JPH02266245A - Optical transmission system monitoring method - Google Patents

Optical transmission system monitoring method

Info

Publication number
JPH02266245A
JPH02266245A JP1086936A JP8693689A JPH02266245A JP H02266245 A JPH02266245 A JP H02266245A JP 1086936 A JP1086936 A JP 1086936A JP 8693689 A JP8693689 A JP 8693689A JP H02266245 A JPH02266245 A JP H02266245A
Authority
JP
Japan
Prior art keywords
light
pulse pattern
optical
transmission line
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086936A
Other languages
Japanese (ja)
Inventor
Tadatoshi Tanifuji
谷藤 忠敏
Tsuneto Azuma
東 恒人
Izumi Mikawa
泉 三川
Osamu Kawada
修 河田
Masaaki Kawase
川瀬 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1086936A priority Critical patent/JPH02266245A/en
Publication of JPH02266245A publication Critical patent/JPH02266245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To easily monitor an optical transmission line by modulating stimulating light with a pulse pattern having a shorter period than the relaxation time of a stimulating carrier and making the light incident on an optical fiber, and finding the time correlation between the pulse pattern and back scattered light. CONSTITUTION:This method is provided with a circuit 5 which is driven by a random pulse pattern generator 12, a directional coupler composed of a half- mirror, a photodetector 13, a correlator 14, and a delay circuit 15. Then the light from a stimulating light source 6 is modulated with the random pulse pattern of the generator 12 and made incident on the Er-doped optical fiber through the coupler 11 and a multiplexing demultiplexing circuit 4 together with signal light. Back scattered light at each point of the fiber due to the random pulse pattern passes through the circuit 4 and coupler 11 and is converted by the light receiving device 13 into an electric signal, which is inputted to the correlator 14 and collated with the random pulse pattern through the circuit 15. Then a back scattering waveform is obtained by the delay time sweeping of the circuit 15. Consequently, the loss and fault point of the transmission line can be detected and the optical transmission line can easily be monitored.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光伝送システムの簡易な監視方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a simple monitoring method for an optical transmission system.

(従来の技術) 従来、光伝送システムにおいて、伝送線路を監視する方
法として、伝送線路の一部に監視用の光パルスを入射し
その後方散乱光を検出するために設けた光分岐素子を通
して、伝送路の光損失及び破断位置等を測定していた。
(Prior Art) Conventionally, in an optical transmission system, as a method of monitoring a transmission line, a monitoring optical pulse is incident on a part of the transmission line, and the backscattered light is detected through an optical branching element. The optical loss and breakage position of the transmission line were measured.

しかしこの方法によると、伝送線路の監視のためには、
新たな監視用の光源が必要になり装置構成が複雑になる
という欠点があった。
However, according to this method, for monitoring transmission lines,
This has the disadvantage that a new monitoring light source is required and the device configuration becomes complicated.

第3図は従来技術による監視方法を前述のErドープフ
ァイバを光増幅器として用いた光伝送システムにおける
伝送線路監視システムの構成を示す。図で1−8は伝送
システムを構成する装置であり、9−10は伝送線路を
監視するために新たに必要となる装置である。すなわち
、1は伝送すべき電気信号源、2は電気信号源1で半導
体レーザ3を駆動するための回路、4は、駆動回路3で
駆動された励起光源6の光出力をErドープファイバ7
に入射するための光合分岐回路である。また8は、伝送
線路である。信号光の波長は1.52−1.55μm、
励起光の波長は1.46−1.48μmに設定される。
FIG. 3 shows the configuration of a transmission line monitoring system in an optical transmission system using the conventional monitoring method using the Er-doped fiber as an optical amplifier. In the figure, 1-8 is a device constituting the transmission system, and 9-10 is a device newly required to monitor the transmission line. That is, 1 is an electric signal source to be transmitted, 2 is a circuit for driving the semiconductor laser 3 with the electric signal source 1, and 4 is an Er-doped fiber 7 for transmitting the optical output of the excitation light source 6 driven by the drive circuit 3.
This is an optical multiplexing/branching circuit for inputting light into the optical system. Further, 8 is a transmission line. The wavelength of the signal light is 1.52-1.55μm,
The wavelength of the excitation light is set to 1.46-1.48 μm.

このため、受信部に伝搬する励起光及び自然放出光を遮
断しシステムのS/Nを向上するために、受信部に、信
号光の波長(1,52−1,55μm )に通過帯域を
有する波長フィルタを挿入する。9は通常の光パルス試
験器(OTDR) 、10はパルス試験光を伝送線路に
入射するための光合分岐器である。
Therefore, in order to block the excitation light and spontaneous emission light propagating to the receiver and improve the S/N of the system, the receiver has a passband at the wavelength of the signal light (1,52-1,55 μm). Insert wavelength filter. 9 is an ordinary optical pulse tester (OTDR), and 10 is an optical multiplexer/brancher for inputting pulse test light into the transmission line.

(発明が解決しようとする課題) 図から分かるようにこの方法によると、Erドープ光フ
ァイバを増幅器として用いた伝送線路を監視するために
は光パルス試験器を新たに備える必要がある。さらに光
パルス試験器の光源の波長を励起光のそれと同一に選定
するか、受信部で光パルス試験器の監視光を遮断するフ
ィルタを設ける必要があるという欠点があった。
(Problems to be Solved by the Invention) As can be seen from the figure, according to this method, it is necessary to newly provide an optical pulse tester in order to monitor a transmission line using an Er-doped optical fiber as an amplifier. Another disadvantage is that it is necessary to select the wavelength of the light source of the optical pulse tester to be the same as that of the excitation light, or to provide a filter to block the monitoring light of the optical pulse tester in the receiving section.

本発明はこれらの欠点を改善し簡易な光伝送路監視方法
を提供することを目的とする。
An object of the present invention is to improve these drawbacks and provide a simple optical transmission line monitoring method.

(課題を解決するための手段) この目的を達成するための本発明の特徴は、光通信シス
テムにおける伝送可能距離を拡大するために、伝送路と
して使用する光ファイバの送信部あるいは受信部側の端
部に希土類原素をドープした光ファイバを備え、これに
励起光を入射することにより信号光の増幅機能を付与し
た光伝送システムにおいて、励起光を励起されたキャリ
アの緩和時間より短い周期のパルスパターンで変調して
、希土類原素をドープした光ファイバに入射して信号光
を増幅するための励起光とし、前記パルスパターンと、
該パルスパターンによる光ファイバ伝送路からの後方散
乱光との時間相関を求め、該時間相関に従って光ファイ
バ伝送路の光損失及び破断位置の少なくとも一方を測定
する光伝送システム監視方法にある。
(Means for Solving the Problems) A feature of the present invention for achieving this object is that, in order to expand the possible transmission distance in an optical communication system, In an optical transmission system that has an optical fiber doped with a rare earth element at the end and provides a signal light amplification function by injecting pump light into the fiber, the pump light is used to transmit a signal with a period shorter than the relaxation time of the excited carriers. Pumping light is modulated with a pulse pattern and input into an optical fiber doped with a rare earth element to amplify the signal light, and the pulse pattern and
The present invention provides an optical transmission system monitoring method that obtains a time correlation between the pulse pattern and backscattered light from an optical fiber transmission line, and measures at least one of optical loss and breakage position of the optical fiber transmission line according to the time correlation.

(作用) 本発明は、希土類原素をドープした光ファイバに増幅機
能をもたすための励起光源を所定のパルスパターンで変
調し、かつパルスパターンの繰り返し周期を励起光によ
り励起されたキャリアの緩和時間と比較して充分短く設
定するとゲインの時間変動は無視できるという事実に着
目し、励起光を伝送線路の光損失測定用並びに障害点探
索にも使用することにより、簡易な伝送線路監視システ
ムの実現を可能とする。
(Function) The present invention modulates a pumping light source with a predetermined pulse pattern to provide an amplification function to an optical fiber doped with rare earth elements, and adjusts the repetition period of the pulse pattern to the carriers excited by the pumping light. By focusing on the fact that the time fluctuation of the gain can be ignored if it is set sufficiently short compared to the relaxation time, and by using the excitation light to measure the optical loss of the transmission line and also to search for fault points, we have developed a simple transmission line monitoring system. This makes it possible to realize the following.

上記希土類元素としてはEr  (エルビウム)の使用
が代表的である。
As the rare earth element, Er (erbium) is typically used.

励起光をパルスパターンで変調しても、Erドープ光フ
ァイバによる増幅度は従来の直流の励起光の場合と同じ
である。したがって該パルスパターンと、光ファイバ伝
送路からの後方散乱光との時間相関を取ることにより、
光損失及び障害点探索が簡易に行なわれる。
Even if the excitation light is modulated with a pulse pattern, the amplification degree by the Er-doped optical fiber is the same as in the case of conventional DC excitation light. Therefore, by taking the time correlation between the pulse pattern and the backscattered light from the optical fiber transmission line,
Optical loss and failure point search can be easily performed.

従来必要であった試験用光パルスは不要となり、かつ、
受信側で該試験用光パルスを除去するためのフィルタも
不要となる。
The test light pulses that were previously required are no longer necessary, and
A filter for removing the test optical pulse on the receiving side is also not required.

(実施例) 第1図は、本発明の第1の実施例を示す図である。1−
4は前項で説明したものと同様である。
(Example) FIG. 1 is a diagram showing a first example of the present invention. 1-
4 is the same as that explained in the previous section.

5は励起光源の駆動回路で、従来提案されている伝送シ
ステムでは、直流電流で駆動するが、本発明では、擬似
ランダムパルスパターン発生器12により駆動する。1
1は方向性結合器で、ハーフミラ−あるいは、ファイバ
カブラで構成する。13は光信号を電気信号に変換する
ための受光器、14は相関器、15は遅延回路である。
Reference numeral 5 denotes a drive circuit for an excitation light source, which is driven by a direct current in conventionally proposed transmission systems, but is driven by a pseudo-random pulse pattern generator 12 in the present invention. 1
Reference numeral 1 denotes a directional coupler, which is composed of a half mirror or a fiber coupler. 13 is a photoreceiver for converting an optical signal into an electrical signal, 14 is a correlator, and 15 is a delay circuit.

次に本実施例の動作原理について述べる。Erファイバ
に入射した励起光は、 I l 3/2とIIS/□の
間に反転分布を形成する。’I+3/□の準位に励起さ
れた電子の緩和時間は、10m5ec以上なので、励起
光は直流でも、緩和時間より繰り返しの早いパルスでも
実効上は、時間的に一定の光増幅度が達成される。第4
図及び第5図にこの原理を示す。
Next, the operating principle of this embodiment will be described. The excitation light incident on the Er fiber forms a population inversion between I l 3/2 and IIS/□. 'The relaxation time of an electron excited to the I+3/□ level is 10 m5ec or more, so even if the excitation light is a direct current or a pulse whose repetition is faster than the relaxation time, effectively a temporally constant optical amplification degree can be achieved. Ru. Fourth
This principle is shown in FIG.

本実施例のシステムの動作について詳細に説明する。前
述したように、励起光源6をパルスパターン発生器12
により例えば8ビツトのランダムパルスパターンにより
変調する。この励起光を方向性結合器11、合分波回路
4を介し信号光とともにEr ドープ光ファイバに入射
する。ランダムパルスパターンによるファイバ各点から
の後方散乱光は、合分波回路4、方向性結合器11を通
って、受光器13に入射する。受光器13で電気信号に
変換された信号は、相関器に入力され、遅延回路を介し
てランダムパルスパターンと相関をとる。遅延回路の遅
延時間を掃引することにより、後方散乱波形が得られる
。これにより伝送路の損失並びに障害点の探索が可能と
なる。以上の構成をとることにより、伝送システムを構
成する光源を使用することにより伝送路の監視が可能と
なり、さらにシステムがポンプ光ならびにErの自然放
出光を遮断するフィルタを備えているため、試験光を遮
断するフィルタ等は不要となり、システム構成が簡易に
なるという大きな利点がある。
The operation of the system of this embodiment will be explained in detail. As mentioned above, the excitation light source 6 is connected to the pulse pattern generator 12.
The signal is modulated by, for example, an 8-bit random pulse pattern. This excitation light is input into an Er doped optical fiber together with the signal light via the directional coupler 11 and the multiplexing/demultiplexing circuit 4. Backscattered light from each point of the fiber according to the random pulse pattern passes through the multiplexing/demultiplexing circuit 4 and the directional coupler 11 and enters the light receiver 13 . The signal converted into an electrical signal by the photoreceiver 13 is input to a correlator, and is correlated with a random pulse pattern via a delay circuit. A backscattered waveform is obtained by sweeping the delay time of the delay circuit. This makes it possible to search for transmission path losses and failure points. With the above configuration, it is possible to monitor the transmission line by using the light sources that make up the transmission system, and since the system is equipped with a filter that blocks pump light and Er spontaneous emission light, the test light There is no need for a filter or the like to block out the noise, which has the great advantage of simplifying the system configuration.

第2図は本発明の第2の実施例である。先の実施例では
、Erドープ光ファイバにおいて、励起光の損失は避け
られないという欠点があった。そのため、本実施例では
励起光の一部をハーフミラ−11により、Er ドープ
光ファイバを介さずに伝送路に入射する。これにより測
定系のダイナミックレンジの拡大が可能となる。
FIG. 2 shows a second embodiment of the invention. The previous embodiments had a drawback in that the loss of pumping light was unavoidable in the Er-doped optical fiber. Therefore, in this embodiment, a part of the excitation light is made incident on the transmission path through the half mirror 11 without passing through the Er-doped optical fiber. This makes it possible to expand the dynamic range of the measurement system.

(発明の効果) 以上説明したように本発明の監視システムは、監視用の
光源を具備する必要がなく、また試験光の入射によるS
/Nの劣化を避けることができるという効果がある。
(Effects of the Invention) As explained above, the monitoring system of the present invention does not need to be equipped with a light source for monitoring, and the
/N deterioration can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、 第2図は本発明の別の実施例を示す図、第3図は従来の
技術の説明図、 第4図と第5図は時間的に一定の光増幅度が得られるこ
とを示す説明図である。 1;伝送すべき電気信号源、 2;半導体レーザ3を駆動するための回路、4;駆動回
路5で駆動された励起光源6の光出力をErドープファ
イバ7に入射するための光合分岐器、  8;伝送線路
、 9;通常の光パルス試験器(OTDR)、10;パルス
試験光を伝送線路に入射するための光合分岐器、 11
;方向性結合器、 12;擬似ランダムパルスパターン発生器、13;光信
号を電気信号に変換するための受光器、14;相関器、
 15;遅延回路、 16;データ処理装置及び表示装置である。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a diagram showing another embodiment of the invention, Fig. 3 is an explanatory diagram of a conventional technique, and Figs. 4 and 5 are chronologically shown. FIG. 3 is an explanatory diagram showing that a constant optical amplification degree can be obtained. 1; an electric signal source to be transmitted; 2; a circuit for driving the semiconductor laser 3; 4; an optical multiplexer/brancher for inputting the optical output of the excitation light source 6 driven by the driving circuit 5 into the Er-doped fiber 7; 8; Transmission line, 9; Ordinary optical pulse tester (OTDR), 10; Optical multiplexer/brancher for inputting pulse test light into the transmission line, 11
; Directional coupler; 12; Pseudo-random pulse pattern generator; 13; Optical receiver for converting an optical signal into an electrical signal; 14; Correlator;
15; delay circuit; 16; data processing device and display device.

Claims (1)

【特許請求の範囲】 光通信システムにおける伝送可能距離を拡大するために
、伝送路として使用する光ファイバの送信部あるいは受
信部側の端部に希土類原素をドープした光ファイバを備
え、これに励起光を入射することにより信号光の増幅機
能を付与した光伝送システムにおいて、 励起光を励起されたキャリアの緩和時間より短い周期の
パルスパターンで変調して、希土類原素をドープした光
ファイバに入射して信号光を増幅するための励起光とし
、 前記パルスパターンと、該パルスパターンによる光ファ
イバ伝送路からの後方散乱光との時間相関を求め、 該時間相関に従って光ファイバ伝送路の光損失及び破断
位置の少なくとも一方を測定することを特徴とする光伝
送システム監視方法。
[Claims] In order to expand the possible transmission distance in an optical communication system, an optical fiber used as a transmission line is provided with an optical fiber doped with a rare earth element at the end on the transmitter or receiver side. In an optical transmission system that provides a signal light amplification function by inputting pumping light, the pumping light is modulated with a pulse pattern with a period shorter than the relaxation time of the excited carriers, and the optical fiber is doped with rare earth elements. Enter the pumping light to amplify the signal light, find the time correlation between the pulse pattern and the backscattered light from the optical fiber transmission line due to the pulse pattern, and calculate the optical loss of the optical fiber transmission line according to the time correlation. and a fracture position.
JP1086936A 1989-04-07 1989-04-07 Optical transmission system monitoring method Pending JPH02266245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086936A JPH02266245A (en) 1989-04-07 1989-04-07 Optical transmission system monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086936A JPH02266245A (en) 1989-04-07 1989-04-07 Optical transmission system monitoring method

Publications (1)

Publication Number Publication Date
JPH02266245A true JPH02266245A (en) 1990-10-31

Family

ID=13900755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086936A Pending JPH02266245A (en) 1989-04-07 1989-04-07 Optical transmission system monitoring method

Country Status (1)

Country Link
JP (1) JPH02266245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668658A (en) * 1995-02-28 1997-09-16 Nec Corporation Transfer of repeater information signals in in-line optical amplifier repeater system
US6266169B1 (en) 1992-04-08 2001-07-24 Hitachi, Ltd. Optical transmission equipment which transmits an amplified optical data signal and an optical surveillance signal
CN117154535A (en) * 2023-08-25 2023-12-01 密尔医疗科技(深圳)有限公司 Waveform shaping circuit of laser driving circuit, laser driving circuit and laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266169B1 (en) 1992-04-08 2001-07-24 Hitachi, Ltd. Optical transmission equipment which transmits an amplified optical data signal and an optical surveillance signal
US6728489B2 (en) 1992-04-08 2004-04-27 Hitachi, Ltd. Optical transmission system constructing method and system
US7167652B2 (en) 1992-04-08 2007-01-23 Hitachi, Ltd Optical transmission system constructing method and system
US7292785B2 (en) 1992-04-08 2007-11-06 Hitachi, Ltd. Optical transmission system constructing method and system
US5668658A (en) * 1995-02-28 1997-09-16 Nec Corporation Transfer of repeater information signals in in-line optical amplifier repeater system
CN117154535A (en) * 2023-08-25 2023-12-01 密尔医疗科技(深圳)有限公司 Waveform shaping circuit of laser driving circuit, laser driving circuit and laser

Similar Documents

Publication Publication Date Title
JP3033677B2 (en) Optical fiber characteristics measurement device
EP0515443B1 (en) Optical test apparatus comprising an OTDR
JP3272934B2 (en) Apparatus and method for evaluating and measuring wavelength multiplexed optical amplifier
JPH07226549A (en) Noise figure measuring method and equipment
JP3411436B2 (en) Monitoring method of optical communication line
JP2013200305A (en) Optical sensing array, optical apparatus, and method for configuring optical bus
JPH10112686A (en) Signal light channel counter and optical amplifier using it
JPH10210009A (en) Optical amplifier output level control for optical wavelength multiplex communication system
JPH02266245A (en) Optical transmission system monitoring method
US5574534A (en) Apparatus for determining noise factor of optical amplifier
JP3236661B2 (en) Optical pulse tester
JPH02273976A (en) Optical amplifier
JP2001502143A (en) Method and apparatus for saturating an optical amplifier chain to avoid over-amplification of a wavelength division multiplexed signal
JP3283282B2 (en) Optical amplifier measuring system, optical amplifier noise characteristic measuring device, optical amplifier measuring method, and optical fiber amplifier noise characteristic measuring device
JP2903975B2 (en) Optical receiver characteristic measuring method and apparatus
JPS6086438A (en) Method and apparatus for testing optical fiber
JPH10135557A (en) Phototransmitter
JP3122293B2 (en) OTDR measurement device
JP6280440B2 (en) Optical pulse test equipment
JPH08248454A (en) Method for measuring noise index
JP3327416B2 (en) Optical pulse tester
JP2515018B2 (en) Backscattered light measurement method and device
JPH0663908B2 (en) Optical pulse test equipment
JP3248559B2 (en) Optical fiber zero dispersion wavelength distribution measuring method and measuring apparatus
US20240027260A1 (en) Multi-span optical fiber das system with dispersion management and staggered sensing pulses