電子の吸収量が増えて反射電子強度が微弱となり正確
な位置合わせを行うことができなくなるという問題が生
じる。
However, in the above example, the resist film 24 and the metal film 23
If the etching selectivity is small, the resist film 24 serving as a mask is etched together with the metal film 23. Therefore, if the resist film 24 is thin, the pattern of the resist film 24 will be deformed by the etching described above, and the pattern processing accuracy of the metal film 23 will deteriorate. In order to prevent this, if the resist film 24 is made thicker, the amount of electrons absorbed within the resist film 24 increases, and the intensity of reflected electrons becomes weak, resulting in a problem that accurate positioning cannot be performed.

そこで本発明は位置合わせ用パターンの側壁にマークを
形成して反射電子強度を強め、以て位置合わせ精度の向
上を図ることを目的とする。
Therefore, an object of the present invention is to form marks on the side walls of alignment patterns to increase the intensity of reflected electrons, thereby improving alignment accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、位置合わせ用パターンの溝の側壁に
位置合わせされる薄膜より電子反射率の高い物質からな
るマークを形成し、該マークをパターン位置の検出部と
して用いることを特徴とするパターン位置検出方法、あ
るいは位置合わせ用パターンの溝の側壁に沿って上方に
突出するマークを形成し、該マークをパターン位置の検
出部として用いることを特徴とするパターン位置検出方
法によって達成される。
The solution to the above problem is to form a mark made of a material with a higher electron reflectance than the thin film to be aligned on the side wall of the groove of the alignment pattern, and use the mark as a pattern position detection section. This is achieved by a position detection method or a pattern position detection method characterized by forming a mark projecting upward along the side wall of a groove of an alignment pattern and using the mark as a pattern position detection section.

〔作 用〕[For production]

位置合わせ用パターンの溝の側壁に位置合わせされる薄
膜より電子反射率の高い物質からなるマークを形成し該
位置合わせ用パターンに沿って電子ビームを走査した場
合、マーク上で局部的に反射電子強度が強められ該位置
合わせ用パターンの凹部領域との間の反射電子強度の差
が大きくなる。
When a mark made of a material with a higher electron reflectance than the thin film to be aligned on the side wall of the groove of the alignment pattern is formed and an electron beam is scanned along the alignment pattern, the reflected electrons will be locally reflected on the mark. The intensity is strengthened, and the difference in reflected electron intensity between the recessed region of the alignment pattern becomes large.

従ってマークのない場合に比べて大きな微分強度を得る
ことができる。
Therefore, a larger differential intensity can be obtained than in the case without marks.

また、該側壁に沿って上方に突出して形成されたマーク
の上ではレジスト膜厚が局部的に薄くなるため、電子の
吸収量が減少し反射電子強度は強められる。従って該位
置合わせ用パターンの凹部領域との間の反射電子強度の
差が大きくなり、マークのない場合に比べて大きな微分
強度を得ることができる。
Moreover, since the resist film thickness is locally thinner on the mark formed to protrude upward along the side wall, the amount of absorbed electrons is reduced and the intensity of reflected electrons is increased. Therefore, the difference in intensity of reflected electrons between the alignment pattern and the concave region becomes large, and it is possible to obtain a larger differential intensity than in the case where there is no mark.

(実施例〕 第1図(a)〜(d)は本発明の第1の実施例を示す断
面図であり、同図を参照してSt基板上の酸化膜パター
ンに位置合わせしてAI膜パターンを形成する方法につ
いて述べる。まず同図(a)に示すようにSi基板1上
に位置合わせ用の酸化膜パターン2を形成する。ついで
同図(b)に示すように全面にAt膜3を堆積し、さら
にW(タングステン)膜4を堆積する。ついで同図(C
)に示すように該W膜4に対してRIE(反応性イオン
エツチング)法を用いて異方性エツチングを行い、酸化
膜パターン2の側壁にのみW膜4を残してこれを位置合
わせ用マーク5とする。ついで同図(d)に示すように
全面にレジスト膜6を形成し上方から電子ビームを走査
すると該マーク5を構成するW膜はAt膜より電子の反
射率が大きいため該マーク位置で反射電子強度が強めら
れる。
(Example) FIGS. 1(a) to (d) are cross-sectional views showing a first example of the present invention. Referring to the figures, an AI film is aligned with the oxide film pattern on the St substrate. A method for forming a pattern will be described.First, as shown in FIG. 1(a), an oxide film pattern 2 for alignment is formed on a Si substrate 1.Then, as shown in FIG. is deposited, and further a W (tungsten) film 4 is deposited.Then, the same figure (C
), the W film 4 is anisotropically etched using the RIE (reactive ion etching) method, leaving the W film 4 only on the side walls of the oxide film pattern 2, and marking this as alignment marks. 5. Next, as shown in FIG. 5(d), when a resist film 6 is formed on the entire surface and an electron beam is scanned from above, the W film constituting the mark 5 has a higher electron reflectance than the At film, so reflected electrons are generated at the mark position. Strength is increased.

ついで、その微分強度を位置合わせ信号として用いるこ
とにより酸化膜パターン2に位置合わせしてレジスト膜
6のパターンを形成し、さらにこれをマスクにしてA1
膜3のパターンを形成することができる。
Next, by using the differential intensity as a positioning signal, a pattern of the resist film 6 is formed by aligning with the oxide film pattern 2, and further, using this as a mask, A1
A pattern of the membrane 3 can be formed.

なお、位置合わせマーク5はAt膜より反射率の高い材
料で形成されればよく、W以外にも例えばMo (モリ
ブデン)等の重金属を用いることができる。また、^l
l基以外薄膜パターンを形成する場合には上記重金属に
限らず該薄膜より電子反射率の高い材料であれば足りる
Note that the alignment mark 5 may be formed of a material having a higher reflectance than the At film, and in addition to W, a heavy metal such as Mo (molybdenum) may be used. Also, ^l
When forming a thin film pattern other than l groups, the material is not limited to the above-mentioned heavy metals, but any material having a higher electron reflectance than the thin film is sufficient.

第2図(a)〜(e)は本発明の第2の実施例を示す断
面図である。まず同図(a)に示すように酸化膜の形成
されたSt基板11上に位置合わせ用のレジストパター
ン13を形成し、これをマスクとして該酸化膜をエツチ
ングし酸化膜パターン12を形成する。ついで同図(b
)に示すように通常のCVD法により酸化膜14を全面
に堆積する。ついで同図(C)に示すようにRIE法に
より該酸化膜14の異方性エツチングを行うと酸化膜パ
ターン12及びレジストパターン13の側壁にのみ酸化
膜14からなる位置合わせマーク15が残される。つい
でレジストパターン13を除去すると同図(d)に示す
ように、酸化膜パターン12の側壁に沿ってレジスト膜
厚に相当する長さだけ上方に突出した酸化膜からなる位
置合わせ用マーク15が得られる。ついで同図(e)に
示すようにAI膜16を堆積し、さらにレジスト膜17
を塗布すると該マーク15の上ではレジスト膜17が局
所的に薄くなる。従って上方から電子ビームを走査した
ときに該マーク上で局部的に電子の吸収量が減少するた
め反射電子強度がこの位置で強められる。
FIGS. 2(a) to 2(e) are cross-sectional views showing a second embodiment of the present invention. First, as shown in FIG. 2A, a resist pattern 13 for positioning is formed on the St substrate 11 on which an oxide film is formed, and the oxide film is etched using this as a mask to form an oxide film pattern 12. Next, the same figure (b
), an oxide film 14 is deposited over the entire surface by the usual CVD method. Then, as shown in FIG. 2C, when the oxide film 14 is anisotropically etched by RIE, alignment marks 15 made of the oxide film 14 are left only on the side walls of the oxide film pattern 12 and the resist pattern 13. When the resist pattern 13 is then removed, an alignment mark 15 made of an oxide film is obtained which protrudes upward along the side wall of the oxide film pattern 12 by a length corresponding to the resist film thickness, as shown in FIG. It will be done. Next, as shown in FIG. 2(e), an AI film 16 is deposited, and then a resist film 17
When applied, the resist film 17 becomes locally thin over the mark 15. Therefore, when an electron beam is scanned from above, the amount of electron absorption locally decreases on the mark, so that the intensity of reflected electrons is increased at this position.

ついで、その微分強度を位置合わせ信号として用いるこ
とにより、第1の実施例で述べたように酸化膜パターン
12と位置合わせされたAt膜パターンを形成すること
ができる。
Then, by using the differential intensity as an alignment signal, an At film pattern aligned with the oxide film pattern 12 can be formed as described in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によればパターンの側壁の位置を明
瞭に検知することができるためEB露光法による位置合
わせ精度を向上させる上で有効である。
As described above, according to the present invention, the position of the side wall of a pattern can be clearly detected, and therefore it is effective in improving the alignment accuracy by EB exposure method.

14は酸化膜、 23は金属膜、 である。14 is an oxide film, 23 is a metal film, It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の第1の実施例を示す工
程断面図、 第2図(a)〜(e)は本発明の第2の実施例を示す工
程断面図、 第3図は従来例の問題点を説明するための断面図である
。 図において、 1、IL 21はSi基板、 2.12.22は酸化膜パターン、 3.16はAt膜、 4はW膜、 5.15は位置合わせ用マーク、 6.13.17.24はレジスト膜、 亥5 1  の 渉覧施イダ)1 を ホ了y 吋仕h
 図第 1 図 杭Z/)興施倒をホ牢断面図 第2図
1(a) to (d) are process sectional views showing a first embodiment of the present invention; FIGS. 2(a) to (e) are process sectional views showing a second embodiment of the present invention; FIG. 3 is a sectional view for explaining the problems of the conventional example. In the figure, 1.IL 21 is a Si substrate, 2.12.22 is an oxide film pattern, 3.16 is an At film, 4 is a W film, 5.15 is an alignment mark, 6.13.17.24 is a Resist film, 5 1 (inspection) 1
Figure 1 Figure 1 Cross-sectional view of the pile Z/)

Claims (2)

【特許請求の範囲】[Claims] (1)位置合わせ用パターンの溝の側壁に位置合わせさ
れる薄膜より電子反射率の高い物質からなるマークを形
成し、該マークをパターン位置の検出部として用いるこ
とを特徴とするパターン位置検出方法。
(1) A pattern position detection method characterized by forming a mark made of a substance with a higher electron reflectivity than a thin film to be aligned on the side wall of a groove of an alignment pattern, and using the mark as a pattern position detection section. .
(2)位置合わせ用パターンの溝の側壁に沿って上方に
突出するマークを形成し、該マークをパターン位置の検
出部として用いることを特徴とするパターン位置検出方
法。
(2) A pattern position detection method characterized by forming a mark projecting upward along the side wall of the groove of the alignment pattern and using the mark as a pattern position detection section.
JP1092471A 1989-04-12 1989-04-12 Detection of pattern position Pending JPH02271517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092471A JPH02271517A (en) 1989-04-12 1989-04-12 Detection of pattern position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092471A JPH02271517A (en) 1989-04-12 1989-04-12 Detection of pattern position

Publications (1)

Publication Number Publication Date
JPH02271517A true JPH02271517A (en) 1990-11-06

Family

ID=14055246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092471A Pending JPH02271517A (en) 1989-04-12 1989-04-12 Detection of pattern position

Country Status (1)

Country Link
JP (1) JPH02271517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543733A (en) * 2010-12-08 2012-07-04 无锡华润上华科技有限公司 Alignment marking method in DMOS (Double-diffusion Metal Oxide Semiconductor) process flow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543733A (en) * 2010-12-08 2012-07-04 无锡华润上华科技有限公司 Alignment marking method in DMOS (Double-diffusion Metal Oxide Semiconductor) process flow

Similar Documents

Publication Publication Date Title
EP0395425A2 (en) Mask, mask producing method and pattern forming method using mask
US20050242448A1 (en) Overlay key, method of manufacturing the same and method of measuring an overlay degree using the same
GB1573920A (en) Electron beam lithographic system
US7655390B2 (en) Position sensor, method for detecting horizontal and vertical position, alignment apparatus including position sensor, and method for horizontal and vertical alignment
US6660437B2 (en) Alternating phase mask
JP2746125B2 (en) Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method.
KR100437747B1 (en) A method of forming an alignment feature in or on a multi-layered semiconductor structure
GB2302962A (en) Phase shift mask
JPH02271517A (en) Detection of pattern position
JPS6246976B2 (en)
JPS62106625A (en) Exposure mask
Hiroyama et al. Addressing 3D metrology challenges by using a multiple detector CDSEM
JP2001015413A (en) Alignment mark and formation of alignment mark
US5498497A (en) Method for manufacturing a phase shift mask
JP2713500B2 (en) Alignment method, alignment mark, and pattern detection device
JPH11162810A (en) Alignment mark for electron beam exposure
JPS62131515A (en) Alignment mark for particle beam exposure
US20020001764A1 (en) Method and device for analyzing structures of a photomask
JP2806240B2 (en) Reference mark for apparatus calibration of electron beam exposure apparatus and apparatus calibration method
JPH07111953B2 (en) Photolithography pattern dimension management method
JPH06120128A (en) Pattern formation
JPS6252850B2 (en)
Abboud et al. Alignment technique for second-level exposure of phase-shifting masks using 10-kV raster-scan electron-beam lithography system
JPS58192324A (en) Pattern for positioning
JPS62247526A (en) Alignment mark