JPH02265271A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH02265271A
JPH02265271A JP1087527A JP8752789A JPH02265271A JP H02265271 A JPH02265271 A JP H02265271A JP 1087527 A JP1087527 A JP 1087527A JP 8752789 A JP8752789 A JP 8752789A JP H02265271 A JPH02265271 A JP H02265271A
Authority
JP
Japan
Prior art keywords
word line
layer
sections
impurity
word
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1087527A
Other languages
Japanese (ja)
Inventor
Shiro Fujima
藤間 志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1087527A priority Critical patent/JPH02265271A/en
Publication of JPH02265271A publication Critical patent/JPH02265271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the size of a chip by forming an impurity diffusion layer having a conductivity type reverse to a substrate to the lower section of the lifting contact section of a word line and connecting the impurity diffusion layer to the word line in the lower section of the lifting contact section. CONSTITUTION:An N<+> diffusion impurity layer 2 is concentrated and formed onto the surface of the semiconductor substrate 9 (P-type) of contact sections between a cell section and a cell section to which the word contact sections 1 (the lifting contact sections of word lines) of polysilicon layers 6 extending to the left and the right as the word lines functioning as the gates of memory cell transistors in combination and aluminum layers 5 overlapped to the upper sections of the layers 6 are concentrated and shaped. Each impurity layer 2 is arranged to sections just under the word-line lifting contact sections 1, capacitive polysilicon layers 7 are cut 8, and the polysilicon layers 6 are connected to the N<+> impurity layer 2 in sections just under the lifting contact sections 1. Accordingly, the area of a chip is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体メモリ装置に関し、特にワード線の抵抗
低減のための高導電層をワード線上に存しこの高導電層
とワード線とのコンタクト(以下[つり上げコンタクト
Jと称する)をメモリセル・アレイに有する集積メモリ
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and particularly to a semiconductor memory device in which a highly conductive layer is provided on a word line to reduce resistance of the word line, and a contact between the highly conductive layer and the word line is provided. (hereinafter referred to as lifting contacts J) in a memory cell array.

〔従来の技術〕[Conventional technology]

メモリセルのトランスファゲート・トランジスタのゲー
トに比較的高比抵抗の材料(たとえばポリシリコン)を
用いた半導体メモリ装置では、第4図に示すようにゲー
トポリシリコンでワード線も構成されるためワード線6
の抵抗が高く、ワード線の末端に向うほど時定数が大き
くなって動作に遅延が生じる。この欠点を除去するため
、従来からワード線に重ねて上層にアルミニウム等の高
導電層5を形成し、メモリセルアレイ内の各所のセル部
間につり上げコンタクト部を設けてそこでゲートポリシ
リコンロとの接続を行なう(コンタクト1)ことにより
、所定の動作時間におさえる工夫がされていた。さらに
従来、拡散工程内に含まれる高ドーズイオン注入時に発
生ずるチャージアップによるゲート酸化膜の絶縁破壊を
避けるため、セルアレイ外部にN+拡散層3を形成し、
これをゲートポリシリコンロと接続することにより、基
板とN+拡散層の間で形成されるダイオードの耐圧以上
の電圧がゲートポリシリコンと基板の間(特にゲート酸
化膜)に印加されることを防ぐことも、上記つり上げコ
ンタクトとは別になされることもあった。
In a semiconductor memory device that uses a relatively high resistivity material (for example, polysilicon) for the transfer gate of a memory cell or the gate of a transistor, the word line is also made of gate polysilicon, as shown in Figure 4. 6
The resistance of the word line is high, and the time constant increases toward the end of the word line, causing a delay in operation. In order to eliminate this drawback, conventionally, a highly conductive layer 5 made of aluminum or the like is formed as an upper layer over the word line, and lifting contact portions are provided between cell portions at various locations in the memory cell array. By making the connection (contact 1), an attempt was made to keep the operation time within a predetermined time. Furthermore, conventionally, in order to avoid dielectric breakdown of the gate oxide film due to charge-up that occurs during high-dose ion implantation included in the diffusion process, an N+ diffusion layer 3 is formed outside the cell array.
By connecting this to the gate polysilicon, a voltage higher than the withstand voltage of the diode formed between the substrate and the N+ diffusion layer is prevented from being applied between the gate polysilicon and the substrate (especially to the gate oxide film). This was sometimes done separately from the above-mentioned lifting contact.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置では高ドーズイオン注入時に
発生するチャージアップによるゲート酸化膜の絶縁破壊
を防ぐ目的で設けられる基板と逆導電型の不純物拡散層
を、第4図に示すようにセルブロック外部に形成するた
め、メモリセルアレイ外にそのための余分な面積が必要
であり、チップ面積の増大をまねいていた。
In the conventional semiconductor device described above, an impurity diffusion layer of the opposite conductivity type to the substrate, which is provided for the purpose of preventing dielectric breakdown of the gate oxide film due to charge-up that occurs during high-dose ion implantation, is placed outside the cell block as shown in Figure 4. Therefore, an extra area is required outside the memory cell array, leading to an increase in the chip area.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、チャージアップを避けるための基板と反対導
電型の不純物層をセルブロック間に形成しているワード
線のつり上げコンタクト部の下に設け、つり上げコンタ
クト部の下でワード線を不純物層に接続する構造を有す
ることを特徴とする。
In the present invention, an impurity layer of the opposite conductivity type to that of the substrate is provided under the lifting contact portion of the word line formed between cell blocks to avoid charge-up, and the word line is formed in the impurity layer under the lifting contact portion. It is characterized by having a connecting structure.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。第1図
および第2図を参照すると、本発明の第1の実施例では
メモリセルトランジスタのゲートを兼ねてワード線とし
て図上左右に延びるポリシリコン層6とその上部に重畳
したアルミニウム層5とのワードコンタクト部分1(ワ
ード線のつり上げコンタクト部分)が集中して設けられ
ているセル部とセル部との間のコンタクト部の半導体基
板9(p型)表面にN+拡散不純物層2を集中形成して
いる。各不純物層2はワード線つり上げコンタクト部分
1の直下に配置し、容量ポリシリコン層7を図示のよう
にカット8して、ポリシリコン層6をつり上げコンタク
ト部分1の直下でN+不純物層2に接続している。なお
、セル部の構造は図示を省略したが、従来公知のダイナ
ミックRAMセル構造でよく、例えば基板9上に容量誘
電体層を介して(セル間にあっては厚いフィールド絶縁
層を介して)容量ポリシリコン層を一面に配置しくセル
・トランジスタのゲート部およびビット線接続部を除く
)、セルトランジスタのゲーl〜を兼ねるワード線を第
1図のように左右に走らせ(セルトランジスタ中ではゲ
ート絶縁膜上に、容量ポリシリコン層がある部分ではそ
の上に重ねる)、さらにワード線上にビット線(図示せ
ず〉を第1図で上下に走らせて各セルトランジスタの拡
散層にコンタクトさせたものでよい。各セル部には多数
のメモリセルが配置される。
Next, the present invention will be explained with reference to the drawings. Referring to FIGS. 1 and 2, in the first embodiment of the present invention, a polysilicon layer 6 which also serves as the gate of a memory cell transistor and extends from left to right in the figure as a word line, and an aluminum layer 5 superimposed on the polysilicon layer 6 are used. An N+ diffused impurity layer 2 is formed in a concentrated manner on the surface of the semiconductor substrate 9 (p-type) in the contact area between the cell parts where word contact parts 1 (word line lifting contact parts) are provided in a concentrated manner. are doing. Each impurity layer 2 is placed directly under the word line lifting contact portion 1, and the capacitive polysilicon layer 7 is cut 8 as shown, and the polysilicon layer 6 is connected to the N+ impurity layer 2 directly under the lifting contact portion 1. are doing. Although the structure of the cell part is not shown, it may be a conventionally known dynamic RAM cell structure, for example, a capacitive polyamide layer is formed on the substrate 9 through a capacitive dielectric layer (through a thick field insulating layer between cells). The silicon layer is placed on one surface (excluding the gate part of the cell transistor and the bit line connection part), and word lines that also serve as gates of the cell transistor are run left and right as shown in Figure 1 (in the cell transistor, the gate insulating film is In some areas where there is a capacitive polysilicon layer, it may be layered on top of the capacitive polysilicon layer), and a bit line (not shown) may be run above and below the word line (not shown) to contact the diffusion layer of each cell transistor. A large number of memory cells are arranged in each cell section.

第3図に示した本発明の第2の実施例では、セル部間の
数ケ所にあるワード線つり上げコンタクト部に設けるN
1不純物層4をつり上げコンタクト部−つ置きに設置し
、かつ各つηあげコンタクト部において、ワード線6−
つ置きに不純物層4を設けている。高集積化に伴いワー
ド線が接近して隣り合ったすべてのワード線のつり上げ
コンタクト部分1の下方にN+不純物層を隣接して形成
できない場合、数ケ所のつり上げコンタクト領域を利用
して、N+不純物層4を分散させて形成できるという利
点がある。なおこの場合、N+不純物層のない部分では
コンタクト1を省略してもよい。
In the second embodiment of the present invention shown in FIG.
1 impurity layer 4 is placed every other raised contact part, and in each raised contact part, a word line 6-
Impurity layers 4 are provided alternately. When word lines become closer together with higher integration and it is not possible to form N+ impurity layers adjacently under the lifting contact portions 1 of all adjacent word lines, N+ impurity layers can be formed using several lifting contact regions. There is an advantage that the layer 4 can be formed in a dispersed manner. Note that in this case, the contact 1 may be omitted in the portion where there is no N+ impurity layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては高ドーズイオン
注入時に発生するチャージアップによるゲート酸化膜の
絶縁破壊を避けるための基板と逆導電型の不純物拡散層
をワード線のつり上げコンタクト部分の下方に形成し、
ワード線との接続をつり上げコンタクト部分の下で行う
構成とすることによってセルアレイ外部に形成していた
不純物拡散層を削除し、チップサイズを1%程度小さく
できる。また、高集積化に伴いワード線が接近し合った
場合でも、複数のワード線のつり上げコンタクト部分を
利、用できるという効果がある。
As explained above, in the present invention, an impurity diffusion layer of a conductivity type opposite to that of the substrate is formed below the lifting contact portion of the word line in order to avoid dielectric breakdown of the gate oxide film due to charge-up that occurs during high-dose ion implantation. death,
By configuring the word line to be connected under the raised contact portion, the impurity diffusion layer formed outside the cell array can be eliminated, and the chip size can be reduced by about 1%. Further, even when word lines are brought closer to each other due to higher integration, there is an effect that the lifting contact portions of a plurality of word lines can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の一部平面図、第2図は
第1図のA−A’線における断面図、第3図は本発明の
第2の実施例の一部平面図、第4図は従来の半導体メモ
リ装置の一部平面図である。 1・・・ワード線つり上げコンタクト、2,3.4・・
・N+不純物層、5・・・アルミニウム層、6・・・ゲ
ートポリシリコン層、7・・・容量ポリシリコン層、8
・・・容量ポリシリコン層をカットした部分、9・・・
半導体基板。
FIG. 1 is a partial plan view of the first embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA' in FIG. 1, and FIG. 3 is a partial plan view of the second embodiment of the present invention. FIG. 4 is a partial plan view of a conventional semiconductor memory device. 1...Word line lifting contact, 2, 3.4...
・N+ impurity layer, 5... aluminum layer, 6... gate polysilicon layer, 7... capacitive polysilicon layer, 8
...The part where the capacitive polysilicon layer was cut, 9...
semiconductor substrate.

Claims (1)

【特許請求の範囲】[Claims]  比較的高比抵抗の材料で形成されメモリセルのトラン
スファーゲートをも兼ねるワード線と、前記ワード線に
重なるように配置され、かつ一定距離毎に前記ワード線
に接続される低比抵抗導電層とを有する半導体メモリ装
置において、前記ワード線と前記導電層との接続コンタ
クトの下方の半導体基板表面に前記基板とは逆導電型の
不純物層を有し、前記接続コンタクトの下で前記ワード
線が前記不純物層に接続する構造を有することを特徴と
する半導体メモリ装置。
a word line formed of a relatively high resistivity material and also serving as a transfer gate of a memory cell; and a low resistivity conductive layer arranged to overlap the word line and connected to the word line at regular intervals. In the semiconductor memory device, an impurity layer of a conductivity type opposite to that of the substrate is provided on a surface of the semiconductor substrate below a connection contact between the word line and the conductive layer, and the word line is connected to the conductive layer under the connection contact. A semiconductor memory device characterized by having a structure connected to an impurity layer.
JP1087527A 1989-04-05 1989-04-05 Semiconductor memory device Pending JPH02265271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087527A JPH02265271A (en) 1989-04-05 1989-04-05 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087527A JPH02265271A (en) 1989-04-05 1989-04-05 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH02265271A true JPH02265271A (en) 1990-10-30

Family

ID=13917470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087527A Pending JPH02265271A (en) 1989-04-05 1989-04-05 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH02265271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525823A (en) * 2015-08-28 2018-09-06 マイクロン テクノロジー, インク. Semiconductor device including conductive wire, and method of manufacturing semiconductor device including conductive wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525823A (en) * 2015-08-28 2018-09-06 マイクロン テクノロジー, インク. Semiconductor device including conductive wire, and method of manufacturing semiconductor device including conductive wire
US10388601B2 (en) 2015-08-28 2019-08-20 Micron Technology, Inc. Semiconductor devices including conductive lines and methods of forming the semiconductor devices
US10811355B2 (en) 2015-08-28 2020-10-20 Micron Technology, Inc. Methods of forming semiconductor devices

Similar Documents

Publication Publication Date Title
US7132717B2 (en) Power metal oxide semiconductor transistor layout with lower output resistance and high current limit
US10199497B2 (en) Semiconductor devices including vertical channel transistors
US6380023B2 (en) Methods of forming contacts, methods of contacting lines, methods of operating integrated circuitry, and integrated circuits
KR850005173A (en) Semiconductor device and manufacturing method thereof
KR0182777B1 (en) Semiconductor integrated circuit device
US6673674B2 (en) Method of manufacturing a semiconductor device having a T-shaped floating gate
EP0282705A2 (en) FET structure arrangement having low on resistance
JPS6173366A (en) Semiconductor device
US5149664A (en) Self-aligning ion-implantation method for semiconductor device having multi-gate type MOS transistor structure
US5592026A (en) Integrated structure pad assembly for lead bonding
JP2690242B2 (en) Semiconductor fixed storage device
JP3070099B2 (en) Static RAM
JPH0279462A (en) Semiconductor memory
EP0234741B1 (en) Semiconductor memory device
JPH02265271A (en) Semiconductor memory device
JP3098786B2 (en) Semiconductor integrated circuit device
JPH0691212B2 (en) Semiconductor memory
JPH11214511A (en) Semiconductor device and wiring method in semiconductor device
JP2825039B2 (en) Semiconductor storage device
US8330230B2 (en) Semiconductor device pad having the same voltage level as that of a semiconductor substrate
JPH0590539A (en) Semiconductor storage device
JPS6041464B2 (en) memory cell
JPH0851145A (en) Semiconductor device and manufacture thereof
JPH05190801A (en) Semiconductor storage device
JPS62165359A (en) Semiconductor integrated circuit device