JPH02269318A - Production of oriented film for ferroelectric liquid crystal element - Google Patents

Production of oriented film for ferroelectric liquid crystal element

Info

Publication number
JPH02269318A
JPH02269318A JP8979089A JP8979089A JPH02269318A JP H02269318 A JPH02269318 A JP H02269318A JP 8979089 A JP8979089 A JP 8979089A JP 8979089 A JP8979089 A JP 8979089A JP H02269318 A JPH02269318 A JP H02269318A
Authority
JP
Japan
Prior art keywords
liquid crystal
rubbing
uniaxial
films
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8979089A
Other languages
Japanese (ja)
Inventor
Masaya Kondo
真哉 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP8979089A priority Critical patent/JPH02269318A/en
Publication of JPH02269318A publication Critical patent/JPH02269318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the oriented films for the liquid crystal element having excellent display quality by laminating monomolecular films consisting of org. high polymers on the oriented films of the org. high polymers formed on the opposite surfaces of upper and lower substrate and forming the oriented films having a high memory property by the uniaxial regulating force generated by the direction of the rubbing treated on the monomolecular films of the org. high polymers and the direction of the molecules of the monomolecular films. CONSTITUTION:The oriented films consisting of the org. high polymers are formed on the opposite surfaces of the upper and lower substrates 11, 15 and further both the upper and lower substrates 11, 15 are subjected to the rubbing treatment in the same direction, then the monomolecular films 13 consisting of the org. high polymers are formed on the oriented films 12 subjected to the rubbing treatment. The rubbing is so executed at this time that the major axis direction of the molecules has the angle of half the cone angle of a ferroelectric liquid crystal 14 in the respective rubbing directions with the upper substrate 11 and the lower substrate 15 and are symmetrical with the rubbing direction. The oriented films having the uniaxial regulating power in the three directions are obtd. in such a manner. The oriented films of the liquid crystal element having the excellent display quality are thus produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶素子に関し、更に詳しくは、強誘電性液晶
素子の配向膜の製造方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a liquid crystal device, and more particularly to a method for manufacturing an alignment film for a ferroelectric liquid crystal device.

〔従来の技術〕[Conventional technology]

強誘電性液晶素子はメモリー性やμ秒単位の高速応答性
を有することから大容量デイスプレィや高速液晶シャッ
ターなどに実用化が期待されている。
Because ferroelectric liquid crystal elements have memory properties and high-speed response on the microsecond scale, they are expected to be put to practical use in large-capacity displays and high-speed liquid crystal shutters.

現在この強誘電性液晶の主な配向方法として、有機高分
子の配向膜をラビング処理する方法と、無機物を斜方蒸
着する方法とがある。一般にラビング処理による配向方
法では、そのラビング方向と配向膜が液晶分子をある一
軸方向に向かせようとする力、すなわち−軸規制力の方
向が一致し、またその方向が強誘電性液晶分子のスイッ
チングモデルにおけるコーン軸にほぼ一致することが知
られている。しかしこれが強誘電性液晶本来のメモリー
性を低下させる原因ともなっている。そこでこれを改善
する方法として、電圧ON時に於ける分子の配向位置に
も、なんらかの−軸規制力を与えることによりメモリー
性を向上させる方法が提案されている。たとえば、特開
昭62−234129号公報においては、配向膜上にラ
ビング方向を変えて、数回ラビングする事により、多方
向の一軸規制力を持たせる方法が示されているが、最後
に行ったラビング方向にのみ一軸規制力が生じ、十分な
メモリー性が得られない。
Currently, the main methods for aligning ferroelectric liquid crystals include a method of rubbing an alignment film of an organic polymer and a method of obliquely depositing an inorganic material. In general, in the alignment method using rubbing treatment, the rubbing direction and the direction of the force of the alignment film that tries to orient the liquid crystal molecules in a certain uniaxial direction, that is, the -axis regulating force, are the same, and the direction is the same as that of the ferroelectric liquid crystal molecules. It is known that it almost coincides with the cone axis in the switching model. However, this is also a cause of deteriorating the memory properties inherent to ferroelectric liquid crystals. Therefore, as a method to improve this, a method has been proposed in which the memory property is improved by applying some kind of -axis regulating force to the orientation position of the molecules when the voltage is turned on. For example, Japanese Patent Application Laid-Open No. 62-234129 discloses a method of applying uniaxial regulating force in multiple directions by rubbing the alignment film several times while changing the rubbing direction. A uniaxial regulating force occurs only in the rubbing direction, and sufficient memory performance cannot be obtained.

一方、斜方蒸着に於いては、メモリー性は有るものの蒸
着むらによる配向むらがあり、大面積の液晶表示素子に
は向かず、量産性も低い。
On the other hand, in oblique vapor deposition, although it has memory properties, there is alignment unevenness due to uneven vapor deposition, so it is not suitable for large-area liquid crystal display elements, and mass productivity is low.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、強誘電性液晶素子の特徴であるメモリー性
についてみた場合、上述したように、配向方法が、ラビ
ング法の時は大面積の液晶素子の均一配向は可能である
が、1方向ラビング、多方向ラビングとも十分なメモリ
ー性が得られない。
In this way, when looking at the memory property that is a characteristic of ferroelectric liquid crystal elements, as mentioned above, when the alignment method is the rubbing method, it is possible to uniformly align a liquid crystal element over a large area; , sufficient memory performance cannot be obtained with multidirectional rubbing.

又、配向方法が斜方蒸着による方法の時は、メモリー性
は得られるものの、大面積の液晶素子の均一配向が難し
く、量産性も低い。
Furthermore, when the alignment method is an oblique vapor deposition method, although memory properties can be obtained, it is difficult to uniformly align a large area liquid crystal element, and mass productivity is also low.

本発明はこのような問題点を解決して、大面積の液晶素
子に於いても、むらなく配向膜上に3方向のほぼ同等の
一軸規制力を与えることによりメモリー性の高い優れた
表示品質の液晶素子を提供することにある。
The present invention solves these problems and provides excellent display quality with high memory performance by uniformly applying almost equal uniaxial regulating force in three directions on the alignment film even in large-area liquid crystal elements. An object of the present invention is to provide a liquid crystal element.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は上下基板の対向面
に有機高分子の配向膜の上に有機高分子の単分子膜を積
層し、有機高分子の配向膜上に処理したラビングの向き
と、単分子膜の分子の向きによる一軸規制力によりメモ
リー性の高い配向膜を形成する事を特徴としている。
In order to achieve the above object, the present invention stacks a monomolecular film of an organic polymer on the alignment film of the organic polymer on the opposing surfaces of the upper and lower substrates, and processes the rubbing direction on the alignment film of the organic polymer. It is characterized by the formation of an oriented film with high memory properties due to the uniaxial regulating force caused by the orientation of the molecules in the monolayer.

すなわち、まず第1の工程では、液晶素子な形成する上
下基板の対向面に有機高分子の配向膜を形成し、更に上
下基板とも同じ方向にラビング処理を行う。次に第2の
工程では、ラビング処理された配向膜の上に有機高分子
の単分子膜を形成する。この時単分子膜の分子の長軸方
向が、上基板と下基板において、それぞれラビング方向
に対して強誘電性液晶のコーン角の1/2の角度を有し
、かつラビング方向に対して互いに対称になるようにす
る。この手段により3つの方向の一軸規制力をもつ配向
膜を得る事ができ、メモリー性の高い液晶素子が構成で
きる。
That is, in the first step, an organic polymer alignment film is formed on the opposing surfaces of the upper and lower substrates on which a liquid crystal element is to be formed, and then a rubbing process is performed on both the upper and lower substrates in the same direction. Next, in the second step, a monomolecular film of an organic polymer is formed on the rubbed alignment film. At this time, the long axis direction of the molecules of the monomolecular film is at an angle of 1/2 of the cone angle of the ferroelectric liquid crystal in the upper and lower substrates, respectively, with respect to the rubbing direction, and each other with respect to the rubbing direction. Make it symmetrical. By this means, an alignment film having uniaxial regulating forces in three directions can be obtained, and a liquid crystal element with high memory performance can be constructed.

〔作用〕[Effect]

ラビングされた配向膜は、その配向膜が液晶分子をある
方向に向かせようとする力すなわち一軸規制力の方向が
、ラビング方向とほぼ一致することb″−知られている
。そのためある一方向にラビングを行った場合、その−
軸規制力のため、電極間に電圧を印加して液晶分子を一
方向にそろえた後、電圧をOFFすると、液晶分子はそ
のラビング方向に揃ってしまいメモリー性を示さない。
It is known that in a rubbed alignment film, the direction of the force of the alignment film to direct the liquid crystal molecules in a certain direction, that is, the direction of the uniaxial regulating force, almost coincides with the rubbing direction. Therefore, in one direction If rubbing is performed on
Because of the axis regulating force, when a voltage is applied between the electrodes to align the liquid crystal molecules in one direction and then the voltage is turned off, the liquid crystal molecules align in the rubbing direction and do not exhibit memory properties.

ところで、電圧ON状態の分子の配向方向にも一軸規制
力を与えること九よりメモリー性な向上させる事が確め
られている。そこで分子を配向させるための一軸規制力
と、電圧ON状態での位置での一軸規制力を同じ配向膜
上に与える事ができればメモリー性の高い配向膜にする
ことが出来る。
By the way, it has been confirmed that applying a uniaxial regulating force to the orientation direction of molecules in a voltage ON state also improves memory performance. Therefore, if the uniaxial regulating force for orienting molecules and the uniaxial regulating force at the position in the voltage ON state can be applied to the same alignment film, an alignment film with high memory properties can be obtained.

ラビングを同じ配向膜面上で多方向に行った場合には最
後に行ったラビング方向に強く一軸規制力が生じてしま
って、同じ配向膜面に他方向の一軸規制力を持たせるこ
とは難しい。
If rubbing is performed in multiple directions on the same alignment film surface, a strong uniaxial regulating force will be generated in the last rubbing direction, making it difficult to create a uniaxial regulating force in other directions on the same alignment film surface. .

しかし、ラビングを行った配向膜上に単分子膜を積層さ
せることによって、同じ配向膜面上に多方向の一軸規制
力を持たせる事ができる。
However, by laminating a monomolecular film on the rubbed alignment film, it is possible to provide uniaxial regulating forces in multiple directions on the same alignment film surface.

すなわち、本発明の手段により見かけ上3方向の一軸規
制力をほぼ同等に持ち、この−軸規制力の方向は、強誘
電性液晶分子のスイッチングモデルのコーン軸と、電圧
ONでの分子の位置に相当するようになる。これより、
この液晶セルは、高いメモリー性が得られることになる
That is, by means of the present invention, the uniaxial regulating force in three directions is apparently approximately equal, and the direction of this -axis regulating force is determined by the cone axis of the switching model of ferroelectric liquid crystal molecules and the position of the molecule when the voltage is ON. becomes equivalent to Than this,
This liquid crystal cell has high memory performance.

〔実施例〕〔Example〕

以下本発明による一実施例を図に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明による液晶素子の模式断面図である。FIG. 1 is a schematic cross-sectional view of a liquid crystal element according to the present invention.

ITO電極付きガラス基板に、ポリイミドな溶媒に溶か
し約4%に希釈させたものを、スピンコードにより約8
0OAの膜厚に制御して塗布する。その表面に対し上下
基板同方向にラビングを行なう。更にこのラビングを行
なったポリイミド膜の上面に以下の方法によりポリイミ
ドの単分子膜を積層させる。
A glass substrate with an ITO electrode was diluted to about 4% in a polyimide solvent, and then heated to about 8% using a spin cord.
Coating is controlled to a film thickness of 0OA. The surface is rubbed in the same direction as the upper and lower substrates. Furthermore, a monomolecular film of polyimide is laminated on the top surface of the rubbed polyimide film by the following method.

ポリイミドの前駆体であるポリアミック酸を溶媒に希釈
した物を蒸留水上に極小量垂らし、ポリアミック酸の単
分子膜を蒸留水上に展開する。その後溶媒を除去した後
、配向膜付き基板を水位面を横切るようにして、基板上
に単分子膜を一層ずつ積層させ、計3層積層させた。こ
の時、基板を下げるときは表面圧を13dyne、基板
の下げ速度は、約4α/ miR,基板を上げるときは
、表面圧25dyne基板の上げ速度は3 cTL/ 
MALの条件で基板を水面から上げるときのみ単分子膜
が積層されるようにした。また基板の引き上げ方向は、
第2図のように、上基板ではラビング方向に対して+2
2.5度、下基板に対しては−22,5度となるように
行なった。基板に単分子膜を積層後、この基板を約17
0度に加熱し、ポリアミック酸の単分子膜のイミド化を
行なった。
A very small amount of polyamic acid, a precursor of polyimide, diluted in a solvent is dropped onto distilled water, and a monomolecular film of polyamic acid is spread on the distilled water. Thereafter, after removing the solvent, the monomolecular film was laminated one layer at a time on the substrate with the alignment film-coated substrate crossing the water level surface, so that a total of three layers were laminated. At this time, when lowering the substrate, the surface pressure is 13 dyne and the lowering rate of the substrate is approximately 4α/miR, and when raising the substrate, the surface pressure is 25 dyne and the raising rate of the substrate is 3 cTL/miR.
The monomolecular film was deposited only when the substrate was raised above the water surface under MAL conditions. Also, the direction in which the board is pulled up is
As shown in Figure 2, the upper substrate has +2 points in the rubbing direction.
The angle was set at 2.5 degrees and -22.5 degrees for the lower substrate. After laminating the monomolecular film on the substrate, this substrate was
The polyamic acid monomolecular film was imidized by heating to 0 degrees.

単分子膜を積層した後、第3図のように上下基板のラビ
ング方向を一致させるか、または180度ずらし単分子
膜の引き上げ方向が45度ずれるようにして重ね合わせ
セル化を行なった。これより、このセルの配向膜面に於
ける一軸規制は、第4図のように3方向にあり、このセ
ルに於ける強誘電性液晶分子のコーン軸は、中心の一軸
規制力41に一致し、電圧08時に於ける分子の主軸方
向は、両側の一軸規制力42.46にほぼ一致する。
After the monomolecular films were laminated, the rubbing directions of the upper and lower substrates were aligned as shown in FIG. 3, or they were shifted by 180 degrees so that the direction in which the monomolecular films were pulled was shifted by 45 degrees to form an overlapping cell. From this, the uniaxial regulation on the alignment film surface of this cell exists in three directions as shown in FIG. 4, and the cone axis of the ferroelectric liquid crystal molecules in this cell is aligned with the central uniaxial regulation force 41. Therefore, the principal axis direction of the molecule at a voltage of 08 approximately coincides with the uniaxial regulating force of 42.46 on both sides.

以上のセルに於いて、±40V周波数160 Hzのパ
ルス印加後の透過率と約2mS後の透過率の変化率を測
定した結果従来のラビングセルに比べ表1のように透過
率の変化の減少が認められた。
In the above cell, we measured the transmittance after applying a pulse of ±40 V frequency and 160 Hz, and the rate of change in transmittance after approximately 2 mS. As shown in Table 1, the change in transmittance decreased compared to the conventional rubbing cell. was recognized.

尚、本実施例における有機高分子の配向膜と単分子膜は
同じポリイミドであるが、異なるものであってもさしつ
かえない。
Although the organic polymer alignment film and the monomolecular film in this example are made of the same polyimide, they may be different.

表        1 〔発明の効果〕 以上の実施例で述べたように、本発明の液晶素子の配向
膜の製造方法は、ラビング方向と単分子膜の分子の向き
により3方向の一軸規制力な持たせる方法であるため、
従来のラビングによる液晶セルに於いては見られなかっ
た高いメモリー性と、蒸着では難かしかった大面積にお
ける均一配向が可能となった。
Table 1 [Effects of the Invention] As described in the above examples, the method for manufacturing an alignment film for a liquid crystal element according to the present invention can provide uniaxial regulating forces in three directions depending on the rubbing direction and the orientation of the molecules of the monolayer. Because it is a method,
It has achieved high memory performance, which was not seen in conventional rubbing liquid crystal cells, and it has become possible to achieve uniform alignment over a large area, which was difficult with vapor deposition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による液晶セルの模式断面図、第2図は
本発明の液晶セルに於けるラビング方向と単分子膜を積
層させる際の基板の引き上げ方向との関係を表わす説明
図、第3図は本発明の液晶セルが持つ一軸規制力の方向
を示す説明図、第4図は本発明の液晶セルのもつ一軸規
制力と液晶分子のモデル図との相関関係を示す説明図で
ある。 11・・・・・・透明電極付きガラス基板、12・・・
・・・ポリイミド有機薄膜、16・・・・・・ポリイミ
ド単分子膜、14・・・・・・強誘電性液晶、 21・・・・・・ラビング方向、 22・・・・・・単分子積層時の上基板の引き上げ方向
、23・・・・・・単分子積層時の下基板の引き上げ方
向、41、・・・・・・・ラビングによる一軸規制力方
向、2・・・・・・単分子膜による一軸規制力方向、6
・・・・・・単分子膜による一軸規制力方向、4・・・
・・・コーン軸、 5.46・・・・・・液晶分子。
FIG. 1 is a schematic cross-sectional view of a liquid crystal cell according to the present invention, FIG. 2 is an explanatory diagram showing the relationship between the rubbing direction in the liquid crystal cell of the present invention and the pulling direction of the substrate when laminating a monomolecular film, and FIG. FIG. 3 is an explanatory diagram showing the direction of the uniaxial regulating force of the liquid crystal cell of the present invention, and FIG. 4 is an explanatory diagram showing the correlation between the uniaxial regulating force of the liquid crystal cell of the present invention and a model diagram of liquid crystal molecules. . 11...Glass substrate with transparent electrode, 12...
... Polyimide organic thin film, 16 ... Polyimide monomolecular film, 14 ... Ferroelectric liquid crystal, 21 ... Rubbing direction, 22 ... Monomolecular Pulling direction of the upper substrate during stacking, 23... Pulling direction of the lower substrate during monolayer stacking, 41,... Direction of uniaxial regulating force due to rubbing, 2... Uniaxial control force direction by monolayer, 6
・・・・・・Uniaxial control force direction by monomolecular film, 4...
... Cone axis, 5.46 ... Liquid crystal molecules.

Claims (1)

【特許請求の範囲】[Claims] 上下一対の基板間に強誘電性液晶を挾持する強誘電性液
晶素子の配向膜の製造方法に於いて、第一の工程では前
記上下基板の対向面に有機高分子の配向膜を形成し、更
に同一方向にラビングによる配向処理を行い、第二の工
程では前記配向膜上に有機高分子の単分子膜を該分子の
長軸方向がそれぞれラビング方向に対して前記強誘電性
液晶のコーン角の1/2の角度を有し、互いに対称の方
向になるように形成する事を特徴とする強誘電性液晶素
子の配向膜の製造方法。
In a method for manufacturing an alignment film for a ferroelectric liquid crystal element in which a ferroelectric liquid crystal is sandwiched between a pair of upper and lower substrates, in a first step, an alignment film of an organic polymer is formed on opposing surfaces of the upper and lower substrates, Further, an alignment treatment is performed by rubbing in the same direction, and in a second step, a monomolecular film of an organic polymer is applied on the alignment film so that the long axis direction of the molecule is at the cone angle of the ferroelectric liquid crystal with respect to the rubbing direction. 1. A method for producing an alignment film for a ferroelectric liquid crystal element, the film being formed in symmetrical directions with an angle of 1/2 of the angle .
JP8979089A 1989-04-11 1989-04-11 Production of oriented film for ferroelectric liquid crystal element Pending JPH02269318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8979089A JPH02269318A (en) 1989-04-11 1989-04-11 Production of oriented film for ferroelectric liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8979089A JPH02269318A (en) 1989-04-11 1989-04-11 Production of oriented film for ferroelectric liquid crystal element

Publications (1)

Publication Number Publication Date
JPH02269318A true JPH02269318A (en) 1990-11-02

Family

ID=13980483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8979089A Pending JPH02269318A (en) 1989-04-11 1989-04-11 Production of oriented film for ferroelectric liquid crystal element

Country Status (1)

Country Link
JP (1) JPH02269318A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355523A (en) * 1989-07-25 1991-03-11 Matsushita Electric Ind Co Ltd Active matrix type liquid crystal display panel
WO1998054617A1 (en) * 1997-05-26 1998-12-03 Matsushita Electric Industrial Co., Ltd. Liquid crystal alignment film, method of producing the same, liquid crystal display made by using the film, and method of producing the same
US6368681B1 (en) 1996-07-10 2002-04-09 Matsushita Electric Industrial Co., Ltd. Liquid crystal alignment film, method of manufacturing the film, liquid crystal display using the film and method, and method of manufacturing the liquid crystal display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355523A (en) * 1989-07-25 1991-03-11 Matsushita Electric Ind Co Ltd Active matrix type liquid crystal display panel
US6368681B1 (en) 1996-07-10 2002-04-09 Matsushita Electric Industrial Co., Ltd. Liquid crystal alignment film, method of manufacturing the film, liquid crystal display using the film and method, and method of manufacturing the liquid crystal display
WO1998054617A1 (en) * 1997-05-26 1998-12-03 Matsushita Electric Industrial Co., Ltd. Liquid crystal alignment film, method of producing the same, liquid crystal display made by using the film, and method of producing the same

Similar Documents

Publication Publication Date Title
KR920010053B1 (en) Liquid crystal display device
JP6541885B2 (en) Method of manufacturing display panel and liquid crystal display device
JPH02269318A (en) Production of oriented film for ferroelectric liquid crystal element
JPH10197870A (en) Liquid crystal display element and its production
JPS61165730A (en) Liquid crystal electrooptic device
JPH03261005A (en) Formation of hyaline conductive film
JPH0348817A (en) Liquid crystal electro-optical element
JP2544945B2 (en) Ferroelectric liquid crystal element
JPH0261614A (en) Liquid crystal element
JP2681267B2 (en) Manufacturing method of liquid crystal element
JP3026786B2 (en) Liquid crystal display device and method of manufacturing the same
JP2548592B2 (en) Ferroelectric liquid crystal element
JPH01120535A (en) Ferroelectric liquid crystal element
JPH023015A (en) Production of ferroelectric liquid crystal element
US20200333669A1 (en) Lcd device production
JPS61186932A (en) Liquid crystal element
JP2907228B2 (en) Manufacturing method of liquid crystal display device
JPH05203933A (en) Ferroelectric liquid crystal element
JPH01186915A (en) Ferroelectric liquid crystal element
JPH03125117A (en) Manufacture of ferroelectric liquid crystal element
JPS62173433A (en) Liquid crystal electrooptic device
JPH03134627A (en) Liquid crystal eletrooptical element
JPH04338925A (en) Liquid crystal display element
JPH03288826A (en) Liquid crystal electrooptical device
JPS61267028A (en) Control method for orientation of liquid crystal