JPH02263775A - Production of inorganic expanded material - Google Patents

Production of inorganic expanded material

Info

Publication number
JPH02263775A
JPH02263775A JP8598989A JP8598989A JPH02263775A JP H02263775 A JPH02263775 A JP H02263775A JP 8598989 A JP8598989 A JP 8598989A JP 8598989 A JP8598989 A JP 8598989A JP H02263775 A JPH02263775 A JP H02263775A
Authority
JP
Japan
Prior art keywords
silicate
water
manufacturing
foamable
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8598989A
Other languages
Japanese (ja)
Other versions
JPH0637336B2 (en
Inventor
Hideo Hayashi
英雄 林
Takaaki Sakai
酒井 貴明
Shigemi Kohama
湖浜 重実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1085989A priority Critical patent/JPH0637336B2/en
Publication of JPH02263775A publication Critical patent/JPH02263775A/en
Publication of JPH0637336B2 publication Critical patent/JPH0637336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals

Abstract

PURPOSE:To enhance heat insulating properties and waterproof properties by drying the mixed slurry of water soluble alkali silicate and a specified curing agent, and then blending the obtained expandable hydrated silicate with organic silicon compd. and heating the mixture to allow it to react with each other and foaming it. CONSTITUTION:A curing agent such as MgO, CaO and B2O3 of 2 to 20wt.% (hereinafter %) for solid alkali silicate is mixed with the aq. soln. of alkali silicate wherein the molar ratio of SiO2/R2O (R is alkali metal) is 1.0 to 5.0 and one part is substituted with hydrated powdery alkali silicate. Water is added to this mixture and solid contents are regulated to 30 to 75%. This slurry is stretched to about 0.5 to 5mm thickness and heated at <=150 deg.C until water content is regulated to 0.5 to 30% and dried to obtain expandable hydrated silicate composition. This is ground and preliminarily expanded at 40 to 95% of maximum degree of expansion. Thereafter, 1 to 20% organic silicon compd. such as polyether silicone is added and in accordance with necessity an inorganic hollow body and an aqueous binder such as sodium methasilicate are blended. An expanded material is obtained by high-frequency heating of 10 to 100MHz wavelength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は建築材料として好適な発泡体に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a foam suitable as a building material.

更に詳しくはけい酸アルカリを有効成分とし、撥水性、
防水性を有する断熱材、保温材として好適な無機質発泡
体を製造する方法に関するものである。
In more detail, the active ingredient is alkali silicate, which has water repellency,
The present invention relates to a method for producing an inorganic foam suitable as a waterproof heat insulating material or heat retaining material.

〔従来の技術と解決すべき課題〕[Conventional technology and issues to be solved]

従来、建築用材料としては主としてロックウール、グラ
スウール等の繊維系、ポリエチレン、ポリウレタン等の
プラスチック発泡体、泡ガラス等の無機質発泡体の3種
類が知られている。
Conventionally, three types of building materials are known: fiber-based materials such as rock wool and glass wool, plastic foams such as polyethylene and polyurethane, and inorganic foams such as foam glass.

この中でプラスチック発泡体は安価、低比重。Among these, plastic foam is inexpensive and has low specific gravity.

熱伝導率が低い、加工性が良いなど性能面で優れている
が、火災時には容易に燃焼し、多量の有害ガス、煙及び
熱を発生するという防火上重大な欠陥を有している。
Although it has excellent performance such as low thermal conductivity and good workability, it has a serious fire prevention defect in that it burns easily in the event of a fire and generates a large amount of harmful gas, smoke, and heat.

また繊維系断熱材や無機質発泡体は不燃性であるが、吸
水性と熱伝導率が共に大きいという欠点がある。
Furthermore, although fiber-based heat insulating materials and inorganic foams are nonflammable, they have the disadvantage of high water absorption and high thermal conductivity.

特に水可溶性けい酸塩を原料とした無機質発泡体を安価
に供給することができるが、一般に耐水性が悪く、空気
中の炭酸ガスに接触すると変質し易い欠点がある。
In particular, inorganic foams made from water-soluble silicates can be supplied at low cost, but they generally have poor water resistance and are susceptible to deterioration when exposed to carbon dioxide gas in the air.

また撥水性の無機質軽量発泡体としては液状の変性けい
酸アルカリに、特定のアルコキシオルガノシラン類を少
量反応させてそのまま加熱発泡させる製法が知られてい
るが(特開昭55−472638公報)、断熱性、防水
性の点では未だ十分ではない。
In addition, as for water-repellent inorganic lightweight foam, a manufacturing method is known in which liquid modified alkali silicate is reacted with a small amount of specific alkoxyorganosilanes and then heated and foamed (Japanese Patent Laid-Open Publication No. 55-472638). It is still not sufficient in terms of insulation and waterproofness.

本発明者らは先に水可溶性けい酸塩の耐水性を向上させ
た無機質発泡体を見出したが(特開昭63−24297
7号公報)、長期間水に浸漬すると含水による強度低下
及び断熱性の点で未だ十分ではない。
The present inventors previously discovered an inorganic foam with improved water resistance of water-soluble silicate (Japanese Patent Laid-Open No. 63-24297
(No. 7), it is still unsatisfactory in terms of strength reduction due to water content and heat insulation properties when immersed in water for a long period of time.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明の目的は以上のような問題点を解決し防水性の高
い不燃性の無機質発泡体を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a highly waterproof and nonflammable inorganic foam.

本発明者らは鋭意検討の結果、水可溶性けい酸アルカリ
と硬化剤の混合スラリーを150℃以下にて乾燥した含
水率5〜30重量%の発泡性含水けい酸塩に、反応性の
有機ケイ素化合物を配合させた混合物より得られた無機
質発泡体が高い断熱性と撥水性、防水性を兼備すること
を見出し、本発明を完成したものである。すなわら本発
明は、a)水溶性けい酸アルカ1九 b)多価金属の酸化物、塩化物2硫酸塩、チオ硫酸塩、
亜硫酸塩、硝駿塩、水酸化物、リン酸塩。
As a result of extensive studies, the present inventors have found that a mixed slurry of a water-soluble alkali silicate and a curing agent is dried at 150°C or less to form a foamable hydrous silicate with a water content of 5 to 30% by weight, and a reactive organosilicon. The present invention was completed by discovering that an inorganic foam obtained from a mixture of compounds has high heat insulation properties, water repellency, and waterproof properties. That is, the present invention provides a) water-soluble alkali silicate b) polyvalent metal oxide, chloride disulfate, thiosulfate,
Sulfites, nitrates, hydroxides, phosphates.

縮合リン酸塩、ホウ酸、アルカリ金属ホウ酸塩。Condensed phosphates, boric acid, alkali metal borates.

ポルトランドセメント、アルミナセメン(・より選ばれ
た1種又は2種以上からなる硬化剤2以上a)b)の混
合スラリーを150°C以下にて乾燥した含水率5〜3
0重量%の発泡性含水けい酸塩に有機けい素化合物を配
合し加熱2反応1発泡させることを特徴とする無機質発
泡体の製法である。
A mixed slurry of portland cement, alumina cement (and two or more curing agents consisting of one or more selected from a) b) with a moisture content of 5 to 3, dried at 150°C or less
This is a method for producing an inorganic foam characterized by blending an organic silicon compound with 0% by weight of a foamable hydrous silicate and carrying out two heating reactions and one foaming process.

けい酸アルカリのうちリチウム塩は発泡性が小さくナト
リウム塩、カリウム塩が好ましい。またSiO2/Rz
O(Rはアルカリ金属)のモル比は1.0〜5.0の範
囲が好ましい。
Among alkali silicates, lithium salts have low foaming properties, and sodium salts and potassium salts are preferred. Also, SiO2/Rz
The molar ratio of O (R is an alkali metal) is preferably in the range of 1.0 to 5.0.

本発明において水可溶性けい酸アルカリとは水溶液状け
い酸アルカリのほか含水性粉末けい駿アルカリを指し、
上記水溶液の少くとも一部をこのような粉末けい酸アル
カリrニー置換することが好ましい。この含水性粉末1
プい酸アルカリはけい酸アルカリ水溶液を噴霧乾燥する
ことにより含水率20重量%前後のものが市販されてお
り水に容易に溶解する。後述する硬化剤との混合後の(
ブい酸アルカリ組成物のスラリーの含水率を調節し、発
泡性含水組成物を得るための乾燥工程において水の蒸発
量を減少させるために水)8液と粉末との混合v1合を
適宜定めることができる。
In the present invention, the water-soluble alkali silicate refers to an aqueous alkali silicate as well as a water-containing powder alkali silicate.
It is preferable to replace at least a portion of the aqueous solution with such a powdered alkali silicate. This water-containing powder 1
Alkali pyroic acid is commercially available with a water content of about 20% by weight by spray-drying an aqueous alkali silicate solution, and is easily dissolved in water. After mixing with the curing agent described below (
In order to adjust the water content of the slurry of the butyric acid alkali composition and reduce the amount of water evaporation in the drying process to obtain a foamable water-containing composition, the mixing v1 of water) 8 liquid and powder is determined as appropriate. be able to.

本発明に用いる硬化剤は、多価金属の酸化物。The curing agent used in the present invention is a polyvalent metal oxide.

塩化物、硫酸塩、チオ硫酸塩、亜tl酸塩、硝酸塩。Chloride, sulfate, thiosulfate, tlrite, nitrate.

水酸化物、リン酸塩、縮合リン酸塩、ホウ酸、アルカリ
金属ホウ酸塩、ポルトランドセメント、アルミナセメン
トの1種又は2種以りの組合せが使用される。多価金属
としてはマグネシウム、カルシウム、ストロンチウム、
バリウムの2価金属、ホウ素、アルミニウムの3価金属
、鉄、コバルト。
One or a combination of two or more of hydroxide, phosphate, condensed phosphate, boric acid, alkali metal borate, Portland cement, and alumina cement is used. Polyvalent metals include magnesium, calcium, strontium,
Divalent metals such as barium, boron, trivalent metals such as aluminum, iron, and cobalt.

ニッケル、銅、亜鉛等の遷移金属が挙げられる。Examples include transition metals such as nickel, copper, and zinc.

特に酸化マグネシウム、酸化ホウ素、酸化カルシウム、
ホウ酸等が有効である。
Especially magnesium oxide, boron oxide, calcium oxide,
Boric acid etc. are effective.

硬化剤の添加量は硬化剤の硬化作用力にも依存するが、
けい醒アルカリの固形分に対して2〜20重量%、好ま
しくは2〜15重量%が適当である。
The amount of curing agent added depends on the curing force of the curing agent,
A suitable amount is 2 to 20% by weight, preferably 2 to 15% by weight, based on the solid content of the calcified alkali.

上記範囲を超えると発泡性が低下し、逆に少い場合は耐
水性が悪くなる。
If it exceeds the above range, the foamability will decrease, and if it is less, the water resistance will deteriorate.

上記けい酸アルカリと硬化剤との混合物はその固形分含
量が30〜75重ω%となるように水分を調節してスラ
リーとなし均一になるまで混合する。
The mixture of the alkali silicate and curing agent is mixed to form a slurry by adjusting the water content so that the solid content is 30 to 75% by wt.

固形分含量が30重重量未満であれば次の乾燥工程にお
いて蒸発水分が多く、エネルギー消費量が大きくなり、
75重重量を超えれば混合し難く不均一になりやすい。
If the solid content is less than 30% by weight, there will be a lot of evaporated moisture in the next drying process, resulting in a large amount of energy consumption.
If the weight exceeds 75 weight, it is difficult to mix and the mixture tends to become non-uniform.

このようなスラリーの混合は高速デイスパー、サンドミ
ル、ニーダ−等の混合機が適当である。均一になったス
ラリーは厚さ0.5〜5mm程度に延伸し、150℃以
下、具体的には60〜150℃で含水率が5〜30重量
%、好ましくは10〜20重量%になるまで加熱乾燥し
て発泡性含水けい酸塩組成物を得ることができる。
A mixer such as a high-speed disper, sand mill, or kneader is suitable for mixing such slurry. The homogeneous slurry is stretched to a thickness of about 0.5 to 5 mm and heated at 150°C or lower, specifically 60 to 150°C, until the water content reaches 5 to 30% by weight, preferably 10 to 20% by weight. A foamable hydrous silicate composition can be obtained by heating and drying.

乾燥温度が150℃を超えると乾燥中にけい酸塩組成物
が発泡し、目的とする組成物が得られず、60℃未満で
は乾燥が遅く、含水率を30重量%以下にすることは困
難である。
If the drying temperature exceeds 150°C, the silicate composition will foam during drying, making it impossible to obtain the desired composition, while if the drying temperature is below 60°C, drying will be slow and it will be difficult to reduce the water content to 30% by weight or less. It is.

含水率が5重量%未満では発泡倍率が小ざく、30重量
%を超えると粘着性が強く保存中にブロッキングを生ず
るため好ましくない。
If the water content is less than 5% by weight, the foaming ratio will be low, and if it exceeds 30% by weight, it will be undesirably sticky and cause blocking during storage.

このようにして得られた発泡性含水Cプい酸塩は使用目
的に応じた粒径に粉砕分級して用いられる。
The thus obtained foamable hydrated C-phosphate is used after being crushed and classified into particle sizes depending on the purpose of use.

このような発泡性含水けい酸塩に配合する有機けい素化
合物としては有機けい素重合体が好ましく、例えばメチ
ルハイドロジエンポリシロキサン。
The organosilicon compound to be added to such a foamable hydrous silicate is preferably an organosilicon polymer, such as methylhydrodiene polysiloxane.

ポリエーテルシリコーン、メチルフェニルシリコーン等
が適当である。
Polyether silicone, methylphenyl silicone, etc. are suitable.

有機化合物の配合量は発泡性含水けい酸塩に対して1〜
20重量%が好ましく、5〜10重量%がより一層好ま
しい。上記範囲未満の場合は溌水性。
The amount of organic compound to be added is 1 to 1 per foamable hydrous silicate.
20% by weight is preferred, and 5-10% by weight is even more preferred. If it is less than the above range, it is water repellent.

防水性が劣化しこの範囲を超える場合は加熱発泡後に未
結合の有機けい素化合物が発泡体の表面及び断面に残存
し断熱効果を減少する。
If the waterproof property deteriorates and exceeds this range, unbonded organosilicon compounds will remain on the surface and cross section of the foam after heating and foaming, reducing the heat insulating effect.

また、より均一な発泡体を得るために、有機けい素化合
物を配合する前に発泡性含水けいM塩を最大発泡率の9
5%以下に予め発泡させておくことが好ましい。この予
備発泡は最大発泡率の40〜95%が適当であり、95
%を超えると発泡成型時にけい酸塩相互の融着か弱く、
得られた最終発泡体の機械的強度が小さい。また40%
未満では均一な発泡体が得られない。
In addition, in order to obtain a more uniform foam, before blending the organosilicon compound, foaming hydrous silica M salt was added to the maximum foaming rate of 9.
It is preferable to foam the foam to 5% or less in advance. The appropriate pre-foaming is 40 to 95% of the maximum foaming rate;
If it exceeds %, the silicates will have weak adhesion during foam molding.
The mechanical strength of the final foam obtained is low. 40% again
If it is less than that, a uniform foam cannot be obtained.

また発泡性含水けい酸塩にセラミックバルーン。Ceramic balloons are also made of foamable hydrous silicate.

ガラス質バルーン、カーボンバルーン等の無機質中空体
を骨材として混合してもよい。セラミックバル−ンには
アルミナバルーン、アルミナシリカ複合バルーン、ガラ
ス質バルーンにはガラスバルーン、シラスバルーン、セ
ノスフエア、パーライト、バーミキュライト等が挙げら
れる。
Inorganic hollow bodies such as glass balloons and carbon balloons may be mixed as aggregates. Examples of ceramic balloons include alumina balloons and alumina-silica composite balloons, and examples of vitreous balloons include glass balloons, glass balloons, cenospheres, pearlite, and vermiculite.

含水けい酸塩と無機質中空体との混合を均一にするため
、ごく少量の水を添加しまた必要な場合は水系バインダ
ーを添加して混合し、無機質中空体の表面に発泡性含水
けい酸塩を均一に付着させることが肝要である。このた
め発泡性含水けい酸塩の粒径は無機質中空体の粒径より
小ざい方が好ましく、具体的には1/2以下が好ましい
In order to uniformly mix the hydrated silicate and the inorganic hollow body, a very small amount of water is added and, if necessary, an aqueous binder is added and mixed, and the foamable hydrated silicate is coated on the surface of the inorganic hollow body. It is important to apply it evenly. For this reason, the particle size of the expandable hydrous silicate is preferably smaller than the particle size of the inorganic hollow body, specifically preferably 1/2 or less.

水系バインダーとしてはメタけい酸ソーダ、コロイダル
シリカ、メタリン酸ソーダ、メタリン酸リチウム、グリ
セリン、ポリビニルアルコール。
Examples of water-based binders include sodium metasilicate, colloidal silica, sodium metaphosphate, lithium metaphosphate, glycerin, and polyvinyl alcohol.

ポリエチレングリコール等が挙げられ、その使用量は配
合水量に対して1〜10重量%好ましくは3〜5重量%
程度である。
Examples include polyethylene glycol, and the amount used is 1 to 10% by weight, preferably 3 to 5% by weight based on the amount of water blended.
That's about it.

この他、補強材として耐アルカリ性ガラスファイバー、
チタン酸カリウィスカー、アスベスト。
In addition, alkali-resistant glass fiber is used as a reinforcing material.
Potassium titanate whiskers, asbestos.

アラミド等の繊維状物質を含有させることができる。配
合量は発泡性含水けい酸塩に対して1〜30容量%好ま
しくは3〜10容量%程度である。
A fibrous material such as aramid can be included. The blending amount is about 1 to 30% by volume, preferably about 3 to 10% by volume, based on the expandable hydrous silicate.

このように有機けい素化合物を配合し要すれば上記骨材
、補強材等を配合した発泡性含水けい酸塩組成物を加熱
1反応発泡させるには成型用型枠に充h1シ外部加熱方
式により400〜600℃にて加熱してもよいが、高周
波加熱が好ましい。
In order to foam the foamable hydrous silicate composition containing the organosilicon compound and, if necessary, the above-mentioned aggregates, reinforcing materials, etc., into a mold for one heating reaction, an external heating method is used. Although heating may be performed at 400 to 600° C., high frequency heating is preferred.

すなわち赤外線ヒーター、バーナー、電熱ヒーター等の
外部加熱方式では外側より発泡が始まり、この発泡層の
断熱性により内部の加熱が阻害されるため長時間の加熱
時間が必要であり、また均一な発泡体は得られ難い。こ
れに対して高周波加熱方式では内部加熱で均一な発泡体
を短時間で得ることができる。外部加熱方式と併用すれ
ば処理時間が更に短縮できる。用いられる高周波の波長
は10〜100M HZが好ましい。上記範囲未満では
加熱効果が小さく処理時間が長くなり、上記範囲を超え
ると発泡が不均一になりやすく、また部分的に過熱のた
め発泡性含水けい酸塩の溶融等も起りやすい。この範囲
の高周波を用いれば400℃外部加熱方式の1/10以
下の処理時間で発泡体を得ることができる。
In other words, with external heating methods such as infrared heaters, burners, and electric heaters, foaming starts from the outside, and the heat insulating properties of this foam layer inhibit internal heating, requiring a long heating time. is difficult to obtain. On the other hand, in the high frequency heating method, a uniform foam can be obtained in a short time by internal heating. If used in combination with an external heating method, the processing time can be further shortened. The wavelength of the high frequency used is preferably 10 to 100 MHz. If it is less than the above range, the heating effect will be small and the treatment time will be long; if it exceeds the above range, foaming will tend to be non-uniform and melting of the expandable hydrous silicate will likely occur due to partial overheating. If a high frequency in this range is used, a foam can be obtained in a processing time less than 1/10 of the 400° C. external heating method.

以下実施例、比較例により本発明を説明する。The present invention will be explained below with reference to Examples and Comparative Examples.

なお組成は特記なき限りすべて重量栄位でおる。All compositions are expressed in weight units unless otherwise specified.

実施例1 けい酸カリウム水溶液       100部(S i
 0220%、 K2010%、水70%)粉末(プい
酸ナトリウム        100部(S ! 02
55%、Na2025%、水20%)酸化ホウ素   
           5部上記3者を高速デイスパー
により撹拌混合して均一なスラリーとし、厚さ4mmに
延伸後、95℃。
Example 1 Potassium silicate aqueous solution 100 parts (S i
0220%, K2010%, water 70%) powder (sodium phosphate 100 parts (S!02)
55%, Na2025%, water 20%) boron oxide
5 parts The above three components were stirred and mixed using a high-speed disperser to form a uniform slurry, which was stretched to a thickness of 4 mm at 95°C.

96時間乾燥させた。これを粉砕し、10−60メツシ
ユに分級された発泡性含水けい酸塩(含水率20%)を
得る。さらに150〜170°C130分間加熱して約
10〜20倍に予備発泡させる。次いで上記発泡含水け
い酸塩       300部5%メタけい酸ソーダ水
溶液    210部メチルハイドロジエンポリシロキ
サン 20部上記3者を混合攪拌し均−状にして深さ2
5mm。
It was dried for 96 hours. This is pulverized to obtain expandable hydrous silicate (water content 20%) classified into 10-60 meshes. The mixture is further heated at 150-170°C for 130 minutes to pre-foam about 10-20 times. Next, 300 parts of the above foamed hydrated silicate, 210 parts of 5% aqueous sodium metasilicate solution, 20 parts of methylhydrodiene polysiloxane, were mixed and stirred to form a uniform mixture to a depth of 2.
5mm.

300x 300mmの耐熱性樹脂型枠に入れ40MH
2(3kW)の高周波加熱装着を用いて発泡成型させた
。その結果を第2表に示す。
40MH in a 300x 300mm heat-resistant resin mold
Foam molding was performed using a high frequency heating device of 2 (3 kW). The results are shown in Table 2.

実施例2 実施例1の酸化ホウ素をヨウ素吸着HA 150mg・
1/(1・MCl0の酸化マグネシウム10部に置き換
えた以外は実施例1と同様にして発泡体を得た。
Example 2 Iodine adsorption of boron oxide from Example 1 HA 150mg
A foam was obtained in the same manner as in Example 1 except that 10 parts of magnesium oxide of 1/(1.MC10) was used.

その結果を第2表に示す。The results are shown in Table 2.

実施例3 実施例1のメチルハイドロジエンポリシロキサンをメチ
ルフェニルシリコーン20部に置き換えた以外は実施例
1と同様にり、て発泡体を得た。その結果を第2表に示
す。
Example 3 A foam was obtained in the same manner as in Example 1 except that 20 parts of methylphenyl silicone was used in place of the methylhydrodiene polysiloxane in Example 1. The results are shown in Table 2.

実施例4 実施例1で得られた発泡性含水けい酸塩を150〜17
0°C130分間加熱して予備発泡させ、次いで上記発
泡含水けい酸塩       150部パーライト(か
さ比重0.12粒径i、5mm>150部 5%メタけい酸ソーダ水溶液    200部メチルハ
イドロジエンポリシロキサン 20部上記4者を混合後
間−型枠に入れ、40MH2(3kw)の高周波加熱に
より発泡体を得た。その結果を第2表に示す。
Example 4 The foamable hydrous silicate obtained in Example 1 was 150 to 17
Pre-foam by heating at 0°C for 130 minutes, then 150 parts of the above expanded hydrous silicate perlite (bulk specific gravity 0.12 particle size i, 5 mm > 150 parts 5% aqueous sodium metasilicate solution 200 parts methylhydrodiene polysiloxane 20 After mixing the above four materials, they were placed in a mold and subjected to high frequency heating at 40MH2 (3kw) to obtain a foam.The results are shown in Table 2.

比較例1 実施例1と同じ配合で得られた発泡性含水けい酸塩を1
50〜170℃、 30分間加熱して予備発泡させ、次
いでこの発泡含水けい酸塩300部と水200部とを混
合後間−型枠に入れ、40Mt−I Z、 (3kw)
の高周波加熱により発泡体を1qだ。その結果を第2表
に示す。
Comparative Example 1 1 foamable hydrous silicate obtained with the same formulation as Example 1
Pre-foam by heating at 50-170°C for 30 minutes, then mix 300 parts of this foamed hydrated silicate and 200 parts of water and put it into a mold to form a 40Mt-IZ (3kw).
The foam is heated to 1q by high-frequency heating. The results are shown in Table 2.

比較例2 実施例2と同じ配合で1qられた発泡性含水げい酸塩を
150〜170℃、 30分間加熱して予備発泡させた
後、この発泡含水けい酸塩300部と水200部とを混
合後間−型枠に入れ、40M+−12(3kW)の高周
波加熱により発泡体を得た。その結果を第2表に示す。
Comparative Example 2 After pre-foaming 1 q of foamable hydrated silicate prepared in the same formulation as in Example 2 at 150-170°C for 30 minutes, 300 parts of this foamed hydrated silicate and 200 parts of water were added. After mixing, the mixture was placed in a mold and a foam was obtained by high-frequency heating at 40M+-12 (3kW). The results are shown in Table 2.

第1表 第 表 (物性試験) 1、かさ比重   JIs−A−9511,7−1項に
準ず2、発泡均一性   断熱板及び切断面について目
視判定3、熱伝導率  JIs−A−9511,7−2
項に準ず4、曲げ強度  JIS−A−9511,7−
3項に準ず5、吸 水 率  J[8−A−9511,
7−5項に準ず6、吸水後の熱伝導率   上記3と同
じ(発明の作用) 1、本発明においてけい酸アルカリと硬化剤とより得ら
れる発泡性含水けい酸塩は液状あるいはスラリー状でな
く、粒状あるいは粉末にして用いられるが、これは液状
、スラリー状では有機けい素化合物を配合して加熱発泡
させる際、鶏立気泡率が非常に低くなり断熱性が小さい
ためである。
Table 1 Table (Physical property test) 1. Bulk specific gravity According to JIs-A-9511, Section 7-1 2. Foaming uniformity Visual judgment of insulation board and cut surface 3. Thermal conductivity JIs-A-9511,7 -2
According to section 4, bending strength JIS-A-9511, 7-
5, water absorption rate J [8-A-9511,
According to Section 7-5 6. Thermal conductivity after water absorption Same as 3 above (effect of the invention) 1. In the present invention, the expandable hydrous silicate obtained from an alkali silicate and a hardening agent is in the form of a liquid or slurry. Instead, it is used in the form of granules or powder, because when it is in liquid or slurry form, when an organosilicon compound is blended and heated and foamed, the bubble rate becomes very low, resulting in poor insulation properties.

2、本発明に使用される有機けい素化合物は、発泡性含
水けい酸塩に含まれる水、アルカリ分及び熱により、け
い酸塩と強固なイヒ学結合を形成するため撥水性、防水
性が長時間維持発揮される。反応の概要は下記のごとく
である。
2. The organosilicon compound used in the present invention has water repellency and waterproof properties because it forms a strong chemical bond with the silicate due to the water, alkaline content, and heat contained in the foamable hydrated silicate. It can be maintained for a long time. The outline of the reaction is as follows.

(i)メチルハイドロジエンポリシロキサン以上第2表
に示されるごとく本発明法による無改質発泡体は有機け
い素化合物を反応させない比較例発泡体に比べ、吸水率
1曲げ強度において顕著な向上が認められる。
(i) Methyl hydrodiene polysiloxane As shown in Table 2, the unmodified foam produced by the method of the present invention has a remarkable improvement in water absorption ratio 1 bending strength compared to the comparative foam in which no organosilicon compound is reacted. Is recognized.

H3 H (ii″)メチルフェニルシリコーン (発明の効果〕 本発明によれば固形状の発泡性含水けい酸塩に有機けい
素化合物、特にその重合体を加熱反応させることにより
、高い断熱性と防水性の改良された無機質発泡体を得る
ことができる。この発泡成型体は断熱材として広い範囲
の用途を持ち、不燃性建材、各種の保温、保冷材として
有用である。
H3 H (ii'') Methylphenyl silicone (Effects of the invention) According to the present invention, by heating and reacting solid foamable hydrated silicate with an organosilicon compound, especially its polymer, high heat insulation and waterproof properties can be achieved. An inorganic foam with improved properties can be obtained.This foam molded product has a wide range of uses as a heat insulating material, and is useful as a noncombustible building material and various heat and cold insulation materials.

Claims (8)

【特許請求の範囲】[Claims] (1)a)水溶性けい酸アルカリ、 b)多価金属の酸化物、塩化物、硫酸塩、チオ硫酸塩、
亜硫酸塩、硝酸塩、水酸化物、リン酸塩、縮合リン酸塩
、ホウ酸、アルカリ金属ホウ酸塩、ポルトランドセメン
ト、アルミナセメントより選ばれた1種又は2種以上の
硬化剤、 以上a)b)の混合スラリーを、150℃以下に乾燥し
て得られた含水率5〜30重量%の発泡性含水けい酸塩
に、有機けい素化合物を配合し、加熱、反応、発泡させ
ることを特徴とする無機質発泡体の製法。
(1) a) water-soluble alkali silicate, b) polyvalent metal oxide, chloride, sulfate, thiosulfate,
One or more hardening agents selected from sulfites, nitrates, hydroxides, phosphates, condensed phosphates, boric acid, alkali metal borates, Portland cement, and alumina cement; ) is dried to 150°C or below, and an organic silicon compound is blended into the foamable hydrated silicate with a moisture content of 5 to 30% by weight, and the mixture is heated, reacted, and foamed. A manufacturing method for inorganic foam.
(2)有機けい素化合物が有機けい素重合体である請求
項1に記載の製法。
(2) The method according to claim 1, wherein the organosilicon compound is an organosilicon polymer.
(3)有機けい素重合体がメチルハイドロジエンポリシ
ロキサン、ポリエーテルシリコーン、メチルフェニルシ
リコーンより選ばれた1種又は2種以上である請求項2
に記載の製法。
(3) Claim 2 in which the organosilicon polymer is one or more selected from methylhydrodiene polysiloxane, polyether silicone, and methylphenyl silicone.
The manufacturing method described in.
(4)発泡性含水けい酸塩に有機けい素化合物を配合す
る前に、発泡性含水けい酸塩を最大発泡率の95%以下
に加熱、発泡させる請求項1又は2のいずれかに記載の
製法。
(4) The method according to claim 1 or 2, wherein the foamable hydrous silicate is heated and foamed to a maximum foaming rate of 95% or less before blending the organosilicon compound into the foamable hydrous silicate. Manufacturing method.
(5)発泡性含水けい酸塩に無機質中空体を配合する請
求項1、2、4のいずれかに記載の製法。
(5) The method according to any one of claims 1, 2, and 4, wherein an inorganic hollow body is blended into the expandable hydrous silicate.
(6)加熱方式が波長10〜100MHzの高周波加熱
である請求項1、2、4、5のいずれかに記載の製法。
(6) The manufacturing method according to any one of claims 1, 2, 4, and 5, wherein the heating method is high frequency heating with a wavelength of 10 to 100 MHz.
(7)硬化剤が酸化カルシウム、酸化マグネシウム、酸
化ホウ素、ホウ酸より選ばれた1種又は2種以上である
請求項1、2、4〜6のいずれかに記載の製法。
(7) The method according to any one of claims 1, 2, and 4 to 6, wherein the curing agent is one or more selected from calcium oxide, magnesium oxide, boron oxide, and boric acid.
(8)結合材として無機質バインダーの水溶液又は水分
散液を配合する請求項1、2、4〜7のいずれかに記載
の製法。
(8) The manufacturing method according to any one of claims 1, 2, 4 to 7, wherein an aqueous solution or aqueous dispersion of an inorganic binder is blended as the binding material.
JP1085989A 1989-04-04 1989-04-04 Manufacturing method of inorganic foam Expired - Lifetime JPH0637336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1085989A JPH0637336B2 (en) 1989-04-04 1989-04-04 Manufacturing method of inorganic foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1085989A JPH0637336B2 (en) 1989-04-04 1989-04-04 Manufacturing method of inorganic foam

Publications (2)

Publication Number Publication Date
JPH02263775A true JPH02263775A (en) 1990-10-26
JPH0637336B2 JPH0637336B2 (en) 1994-05-18

Family

ID=13874087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1085989A Expired - Lifetime JPH0637336B2 (en) 1989-04-04 1989-04-04 Manufacturing method of inorganic foam

Country Status (1)

Country Link
JP (1) JPH0637336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1095719A2 (en) * 1999-10-26 2001-05-02 VAW Aluminium AG Binder, core sand and process for their production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106007789A (en) * 2016-05-06 2016-10-12 陈昌 Light foaming heat preservation building material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372033A (en) * 1976-12-09 1978-06-27 Nippon Keikinzoku Sougou Kenki Manufacture of foamed alkali silicate
JPS5547263A (en) * 1978-09-27 1980-04-03 Asahi Dow Ltd Waterrrepellent inorganic lightweight foamed body and its manufacture
JPS63242977A (en) * 1987-03-30 1988-10-07 ダイソー株式会社 Manufacture of inorganic foamed body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372033A (en) * 1976-12-09 1978-06-27 Nippon Keikinzoku Sougou Kenki Manufacture of foamed alkali silicate
JPS5547263A (en) * 1978-09-27 1980-04-03 Asahi Dow Ltd Waterrrepellent inorganic lightweight foamed body and its manufacture
JPS63242977A (en) * 1987-03-30 1988-10-07 ダイソー株式会社 Manufacture of inorganic foamed body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1095719A2 (en) * 1999-10-26 2001-05-02 VAW Aluminium AG Binder, core sand and process for their production
EP1095719A3 (en) * 1999-10-26 2001-06-20 VAW Aluminium AG Binder, core sand and process for their production
WO2001030517A3 (en) * 1999-10-26 2001-12-27 Vaw Ver Aluminium Werke Ag Binding agent system, core sand mixture and a method for producing the same
US7022178B1 (en) 1999-10-26 2006-04-04 Hydro Aluminium Deutschland Gmbh Binding agent, core sand mixture and a method for producing the same
CZ297087B6 (en) * 1999-10-26 2006-09-13 Vaw Aluminium Ag Water glass-based binding agent system, core sand mixture and process for producing such core sand mixture

Also Published As

Publication number Publication date
JPH0637336B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US5631097A (en) Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture
US4174230A (en) Gypsum compositions
US4030939A (en) Cement composition
KR101603669B1 (en) Mortar and method for fabricating thereof
JP2010532299A (en) Foamed ceramic having excellent heat insulating effect and soundproofing effect and method for producing the same
JPS6357377B2 (en)
KR100853754B1 (en) The refractory material of high strength for construction and the making method thereof
CN106082884B (en) A kind of insulating light wall slab and preparation process containing solid waste cinder
EP1339653B1 (en) Lightweight, heat insulating, high mechanical strength shaped product and method of producing the same
JP2000159581A (en) Production of aluminosilicate slurry and inorganic cured product
JPH02263775A (en) Production of inorganic expanded material
JP2000178065A (en) Hardenable inorganic composition and production of inorganic molding
KR101223679B1 (en) Alumino silicate type lightweight aerated concrete composition and process for concrete goods using the same
JP2572589B2 (en) Manufacturing method of inorganic foam
JPH0454634B2 (en)
JP2881511B2 (en) Composition for inorganic foam
KR102326873B1 (en) Porous ceramic insulation material using waste aluminum dross powder and method for manufacturing same
JPH0761876A (en) Production of inorganic hardened material
KR102424989B1 (en) Method for manufacturing non-combustible building panel using expanded perlite
JPH08165175A (en) Foamable inorganic composition
JPH0355431B2 (en)
JP2002234011A (en) Core material for metal sandwich panel, and its manufacturing method
JPS6177684A (en) Manufacture of inorganic foamed moldings
JPH03122068A (en) Heat insullating material with excellent inflammability, water resistance and sound absoebing qualities and preparation thereof
JP2001181018A (en) Inorganic hardened body and method for producing the same