JPH02263768A - Production of orientative short fiber-reinforcing composite body - Google Patents

Production of orientative short fiber-reinforcing composite body

Info

Publication number
JPH02263768A
JPH02263768A JP1084650A JP8465089A JPH02263768A JP H02263768 A JPH02263768 A JP H02263768A JP 1084650 A JP1084650 A JP 1084650A JP 8465089 A JP8465089 A JP 8465089A JP H02263768 A JPH02263768 A JP H02263768A
Authority
JP
Japan
Prior art keywords
molded body
base material
raw material
short fiber
intermediate molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1084650A
Other languages
Japanese (ja)
Other versions
JP2620366B2 (en
Inventor
Kaoru Umeya
薫 梅屋
Tadashi Sasa
佐々 正
Hisahiko Fukase
久彦 深瀬
Takashi Sugita
杉田 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1084650A priority Critical patent/JP2620366B2/en
Publication of JPH02263768A publication Critical patent/JPH02263768A/en
Application granted granted Critical
Publication of JP2620366B2 publication Critical patent/JP2620366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable formation of a complex and precise shape and to enhance strength and toughness by laminating or bundling an intermediate molded body consisting of selectively orientated reinforcing short fiber and a molding adjuvant and molding a base material in the obtained molded body. CONSTITUTION:(B) a molding adjuvant which is obtained by adding a high-mol. wt. high viscous component to low-mol.wt. liquid or that consisting of molten wax-based or molten high polymer-based liquid and (C) powder for molding a base material in accordance with necessity are mixed with (A) reinforcing short fiber. Thereafter shearing force is loaded to this mixture from the outside and the component A is selectively orientated to obtain an intermediate molded body. Then this intermediate molded body is laminated or bundled to obtain a conjugated molded body. Thereafter (D) this conjugated molded body is impregnated with a precursor capable of forming the base material in accordance with necessity. The composite body is obtained by forming the base material such as ceramics and an intermetallic compd. in this conjugated molded body by heating and pressurization.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、化石燃料、原子力、太陽エネルギー等を利用
するエネルギー機械分野、芹空宇宙、車両、船舶等の輸
送用機械分野、金属、化学、窯業等の素材製造加工機械
分野、その他の一般機械分野等において、特に強度と靭
性とを必要とされるターボ111Ii8!部品、レシプ
ロエンジン部品、燃焼機器部品、熱交換機器部品、摺動
・耐摩耗部品等としての、セラミックスまたは金属を母
材質とし短繊維で強化された複合体の製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to the field of energy machines that utilize fossil fuels, nuclear energy, solar energy, etc., the field of transportation machines such as space, vehicles, and ships, metals, and chemicals. , Turbo 111Ii8, which requires particularly strong strength and toughness in the field of material manufacturing and processing machinery such as ceramics, and other general machinery fields. The present invention relates to a method for manufacturing a composite body made of ceramics or metal as a base material and reinforced with short fibers for use as parts, reciprocating engine parts, combustion equipment parts, heat exchange equipment parts, sliding/wear-resistant parts, etc.

[従来の技術] 従来、セラミックスまたは金属を母材質とする繊維強化
複合材料又は同材料による部品等の複合体の製造方法と
しては、下記のいずれかの方法が行われている。
[Prior Art] Conventionally, as a method for manufacturing a fiber-reinforced composite material whose base material is ceramic or metal, or a composite such as a component made of the same material, one of the following methods has been used.

■ 連続長繊維を補強用に用い、当該長繊維を予め1次
元、2次元または3次元の横遺体として構成することに
より部品形状とし、しかるに後に母材質を構成させて部
品を製造する。
(2) Continuous long fibers are used for reinforcement, and the long fibers are formed in advance into a one-dimensional, two-dimensional, or three-dimensional horizontal body to form a part shape, and then a base material is formed to manufacture the part.

■ 短繊維を補強用に用い、当該短繊維を全く無秩序方
位かまたは少なくとも積極的に配向を制御することなく
母材中に分散させて材料および部品を製造する。母材質
の原料(粉体、液体等)と短繊維を予め混合した後、。
■ Manufacture materials and parts using short fibers for reinforcement, with the short fibers being dispersed in the matrix in a completely random orientation, or at least without actively controlling the orientation. After pre-mixing the base material raw materials (powder, liquid, etc.) and short fibers.

短繊維を含まない通常の母材質のみの成形の場合と同様
な方法により部品形状への成形を行う。
Molding into a part shape is performed using the same method as when molding only a normal base material that does not contain short fibers.

[発明が解決しようとする課題] しかしながら、従来法には次のような問題がある。[Problem to be solved by the invention] However, the conventional method has the following problems.

■連続長繊維を用いる場合 )連続長繊維として得られる材質は限られており、たと
え、その限られた材質の長繊維を使用して平面網または
立体網を構成させても複合材料として好ましい材質が求
められない場合が多い。
■When using continuous long fibers) The materials that can be obtained as continuous long fibers are limited, and even if a planar network or three-dimensional network is constructed using the limited long fibers, the material is preferable as a composite material. is often not required.

)所定の部品形状を連続長繊維の1次元、2次元、又は
3次元の組織構造体状に構成することは、部品形状が複
雑精密になる程非常に困難となる。
) It becomes extremely difficult to construct a predetermined part shape into a one-dimensional, two-dimensional, or three-dimensional tissue structure of continuous long fibers as the part shape becomes more complex and precise.

その」二、部品の構造強度上強度と靭性とを必要とされ
る方位に繊維を選択配向させることは一層困難さを増す
Second, it becomes increasingly difficult to selectively orient the fibers in a direction that requires strength and toughness in terms of the structural strength of the component.

■短繊維を用いる場合 )部品の構造強度上強度と靭性とを必要とされる方位に
繊維を選択配向させることがnしく、複合体としての本
来の優れた特性を具現化することが困難であるや 1j)母材を形成すべき材料の粉体を予め補強用短繊維
と混合して、無秩序配向成形を行う場合、成形後焼結等
によって緻密化させて母材質を形成させる際に、短繊維
に損傷を与えずかつ寸法形状を制御しつつ緻密化させる
ことが困難である。
■When using short fibers) It is difficult to selectively orient the fibers in the direction that requires strength and toughness due to the structural strength of the component, and it is difficult to realize the original excellent properties of the composite. 1j) When the powder of the material to form the base material is mixed with short reinforcing fibers in advance and subjected to disorderly oriented molding, when densifying it by sintering etc. after molding to form the base material, It is difficult to densify short fibers while controlling their dimensions and shape without damaging them.

本発明は、複合体用に好ましい特性を有する材質の繊維
として得られ易い短繊維を用いて、セラミックスまたは
金属の母材を補強し、かつ部品として必要な方位に短繊
維を選択配向させつつ強度や靭性を向上させ、同時に複
雑精密な形状を形造ることが可能な配向性短繊維強化複
合体の製造方法を提供することを目的とする。
The present invention uses short fibers that are easily obtained as fibers of a material with favorable properties for composites to reinforce a ceramic or metal base material, and selectively orients the short fibers in the direction required for the component while increasing the strength. The purpose of the present invention is to provide a method for producing an oriented short fiber-reinforced composite material, which can improve strength and toughness and at the same time form a complex and precise shape.

[課題を解決するための手段及び作用コ本発明は上記の
目的を達成するために、補強用短繊維と成形助剤とを含
む原料に外部より強制的に剪断力を負荷して上記補強用
短1維を選択配向さぜた中間成形体を製造し、該中間成
形体を′V4層あるいは集束して一体成形体とした後、
その積層あるいは集束成形能中に母材質を形成すること
からなる配向性短繊維強化複合体の製造方法にある。
[Means and effects for solving the problem] In order to achieve the above-mentioned object, the present invention applies a shearing force forcibly from the outside to a raw material containing reinforcing short fibers and a forming aid. After manufacturing an intermediate molded body in which short fibers are selectively oriented, and forming the intermediate molded body into a 'V4 layer or bundled into an integral molded body,
The present invention provides a method for producing an oriented short fiber-reinforced composite comprising forming a matrix material during lamination or convergence forming.

これにより最終的に製造される複合体は、主成分として
連続相を構成する母材質の中に、その緑林質を補強する
短繊維が混入され、かつその補強用短繊維が所定の方位
に制御された)ル択配向性を有する精密形状の各種材料
や部品とすることかできる。
In this way, the final composite is produced by mixing short fibers reinforcing the green forest into the base material that constitutes the continuous phase as the main component, and controlling the reinforcing short fibers in a predetermined direction. It can be made into various materials and parts with precise shapes having selective orientation.

[実施例] 以下本発明の好適実施例を添付図面に基づいて説明する
[Embodiments] Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず第1図により本発明の基本的製造方法を説明する。First, the basic manufacturing method of the present invention will be explained with reference to FIG.

本発明の配向性短繊維強化複合体の製造方法は、第1図
に示すように、原料を調合する第1工程1と、中間成形
体を製造する第2工程2と、積層あるいは集束により一
体成形体を製造する第3工程3と、その一体成形体に母
材質を形成する第4工程4とからなり、これにより配向
性短繊維強化複合体5を得ることができる。
As shown in FIG. 1, the method for producing an oriented short fiber-reinforced composite of the present invention includes a first step 1 of preparing raw materials, a second step 2 of producing an intermediate molded body, and an integrated structure by laminating or converging. It consists of a third step 3 of producing a molded body and a fourth step 4 of forming a base material on the integrally molded body, whereby an oriented short fiber reinforced composite 5 can be obtained.

第1工稈1として、少なくとも補強用′ff1繊維6と
成形助剤7とを含みこれに必要に応じて母材質形成用粉
体等8を加えた原料を調合する。ここで成形助剤7とは
、次の工程2,3において中間成形体および一体成形体
を製造する際に、その成形を容易とする添加物をさす、
第2工程としては、調合された原料を用い、外部より強
制的に剪断力を負荷することによって、すなわち例えば
第2図に示すよう原料9を側壁io、ioの間を通過さ
せることによって、補強用短繊維6を選択配向させた膜
状または板状、ないしは糸状または棒状の中間成形体1
1を製造する。第3工程としては、第3図に示すように
中間成形体11を制御された方向を持たせつつ積層ある
いは集束し、一体成形体12とし、所定の形状を形成さ
せる。第4工程としては、第4図に示すように、この一
体成形体12中の補強用短繊維6の間に母材質を形成さ
せて配向性短繊維強化複合体5を得る。
As the first culm 1, a raw material containing at least reinforcing 'ff1 fibers 6 and a forming aid 7, to which powder, etc. for forming a base material 8 is added as necessary, is prepared. Here, the molding aid 7 refers to an additive that facilitates molding when producing intermediate molded bodies and integral molded bodies in the following steps 2 and 3.
In the second step, the prepared raw material is reinforced by forcibly applying a shearing force from the outside, that is, by passing the raw material 9 between the side walls io and io as shown in FIG. Membrane-like, plate-like, thread-like, or rod-like intermediate molded product 1 in which short fibers 6 for use are selectively oriented
1 is manufactured. In the third step, as shown in FIG. 3, the intermediate molded bodies 11 are laminated or bundled in a controlled direction to form an integral molded body 12 to form a predetermined shape. In the fourth step, as shown in FIG. 4, a base material is formed between the reinforcing short fibers 6 in this integrally molded body 12 to obtain an oriented short fiber reinforced composite 5.

以上の第1〜4工程よりなる本発明の構成と特徴を更に
各項目に分けて以下に詳細に説明する。
The structure and characteristics of the present invention, which consists of the above first to fourth steps, will be further divided into each item and explained in detail below.

鹿上工1 (1)・母材質と補強用短繊維 本発明の製造方法は、セラミックスを母材質とする複合
材料にも金属または金属間化合物を母材質とする複合材
料にも適用することができる。セラミックとしては、現
在用いられているいずれのセラミック材料を母材質とし
て用いる場合にも本発明は適用できるが、特に、強度、
靭性、軽量性、耐熱性、耐食性、耐摩耗性、低熱膨張性
等のいずれかを考慮すると、アルミナ系、ジルコニア系
、ムライト系、低膨脹アルミノシリケート系、アルミニ
ウムチタネート系等の酸化物セラミックス、窒化ゲイ素
糸、窒化アルミニウム系等の窒化物セラミックス、炭化
ケイ素系等の炭化物セラミックス、ホウ化ジルコニウム
、ホウ化チタン等のホウ化物セラミックス等が母材質と
して望ましい。特にガスタービン部品等の高温高強度部
品への適用を考慮すると窒化ゲイ素系セラミックス及び
炭化ケイ素系セラミックスが望ましい。
Kajoko 1 (1) Base material and reinforcing short fibers The manufacturing method of the present invention can be applied to composite materials whose base material is ceramics and composite materials whose base material is metals or intermetallic compounds. can. As for the ceramic, the present invention can be applied to any currently used ceramic material as the base material, but in particular, strength,
Considering toughness, lightness, heat resistance, corrosion resistance, abrasion resistance, low thermal expansion, etc., oxide ceramics such as alumina-based, zirconia-based, mullite-based, low-expansion aluminosilicate-based, aluminum titanate-based, etc., and nitrided Desirable base materials include gay yarn, nitride ceramics such as aluminum nitride ceramics, carbide ceramics such as silicon carbide ceramics, and boride ceramics such as zirconium boride and titanium boride. In particular, considering application to high-temperature, high-strength parts such as gas turbine parts, silicon nitride-based ceramics and silicon carbide-based ceramics are desirable.

尚、母材用セラミックスとしては、ジルコニアにイツト
リア、マグネシア等を添加したもの、窒化ケイ素にアル
ミナ、窒化アルミニウム等を添加したらのくサイアロン
)等、固溶体を形成してもさしつかえなく、また窒化ケ
イ素に対するアルミナ、マグネシア、イツトリア等、炭
化ケイ素に対するホウ素、アルミナ、炭素等焼結促進の
ため等の添加物が加えられているものでもさしつかえな
い。。また、さらにアルミナに対するジルコニア、炭化
ケイ素に対する炭化チタン等、強度と靭性を向上させる
ために、他のセラミックスが添加され、混合組成となっ
ているものであってもさしつかえない。
In addition, as ceramics for the base material, it is okay to form a solid solution, such as zirconia with addition of ittria, magnesia, etc., silicon nitride with alumina, aluminum nitride, etc. Alumina, magnesia, ittria, etc. may be added to silicon carbide with additives such as boron, alumina, carbon, etc. to promote sintering. . In addition, other ceramics may be added to improve strength and toughness, such as zirconia for alumina and titanium carbide for silicon carbide, resulting in a mixed composition.

金属としても、いずれの材料を母材質として用いる場合
にも本方法は適用できるが、特に強度、軽量性、耐熱性
、耐食性等を考慮すると、アルミニウム系、チタン系、
ニッケル系、麩系、コバルト系等の合金、またはチタン
・アルミニウム系、ニッケル・アルミニウム系等の金属
間化合物が望ましい。
This method can be applied to any metal as the base material, but considering strength, lightness, heat resistance, corrosion resistance, etc., aluminum-based, titanium-based,
Alloys such as nickel-based, wheat-based, cobalt-based, etc., or intermetallic compounds such as titanium-aluminum-based, nickel-aluminum-based, etc. are preferable.

これらの母材質に対して短繊維による補強を行うが、こ
こで言う短繊維とは、製造すべき部材の寸法に対して繊
維長の十分短い繊維を意味し、般的には長さ101m以
下の繊維である。
These base materials are reinforced with short fibers, and short fibers here mean fibers whose fiber length is sufficiently short relative to the dimensions of the part to be manufactured, and generally the length is 101 m or less. fibers.

これらの母材質を補強する繊維としては、母材質と比較
して強度と弾性率が同等またはより高いものであればい
ずれの材質を用いることも可能であり、また繊維の形態
としては、はぼ単結晶からなる短繊維であるウィスカー
であっても、多結晶からなる短繊維であっても、また連
続長繊維を切断して短繊維化したものであってもさしつ
かえない、特に補強用短繊維の材質として望ましいもの
は、炭化ゲイ素、窒化ケイ素、アルミナ、ジルコニア、
炭化ジルコニウム、ホウ化チタン、炭素、ホウ素等のセ
ラミックス系であるが、タングステン等の金属を用いて
もよい。また、母材質との間の反応・拡散防止や、界面
接合強度制御等の目的で、補強用短繊維の表面にCVD
あるいはPVD等による表面処理が施されているもので
あれば、複合材料としての特性向上のためにはより望ま
しい。
As fibers for reinforcing these base materials, any material can be used as long as the strength and modulus of elasticity are equal to or higher than those of the base material. In particular, reinforcing short fibers can be whiskers, which are short fibers made of single crystals, short fibers made of polycrystals, or short fibers made by cutting continuous long fibers. Desirable materials include silicon carbide, silicon nitride, alumina, zirconia,
Although ceramics such as zirconium carbide, titanium boride, carbon, and boron are used, metals such as tungsten may also be used. In addition, CVD is applied to the surface of reinforcing short fibers for the purpose of preventing reaction/diffusion with the base material and controlling interfacial bonding strength.
Alternatively, it is more desirable that the material be surface treated by PVD or the like in order to improve the properties of the composite material.

(2)原料調合 本発明による複合材料および同部品製造方法の第1工程
としては、補強用短繊維を混合した原料を調合する。こ
の原料の段階において、短繊維同士の凝集が十分除去さ
れ分散されていることが必要不可欠であり、かつ次の段
階で剪断力を負荷する際に十分な流動性・潤滑性・並び
に分散性を有することも必要である。このため、この原
料としては、このような成形助剤として何らかの液体が
短繊維と混合されたものであることが必要である。
(2) Preparation of raw materials In the first step of the method for manufacturing composite materials and parts thereof according to the present invention, raw materials mixed with reinforcing short fibers are prepared. At this raw material stage, it is essential that the aggregation of short fibers be sufficiently removed and dispersed, and that sufficient fluidity, lubricity, and dispersibility be maintained when applying shear force in the next stage. It is also necessary to have For this reason, the raw material must be one in which some kind of liquid is mixed with short fibers as a forming aid.

この成形助剤液体としては、水質、非水質等の低分子量
低粘性の液#または溶液であってもよいが、次の段階で
の剪断力の負荷をより有効に行うため、および短繊維間
の結合剤としての役割を考慮すると、上記低分子Ji[
体に高分子量高粘性の成分を添加したもの、あるいは、
溶融ワックス系、溶融高分子系等の液体そのもの、ある
いはこれらの液体をもとにした液−液エマルジョン系、
液〜気エマルジョン系を使用することが望ましい。また
、これらの液体と短繊維との濡れを良くし、分散性を向
上させるための添加剤か加えられていることが望ましい
This molding aid liquid may be an aqueous or non-aqueous low molecular weight, low viscosity liquid or solution; Considering the role of the above-mentioned low molecular weight Ji[
Those with high molecular weight and high viscosity ingredients added to the body, or
Liquids themselves such as molten wax systems and molten polymer systems, or liquid-liquid emulsion systems based on these liquids,
It is desirable to use a liquid to gas emulsion system. Further, it is desirable that additives be added to improve the wetting of the short fibers with these liquids and improve dispersibility.

また、本発明で用いることのできる原料としては、固形
分として補強用短繊維を含むたけではなく、母材質を形
成すべき粉体を含むものであってもよい。
In addition, the raw material that can be used in the present invention does not only contain reinforcing short fibers as a solid content, but may also contain powder to form the base material.

11工五(剪断力負荷による中間成形体製造)本発明の
第2工程としては、前記のようにして調合された原料に
対して、次に述べるようないずれかの方法によって外部
より剪断力を負荷し、補強用短繊維を選択配向させた中
間成形体を製造する。
Step 11 (Manufacture of intermediate compact by applying shear force) In the second step of the present invention, shear force is applied externally to the raw materials prepared as described above by any of the methods described below. A load is applied to produce an intermediate molded article in which reinforcing short fibers are selectively oriented.

この剪断力負荷の第1の方法は、流動性を有する原料を
、相対する狭い間隙の側壁の間を強制的に流動・通過さ
せる方法である。特にこの方法は中間成形体の表面近傍
に強い剪断力を負荷しない場合に適している。この側壁
間流動の方法としては、原料の特性に応じて次の3つの
内のいずれかを用いる。
The first method of applying shear force is to force the fluid raw material to flow and pass between the opposing side walls of a narrow gap. This method is particularly suitable when a strong shearing force is not applied near the surface of the intermediate compact. As a method for this flow between the side walls, one of the following three methods is used depending on the characteristics of the raw material.

(a)押し7出し:側壁間隙の入口IIIの原料に圧力
を負荷し、強制的に出口側へ押し出す。成形助剤の結合
力が、比較的低い原料でも適用が可能である。
(a) Extrusion 7: Pressure is applied to the raw material at the inlet III of the side wall gap to forcibly extrude it to the outlet side. It is possible to apply this method even to raw materials in which the bonding strength of the forming aid is relatively low.

(b)引き抜き:111j壁間隙の出口側の原料を強制
的に引き抜く。成形助剤の結合力が高い場合に適する。
(b) Pulling out: 111j The raw material on the outlet side of the wall gap is forcibly pulled out. Suitable when the molding aid has high binding strength.

(C)曳糸:側壁間隙の入口側に、曳糸量に相当する原
料の量を定常的に供給するために、わずかの圧力を負荷
しつ°つ、出口側の原料を曳き出し延伸する。原料が曳
糸性を有する場合に適する。
(C) Thread: In order to constantly supply an amount of raw material equivalent to the amount of string to the entrance side of the side wall gap, the raw material on the outlet side is pulled out and stretched while applying a slight pressure. . Suitable when the raw material has stringability.

この第1の方法における側壁間隙の形状としては、第5
図〜第13図に示したものがある。これら図において(
a)は側壁間隙を流動する方向と直角に見た断面図を示
し、(b)は側壁間隙を出口側から見た断面図を示す。
The shape of the side wall gap in this first method is as follows:
There are those shown in FIGS. In these figures (
(a) shows a cross-sectional view of the side wall gap seen at right angles to the flow direction, and (b) shows a cross-sectional view of the side wall gap seen from the outlet side.

第5図(a)、(b)に示すようにI+!!I壁101
0の間隙dは、流動の方向に対して一様で断面形状が均
一であってもよいが、第6図< a )(b)のように
断面形状を変化させることにより、より均一化の効果を
あげてもよい。また側壁間の間隙が一定であってもよい
が、第7図(a)(b)のように最大間隙d1部分と最
小間隙62部分があり、これらが交互に連結された形状
であると、間隙の平均値が第5図と同じであっても剪断
力がより有効に負荷されて選択配向を行なうにはより望
ましい。また第8図のように側壁1010として、相対
する面の中間に更に挿入物13を挿入して操作すると剪
断効果が倍加してよV)望ましい6 また更に、側壁10.10の出口側の間隙としては、第
5図〜第8図のように巾の広いスリット状ではなく、第
9図(a)、(b)のよっにflFI uloが閉じた
ものとして孔14の内壁を形成していてもよく、またこ
の孔14も単一のものでもよいが、第10図、第11図
のように孔14が複数のものからなってもよい。この様
な場合、糸状または棒状の中間成形体の製造が可能とな
る。また、これらの孔の形状も円形、四角、その他いず
れでもさしつかえない。
As shown in FIGS. 5(a) and (b), I+! ! I wall 101
The gap d at 0 may be uniform in the direction of flow and have a uniform cross-sectional shape, but it can be made more uniform by changing the cross-sectional shape as shown in Figures 6 (a) and (b). It may be effective. Further, the gap between the side walls may be constant, but if there is a maximum gap d1 portion and a minimum gap 62 portion as shown in FIGS. 7(a) and 7(b), and these are alternately connected, Even if the average value of the gap is the same as that shown in FIG. 5, it is more desirable to apply shearing force more effectively and to perform selective orientation. Further, as shown in FIG. 8, when an insert 13 is further inserted between the opposing surfaces as the side wall 1010, the shearing effect is doubled. In this case, the inner wall of the hole 14 is formed not as a wide slit as shown in Figs. 5 to 8, but as a closed flFI ulo as shown in Figs. 9(a) and (b). Also, the hole 14 may be a single hole, but the hole 14 may be composed of a plurality of holes as shown in FIGS. 10 and 11. In such a case, it becomes possible to produce a thread-like or rod-like intermediate molded body. Further, the shape of these holes may be circular, square, or any other shape.

尚、第5図〜第11図の側壁間隙において、いずれも少
なくともその最小通過箇所での値を短繊維の長さの10
倍以下、望ましくは2倍以下にする必要がある。この理
由は、側壁間で原料の強制的流動を行わせる場合、剪断
応力が高いのは側壁の近傍のみで側壁間の中央部になる
ほど剪断応力が低くなるためである。このため、短繊維
の長さに比べて側壁間隙が10倍以上となると5中央部
の短繊維は配向させることが困難となり、望ましくは側
壁間隙を短繊維長さの2倍以内として短繊維を剪断応力
の高い領域に充分引き込み、選択配向を有効に行なわせ
る必要がある。
In addition, in the side wall gaps shown in FIGS. 5 to 11, the value at least at the minimum passing point is 10 of the short fiber length.
It is necessary to make it less than double, preferably less than twice. The reason for this is that when the raw material is forced to flow between the side walls, the shear stress is high only in the vicinity of the side walls, and the closer to the center between the side walls, the lower the shear stress. For this reason, if the side wall gap is 10 times or more compared to the length of the short fibers, it will be difficult to orient the short fibers at the center of the short fibers. It is necessary to sufficiently draw the material into a region with high shear stress to effectively perform selective orientation.

本発明の剪断力負荷の第2の方法は、相対的に異なった
速度で移動する側壁の間で、原料を強制的に変形させる
ことである。第1の方法よりも、原料の中心部まで強い
剪断力を負荷したい場合に適している。この方法として
は、第12図に示すように側壁の一方10aを固定し、
他方10bを図示の矢印で示したように一定方向に移動
させるとよい、また、連続的な搬送を行いつつ、剪断力
を負荷するには、第13図に示すようにryA壁の一方
10aを固定し、他方10bを円筒体として連続的に回
転させてもよい。また更に搬送の効果を上げるためには
第14図に示すようにlFl壁10a。
A second method of shear loading of the present invention is to force the material to deform between side walls moving at relatively different speeds. This method is more suitable than the first method when it is desired to apply a strong shearing force to the center of the raw material. This method involves fixing one side wall 10a as shown in FIG.
It is better to move the other wall 10b in a certain direction as shown by the arrow in the figure.Also, to apply shearing force while carrying out continuous conveyance, move one side 10a of the ryA wall as shown in FIG. It may be fixed and the other 10b may be continuously rotated as a cylindrical body. Furthermore, in order to further increase the effect of conveyance, as shown in FIG. 14, an IFl wall 10a is used.

10bを共に円vJ体とし、双方が異なった相対速度で
回転してもよい、また剪断力の負荷をより強力に行うに
は第15図に示すように側壁の一方10aは一方向に移
動し、他方10bは回転してもよい、またそれぞれの側
壁の形状は、第5図と同様に間隙が中方向に一定でもよ
いが、第7図のように最小間隙d2箇所と最大間隙d1
箇所が交互に繰り返されるものであると、より効果が大
きい、また、更に相互に異なる速度で移動する側壁の間
に第8図と同様に中間挿入物13を用いると、剪断力は
倍加する。
10b may both be circular vJ bodies, and both may rotate at different relative speeds.Also, in order to apply a stronger shearing force, one of the side walls 10a may be moved in one direction as shown in FIG. , the other side 10b may be rotated, and the shape of each side wall may be such that the gap is constant in the middle direction as in FIG.
The effect is greater if the locations are repeated alternately, and if intermediate inserts 13 are used, as in FIG. 8, between the side walls moving at mutually different speeds, the shearing force is doubled.

尚、これらの1111皇間の間隙に関しては、第1の方
法と同様の理由で、その最小間隙を補強用短繊維の長さ
の10倍以下、望ましくは2倍以下とする必要がある。
Regarding these 1111 imperial gaps, for the same reason as the first method, the minimum gap needs to be 10 times or less, preferably 2 times or less, the length of the reinforcing short fibers.

成形助剤の量が少なく原料の粘度が高い場合などは、本
発明の剪断力負荷の第3の方法として、更に、第1の方
法と第2の方法とを組み合わせて、相対的に異なった速
度で移動する側壁の間で、原料を強制的に変形させると
同時に、強制的に流動をも行わせると、良好な結果が得
られる。この場合の強制的な変形の方法、および強制的
な流動の方法は、第1の方法および第2の方法として説
明したものと同様である。
When the amount of molding aid is small and the viscosity of the raw material is high, the third method of applying shear force of the present invention is to further combine the first method and the second method to obtain a relatively different Good results are obtained if the raw material is forced to deform and at the same time forced to flow between side walls moving at speed. The forced deformation method and forced flow method in this case are the same as those described as the first method and the second method.

以上の第1、第2もしくは第3の方法によって短繊維が
剪断力の負荷方向に選択的に配向した中間成形体が得ら
れる。この中間成形体の形状は、第1の方法を用い、か
つ第9.10.11図のように側壁10が孔14の内壁
を形成する場合、糸状または棒状、もしくは糸状または
棒状のものの複数を集束したものとなる。また、第1/
)方法により、かつ第5〜8図のように側壁10.10
が相対する面を形成する場合、および第2の方法又は第
3の方法による場合、中間成形体の形状はいずれも膜状
または板状となる。これらのいずれの形状を有する中間
成形体とも、本発明の次の工程としての積層あるいは集
束に使用することができる。rm壁の形状の第5図また
は第6図のように原料の出口部分において間隙一定であ
れば、直接、中間成形体として一定の厚さの膜又は板を
製造することができる。しかしながら、impの形状が
第7.10.11図のような場合等では、得られる中間
成形体は一定の厚さの膜または板にはならず、第7図で
は中方向に厚さの変化する膜又は板となり、第10図お
よび第11図では糸または棒を集束したものとなる。こ
のような場合にも、これらの中間成形体に対して、その
特性に応じて更に次の方法のいずれかの処理を加えるこ
とにより、厚さ一定の膜または板とすることができる。
By the above-described first, second, or third method, an intermediate molded body in which short fibers are selectively oriented in the direction of shear force application can be obtained. When the first method is used and the side wall 10 forms the inner wall of the hole 14 as shown in FIG. It becomes focused. Also, the first/
) method and the side walls 10.10 as in FIGS.
When forming opposing surfaces, and when using the second method or the third method, the shape of the intermediate molded product is either film-like or plate-like. An intermediate molded body having any of these shapes can be used for lamination or convergence as the next step of the present invention. If the gap is constant at the exit portion of the raw material as shown in FIG. 5 or 6 of the shape of the rm wall, it is possible to directly produce a film or plate of a constant thickness as an intermediate molded product. However, in cases where the imp shape is as shown in Figure 7.10.11, the resulting intermediate molded product will not be a film or plate with a constant thickness, and in Figure 7, the thickness will change in the middle direction. In FIGS. 10 and 11, it is a bundle of threads or rods. Even in such a case, a film or plate having a constant thickness can be obtained by further processing these intermediate molded products by any of the following methods depending on their characteristics.

第5図または第6図の形状の側壁10.10を用いるこ
とにより、押出しまたは引抜きにより−定厚さの中間成
形体に再加工する。
By using side walls 10.10 in the shape of FIG. 5 or 6, they are reworked by extrusion or drawing into an intermediate body of constant thickness.

第12〜14図の方法を用い、かつ側壁間の最小間隙を
第5図のように一定厚さとして圧延を行つ。
Rolling is carried out using the method shown in FIGS. 12 to 14 and with the minimum gap between the side walls set to a constant thickness as shown in FIG.

間隙一定の側壁同士を用い、側壁間で圧縮を行って一定
厚さの中間成形体に再加工しても良い。
It is also possible to use side walls with a constant gap between them and perform compression between the side walls to reprocess the intermediate molded body with a constant thickness.

尚この圧縮により厚さ一定の膜または板を製造する場合
、第16図、第17図に示すように、中間成形体11を
雌金型15内に入れた後、雄金型16を嵌め込んで圧縮
を行う、この場合、雌金型15内に中間成形体11を入
れた時、中間成形体11が自由変形できるスペース17
を確保しておき、圧縮を受ける中間成形体11の繊維6
の配向と直角方向の巾を拘束し、平行方向の変形を自由
とすると、厚さ一定の膜または板とした後の繊維6の配
向が促進されてより望ましい。
When producing a film or plate with a constant thickness by this compression, as shown in FIGS. 16 and 17, after putting the intermediate molded body 11 into the female mold 15, the male mold 16 is fitted. In this case, when the intermediate molded body 11 is placed in the female mold 15, there is a space 17 in which the intermediate molded body 11 can freely deform.
The fibers 6 of the intermediate molded body 11 subjected to compression are
It is more desirable to restrict the width in the direction perpendicular to the orientation of the fibers 6 and to allow free deformation in the parallel direction, as this will promote the orientation of the fibers 6 after forming a film or plate with a constant thickness.

11工1(積層あるいは集束による一体成形体製造) 本発明の第3の工程としては、前記のようにして製造さ
れた中間成形体を用い、これを積層あるいは集束して目
的とする部品形状の成形体を製造する。
11 Step 1 (Manufacture of an integral molded body by laminating or focusing) The third step of the present invention is to use the intermediate molded body produced as described above, and to form the desired part shape by laminating or focusing. Manufacture a molded body.

中間成形体が膜状または板状、特に望ましくは厚さが一
定の膜又は板状体である場合、最終的な部品として必要
な強度と靭性等を考慮しつつ、1枚毎に短繊維の配向方
向を選定することが望ましい0例えば、積層する中間成
形体膜における短繊維選択配向方向を、全て一方向にそ
ろえてもよいが、1枚毎に45°ずつ回転させる、ある
いは1枚おき毎に土30°に振る等の方法をとることが
できる。こうすることにより、材flまたは部品内の強
度と靭性とを垂直、水平方向等必要な方位に按分するこ
とができる。
When the intermediate molded product is in the form of a film or plate, preferably a film or plate with a constant thickness, short fibers are added to each piece, taking into consideration the strength and toughness required for the final part. It is desirable to select the orientation direction0. For example, the selected orientation direction of short fibers in the intermediate formed film to be laminated may all be aligned in one direction, but it is possible to rotate each sheet by 45 degrees, or rotate every other sheet. Methods such as shaking the soil at a 30° angle can be used. By doing so, the strength and toughness within the material fl or the component can be distributed proportionally in the necessary directions, such as vertically and horizontally.

また、積層する中間成形体の膜または板の寸法形状とし
ては、全て同一の単純形状とし、積層して一体化した後
、加工により部品形状に再加工してもよい。また、積層
する膜−枚毎に最終的な部品形状に合わせて必要な寸法
形状に裁断後積層しその後一体止することもできる。こ
の場合、特に中間成形体段階での寸法と、最終的な部品
段階での寸法との差を考慮する必要がある。
Further, the dimensions and shapes of the films or plates of the intermediate molded bodies to be laminated may all be the same simple shape, and after being laminated and integrated, they may be reprocessed into a component shape. Alternatively, each film to be laminated can be cut into the necessary dimensions and shape according to the final part shape, then laminated, and then fixed together. In this case, it is particularly necessary to consider the difference between the dimensions at the intermediate molded body stage and the dimensions at the final part stage.

また、中間成形体が糸状または棒状もしくは複数の糸状
または棒状のものを集束したものである場合、これらを
平面または曲面上に方向を選びつつ並べることによって
積層あるいは集束することもできるし、所定形状の物本
の上に巻き付けることによって積層することもできる。
Furthermore, if the intermediate formed body is a thread-like or rod-like object, or a bundle of a plurality of thread-like objects or rod-like objects, they can be layered or bundled by arranging them in a selected direction on a flat or curved surface, or they can be stacked or bundled into a predetermined shape. It can also be layered by wrapping it on top of the original book.

また、その際、複数の糸状の中間形成体を軸方向をそろ
えて直線状に並べて集束体として使用することもできる
し、よりをかけながら紡いだ集束体として使用すること
もできる。後者の場合、体成形体の変形自由度の増加に
つながり、繊維強化複合体の脆性を改善することができ
る。
Further, in this case, a plurality of filamentous intermediate bodies can be used as a bundle by arranging them in a straight line with their axial directions aligned, or it can also be used as a bundle by spinning them while twisting them. In the latter case, the degree of freedom of deformation of the molded body increases, and the brittleness of the fiber-reinforced composite can be improved.

また、一つの部品形状を形造るために、中間成形体とし
てWAまたは板を積層することと、糸または棒を集束す
ることとを使用することにより、層の効果をあげること
もできる。
The effect of layers can also be increased by using the stacking of WA or plates as intermediate bodies and the bundling of threads or rods to form one part shape.

また、更には部品の製造の際、膜状または板状あるいは
糸状または棒状の中間成形体を用いて単に2次元形状乃
至は薄肉形状の成形体を形造るだけではなく、このよう
な形状に更に糸状の中間成形体を3次元的に織り込むこ
とによって3次元補強の成形体の製作も可能となる。
Furthermore, when manufacturing parts, not only a two-dimensional or thin-walled molded product is formed using a film-like, plate-like, thread-like, or rod-like intermediate molded product, but also a further process to form such a shape. By three-dimensionally weaving thread-like intermediate molded bodies, it is also possible to produce a three-dimensionally reinforced molded body.

第1工程の(2)の原料調合の項で述べたように原料と
して高分子系の成形助剤を含んでいるものを使用すれば
、中間成形体の膜または板もしくは糸または棒を積層あ
るいは集束した後、この成形助剤の軟化点付近に昇温す
ることにより積層あるいは集束成形体を一体化すること
ができる。あるいは、このような成形助剤を溶解しうる
溶剤を用い、これを積層する膜面等に少量塗布しつつ積
層することによっても積層あるいは集束成形体を一体化
することができる。いずれの場合にも、積層面あるいは
集束軸と直角に圧力を負荷しつつ一体化を行うことが各
積層あるいは各集束面の密着のために望ましい、また、
この高分子系成形助剤として熱硬化性樹脂前駆体を用い
、積層後硬化させると成形体の保形性が向上する。
As mentioned in the section of raw material preparation in (2) of the first step, if a material containing a polymeric forming aid is used as a raw material, the film or plate of the intermediate molded product or the thread or rod can be laminated or After convergence, a laminated or condensed molded body can be integrated by raising the temperature to around the softening point of this forming aid. Alternatively, a laminated or bundled molded body can be integrated by using a solvent that can dissolve such a forming aid and applying a small amount of the solvent to the surface of the film to be laminated. In either case, it is desirable to perform the integration while applying pressure perpendicular to the laminated surfaces or the focusing axis, in order to ensure the adhesion of each laminated layer or each focusing surface.
If a thermosetting resin precursor is used as the polymer molding aid and cured after lamination, the shape retention of the molded article will be improved.

1土工1(母材質形成) 本発明の最終段階どしては、前記のようにして製造され
た中間成形体の積層あるいは集束成形体中に緻密な母材
質を形成させる。
1. Earthwork 1 (Formation of Base Material) In the final step of the present invention, a dense base material is formed in the laminated or bundled compact of the intermediate compacts produced as described above.

中間成形体が高分子系等の成形助剤を含んでいる場合、
蒸発、分解、燃焼、溶媒抽出等の手段によってこれを除
去させておく必要がある。
If the intermediate molded product contains a molding aid such as a polymer type,
It is necessary to remove this by means such as evaporation, decomposition, combustion, and solvent extraction.

母材質としてのセラミックスまたは金属ないし金属間化
合物の形成の方法としては下記のいずれかの方法をとる
ことができる。
As a method for forming ceramics or metals or intermetallic compounds as a base material, any of the following methods can be used.

第1工程の(2)項に述べた原料が母材質を形成すべき
粉体を含んでいる場合、この粉本が十分焼結する温度ま
で所定の雰囲気で成形体を加熱することにより、緻密な
母材質を得ることができる。
If the raw materials mentioned in item (2) of the first step contain powder that should form the base material, the compact can be densified by heating the compact in a predetermined atmosphere to a temperature at which the powder is sufficiently sintered. It is possible to obtain a suitable base material.

あるいはこの粉体が溶融する温度まで成形体を加熱する
ことによっても緻密な母材質を得ることができる。これ
らのいずれの場合にも、積層面あるいは集束軸と直角方
向にプレス圧またはガス圧により圧力を加えながら加熱
を行うと母材質の緻密化の上からはより望ましい。
Alternatively, a dense base material can also be obtained by heating the compact to a temperature at which the powder melts. In any of these cases, it is more desirable to perform heating while applying pressure by press pressure or gas pressure in a direction perpendicular to the lamination plane or the focusing axis, from the viewpoint of densification of the base material.

上記(2)項に述べた原料が母材質を形成すべき材料の
粉体を含むか否かにかかわらず、成形体とした後、その
短繊維間の垂直間隙へ母材質を形成することのできる何
らかの前駆体を含浸し、しかる後、母材質としての固体
を生成することによっても緻密な母材質を形成させるこ
とができる。この前駆体としては、含浸しうる液体また
は気体であることが必要で、母材質を溶融させた液体で
あってもよく、熱分解や反応によって母材質を生成する
ことのできるゾルもしくは有機金属系高分子液体ないし
はこれらの溶液であってもよく、また熱分解や反応によ
って母材質を生成することのできる気体であってもよい
、なお、この含浸工程は、真空として、積層面間あるい
は集束間の空気を除去した後行なうことが望ましい。
Regardless of whether or not the raw material described in item (2) above contains powder of the material that is to form the matrix, it is difficult to form the matrix in the vertical gaps between the short fibers after forming the molded product. A dense matrix material can also be formed by impregnating it with any possible precursor and then producing a solid material as a matrix material. This precursor must be a liquid or gas that can be impregnated, and may be a liquid obtained by melting the base material, or a sol or organometallic material that can generate the base material through thermal decomposition or reaction. It may be a polymeric liquid or a solution thereof, or it may be a gas that can generate the base material through thermal decomposition or reaction.This impregnation process is carried out in a vacuum between the laminated surfaces or between the convergence. It is preferable to do this after removing the air.

以下実施例により本発明の特徴を更に説明する。The features of the present invention will be further explained below with reference to Examples.

尚、本発明はこれらの実施例に示される組み合わせ例や
適用例にとどまらず、広い範囲の材料及び部品に対して
適用することができる。
Note that the present invention is not limited to the combinations and application examples shown in these embodiments, but can be applied to a wide range of materials and parts.

(実施例1) 平均径0.5μm、平均長さ20μmの炭化ケイ素ウィ
スカー、および重量でその2.0倍の窒化ゲイ素粉(平
均径0.7μm)、並びに窒化ケイ素粉に対してそれぞ
れ5重量%のアルミナ粉(平均径0.5μm)およびジ
ルコニア粉(平均径0.3μm)を含む混合物に対して
、水溶性アクリル樹脂並びに分散剤を含む水溶液を加え
、十分混練した後、押し出しにより強制的な流動成形を
行った。押し出しに当たっては、第7図に示す形状のス
リット状押し出しダイスを用い、その最大間隙は0.1
市、最小間隙は0.05+mとした。この最大間隙並び
に最小間隙の値は炭化ケイ素ウィスカーの平均長さに対
して約5@〜約2.5倍である。押し出しによって得ら
れた膜に対して、更に第13図に示す方式にて圧延を行
い、厚さ0.06++mの膜として炭化ケイ素ウィスカ
ーが押し出し/圧延方向に一方向に選択配向した中間成
形体を得た。この中間成形体の膜を裁断して所定寸法形
状の30枚余を得、これを第18図のように冬服18を
積層してタービン翼部形状の成形体19を得た。尚、積
層された膜18は、タービン翼高さ方向に対して、1枚
毎に0°、30°、0°−30°をなすように炭化ケイ
素ウィスカーの院内方向を選定した。この積層成形体1
9を型内に入れ、成形助剤であるアクリル樹脂の軟化点
付近の80℃にて再度圧密を行うことにより、積層膜が
一体化された成形体を得た。空気流中で500°Cまで
加熱することによりアクリル樹脂など可燃成分を除去し
た後、窒化ホウ素粉を充填した黒鉛モールド内に、成形
体をその翼高さ方向とモールド底面とが平行になるよう
に入れ、1800°Cでホットプレスを行うことにより
、制御された院内方向を有する炭化ケイ素ウィスカーに
より強化され、窒化ケイ素系セラミックスを母材質とす
る繊維強化セラミックス製タービン翼を得た。
(Example 1) Silicon carbide whiskers with an average diameter of 0.5 μm and an average length of 20 μm, and 2.0 times the weight of silicon nitride powder (average diameter of 0.7 μm), and silicon nitride whiskers with a weight of 5 μm each An aqueous solution containing a water-soluble acrylic resin and a dispersant was added to a mixture containing % by weight of alumina powder (average diameter 0.5 μm) and zirconia powder (average diameter 0.3 μm), thoroughly kneaded, and then forced by extrusion. Flow molding was carried out. For extrusion, a slit-shaped extrusion die having the shape shown in Fig. 7 is used, and the maximum gap is 0.1.
City, the minimum gap was set to 0.05+m. The maximum and minimum gap values range from about 5 to about 2.5 times the average length of the silicon carbide whiskers. The membrane obtained by extrusion is further rolled in the manner shown in FIG. 13 to obtain an intermediate molded body in which silicon carbide whiskers are selectively oriented in one direction in the extrusion/rolling direction as a membrane with a thickness of 0.06++ m. Obtained. The membrane of this intermediate molded body was cut to obtain more than 30 sheets having a predetermined size and shape, and winter clothes 18 were layered on these as shown in FIG. 18 to obtain a molded body 19 in the shape of a turbine blade. The in-hospital direction of the silicon carbide whiskers was selected so that each layer of the laminated membranes 18 was at an angle of 0°, 30°, and 0°-30° with respect to the height direction of the turbine blade. This laminated molded product 1
9 was placed in a mold and compacted again at 80° C., which is around the softening point of the acrylic resin as a molding aid, to obtain a molded product with an integrated laminated film. After removing flammable components such as acrylic resin by heating to 500°C in an air stream, the molded body was placed in a graphite mold filled with boron nitride powder so that the blade height direction was parallel to the bottom of the mold. By hot pressing at 1800°C, a fiber-reinforced ceramic turbine blade reinforced with silicon carbide whiskers having a controlled in-hospital direction and having silicon nitride ceramic as the base material was obtained.

このタービン翼から切り出した試験片により強度と靭性
値を測定したところ、従来の炭化ケイ素ウィスカーが無
秩序配向で含まれる窒化ケイ素と比較して優れた特性を
示した。
When the strength and toughness values of test pieces cut from this turbine blade were measured, they showed superior properties compared to conventional silicon nitride containing randomly oriented silicon carbide whiskers.

(実施例2) 実施例1と同じ方法で得られた炭化ケイ素ウィスカーと
窒化ケイ素系粉体を含む中間成形体の膜18を用いて、
第19図に示すように炭化ゲイ素ウィスカーの配向方向
がOo及び90°をなす所定形状に裁断し、この30枚
余を黒鉛製の芯金20 、hに巻きつけて積層し、中空
のタービン翼形状の成形体21を得た。この芯金20上
の積層成形体21上にゴム膜を被覆した後、成形助剤で
あるアクリル樹脂の軟化点付近の15°Cにて温間静水
圧プレスを行うことにより、積層膜が一体化された成形
体を得た。窒素気流中にて600°Cまで加熱し、成形
助剤成分を除去した後、成形体にシリカガラス系の被覆
を施し、熱間等方圧プレスにて1800℃。
(Example 2) Using a film 18 of an intermediate formed body containing silicon carbide whiskers and silicon nitride-based powder obtained by the same method as in Example 1,
As shown in Fig. 19, the 30 or so pieces are cut into a predetermined shape in which the orientation direction of the gay carbide whiskers is Oo and 90°, and the 30 or so pieces are wound around a graphite core bar 20 and laminated to form a hollow turbine. A wing-shaped molded body 21 was obtained. After coating the laminated molded body 21 on the core bar 20 with a rubber film, warm isostatic pressing is performed at 15°C near the softening point of the acrylic resin, which is a molding aid, so that the laminated film is integrated. A molded article was obtained. After heating to 600°C in a nitrogen stream to remove the molding aid component, the molded body was coated with silica glass and hot isostatically pressed at 1800°C.

2000気圧にて処理を行い、母材質である窒化ケイ素
の緻密化を行った。その後、黒鉛製芯金を除去すること
により、中空で空冷の可能な繊維強化セラミックス製タ
ービン翼を得た。
Processing was performed at 2000 atm to densify silicon nitride, which is the base material. Thereafter, by removing the graphite core metal, a hollow, air-coolable fiber-reinforced ceramic turbine blade was obtained.

(実施例3) 平均径2μm、平均長さ20μmの炭化ケイ素ウィスカ
ーに窒化ホウ素を約0.1μmの膜厚さにコーティング
させたものを補強用繊維として用い、この短繊維と炭化
ケイ素粉とを重量比で40:60とし、更に炭化ケイ素
粉に対して0.5重量%のホウ素を添加させた混合物に
対して、ワックスとエチレン酢酸ビニール樹脂とを主成
分とする成形助剤を加えて110℃にて加熱混練するこ
とにより原料を得た。第14図のような双ロールを用い
回転数をそれぞれ308PHと3511PMとし、かつ
そのロール面形状が第7図のように一方は軸方向に平滑
であり他方は軸方向に波形をなし、その間隙が最大部分
で0.12n+n、最小部分で0.06  mmとした
。このような双ロールの間に前記原料を90°Cに加熱
しつつ供給し、強制的な変形を行わせることによって、
炭化ケイ素ウィスカーが一方向に選択配向した波形の膜
を得た。このシートを、続いて軸方向に平滑で間隙が0
.O8nmの別の双ロールの間にて圧延し、厚さが一定
の膜を得た。この膜を中間成形体として、一定の大きさ
に切断し、短繊維の方向をそろえて積層し、直方体状の
一体成形体を得た。この一体成形体を第16.17図に
示すように、短繊維の配向方向には間隙1mnを有し、
直角方向にはほとんど間隙を有さない金型に入れ、60
℃にてプレス成形しな、これにより短繊維の一方向配向
性が更に促進顕著化された一体成形体を得、この−体成
形体に機械加工を施してタービン翼形状とした。これを
500°Cまで加熱して成形助剤を熱分解除去した後、
この成形体の空隙に炭化ケイ素セラミックスの前印体高
分子であるポリカーポジランを含浸し、熱分解により炭
化ケイ素に転化させて母材質を形成させ、この処理を更
に3回繰り返した。その後熱間等方圧プレスによる圧密
を行った。
(Example 3) Silicon carbide whiskers with an average diameter of 2 μm and an average length of 20 μm coated with boron nitride to a thickness of about 0.1 μm were used as reinforcing fibers, and these short fibers and silicon carbide powder were combined. A molding aid mainly composed of wax and ethylene vinyl acetate resin was added to a mixture in which the weight ratio was 40:60 and 0.5% by weight of boron was added to the silicon carbide powder. A raw material was obtained by heating and kneading at ℃. Twin rolls as shown in Fig. 14 are used and the rotational speed is 308PH and 3511PM, respectively, and the shape of the roll surface is as shown in Fig. 7, one of which is smooth in the axial direction and the other with a waveform in the axial direction, with a gap between them. The maximum part was 0.12n+n, and the minimum part was 0.06 mm. By supplying the raw material while heating it to 90°C between these twin rolls and causing forced deformation,
A corrugated film with silicon carbide whiskers selectively oriented in one direction was obtained. This sheet is then axially smooth and has zero gaps.
.. The film was rolled between two separate O8 nm rolls to obtain a film with a constant thickness. This membrane was used as an intermediate molded product, cut into a certain size, and laminated with the short fibers oriented in the same direction to obtain a rectangular parallelepiped-shaped integral molded product. As shown in Fig. 16.17, this integral molded body has a gap of 1 mm in the orientation direction of the short fibers,
Place it in a mold with almost no gap in the right angle direction and heat it for 60 minutes.
The product was press-molded at .degree. C. to obtain an integral molded product in which the unidirectional orientation of the short fibers was further promoted and marked, and this molded product was machined to form a turbine blade shape. After heating this to 500°C to remove the molding aid by thermal decomposition,
Polycarposilan, which is a pre-printing polymer for silicon carbide ceramics, was impregnated into the voids of this molded body and converted into silicon carbide by thermal decomposition to form a base material, and this process was repeated three more times. Consolidation was then performed using hot isostatic pressing.

このようにして、一方向に配向した炭化ケイ素ウィスカ
ーを補強用短繊維とし、炭化ケイ素を母材質とするター
ビン翼を得た。
In this way, a turbine blade was obtained in which silicon carbide whiskers oriented in one direction were used as reinforcing short fibers and silicon carbide was used as the base material.

(実施例4) 平均径7μm、長さ1市のアルミナ短繊維と平均粒径0
,8μmのアルミナ粉とを混合し、これをポリビニルブ
チラーールとその可塑剤とを含むメチルエチルケトンに
分散させて泥しようを得た。この泥しようを0.2n/
secで一方向に移動するポリエステルフィルム上(フ
ィルム厚さ0.8nm)に展開し、そのフィルム上に、
0.1++mの間隙にて鋭利なエツジを有する円筒をフ
ィルムの移動方向と直角に設置した。このフィルムと工
7ジとを側壁として泥しようを連続的に膜状に展開し、
メチルエチルケトンの蒸発乾煤後、更にこの膜に圧延を
行って、厚さが0,2±0.005 imと一定の膜を
得た。この膜を裁断して所定の寸法形状の膜を複数枚得
、これらの片面にメチルエチルケトンを塗布しつつ積層
して、ファンブレードの形状を得た。このファンブレー
ド形状の成形体を500°Cまで加熱して成形助剤を除
去した後、真空下にて溶融アルミニウム合金を加圧含浸
させて、母材質を形成させた。
(Example 4) Alumina short fibers with an average diameter of 7 μm and a length of 1 city and an average particle size of 0
, 8 μm alumina powder and dispersed in methyl ethyl ketone containing polyvinyl butyral and its plasticizer to obtain slurry. This slurry is 0.2n/
Developed on a polyester film (film thickness 0.8 nm) that moves in one direction at sec, and on that film,
A cylinder with a sharp edge was placed perpendicular to the direction of film movement with a gap of 0.1++ m. This film and the work 7 are used as side walls to continuously spread the slurry into a film.
After the methyl ethyl ketone was evaporated and dried, the film was further rolled to obtain a film with a constant thickness of 0.2±0.005 mm. This film was cut to obtain a plurality of films with predetermined dimensions and shapes, and one side of these films was coated with methyl ethyl ketone and laminated to obtain the shape of a fan blade. This fan blade-shaped compact was heated to 500° C. to remove the forming aid, and then impregnated with a molten aluminum alloy under pressure under vacuum to form a base material.

このような方法により制御された配向性を有するアルミ
ナ短繊維で強化されたアルミニウム合金のファンブレー
ドを得ることができた。
By this method, an aluminum alloy fan blade reinforced with short alumina fibers with controlled orientation could be obtained.

(実施例5) 炭化ケイ素を膜厚さ約50μmにコーティングさせた炭
素の短繊維で平均長さ3市のらのを平均粒径0.7μm
の炭化ケイ素粉と混合し、フェノール樹脂前駆体を含む
水溶液と体積比で50 : 50に混合して十分混練し
て原料を得た。この混しよう原料の見掛粘度は約100
 poiseであった。第10図の形状を有し、孔の最
小間隙が0.In+nである押し出しダイスを用いて、
上記原料の曳糸を行い、糸状成形体を得た。このような
糸状成形体を円筒形のマンドレル上に巻きつけ、ガスタ
ービン燃焼器内筒形状の成形体を得た。この成形体を2
00℃まで加熱してフェノール樹脂を硬化させた後、マ
ドレルを抜き、その後、メチルクロロシラン−水素混合
ガスを反応ガスとして用い、加熱した成形体の空隙中に
炭化ケイ素を母材質として形成させた。このような方法
により選択配向した短繊維により強化された炭化ケイ素
セラミックスの燃焼器内筒部品を得た。
(Example 5) Short carbon fibers coated with silicon carbide to a film thickness of approximately 50 μm, with an average length of 3 pieces and an average particle size of 0.7 μm.
The mixture was mixed with silicon carbide powder, and mixed with an aqueous solution containing a phenol resin precursor at a volume ratio of 50:50, and sufficiently kneaded to obtain a raw material. The apparent viscosity of this raw material to be mixed is approximately 100
It was poise. It has the shape shown in FIG. 10, and the minimum gap between the holes is 0. Using an extrusion die that is In+n,
The above raw material was threaded to obtain a thread-like molded body. Such a filamentous molded body was wound around a cylindrical mandrel to obtain a molded body in the shape of a gas turbine combustor inner cylinder. This molded body is 2
After curing the phenolic resin by heating to 00° C., the madrel was removed, and then methylchlorosilane-hydrogen mixed gas was used as a reaction gas to form silicon carbide as a base material in the voids of the heated molded body. By this method, a combustor inner cylinder part made of silicon carbide ceramics reinforced with selectively oriented short fibers was obtained.

(実施例6) 実施例3と同じ炭化ケイ素ウィスカー、炭化ケイ素粉、
並びに焼結助剤の組み合せからなる混合系に対して、低
分子量ポリプロピレン系樹脂を主成分とする成形助剤を
加えて150℃にて30分間加熱混練した後、第20図
に示す集合ノズル22(ノズル径1mm、ノズル数19
個)を用いて押し出しつつ曳糸を行った。これにより、
径約0.05IIの糸状成形体の並行集束体を得、これ
に更によりをかけながら紡いで撚糸集束体を得た。この
集束体23を中間成形体として用いて、第21図(a)
〜(d)に示すように鋼製の円筒形マンドレル24上に
巻きつけ、第1層(a)は円筒軸直交方向に対して+3
0°、第2層(b)は0°、第3層(C)は−30°、
第4層fd)はOo等となるように所定の厚さとなるの
まで繰り返し、積層成形体25を得た。この積層成形体
上、に薄いゴム膜を被覆した後、ポリプロピレン樹脂系
成形助剤の軟化点近傍の100℃にて温間静水圧プレス
を行い一体成形体を得た。室温に冷却後、ゴム膜を除去
し、500℃まで加熱して成形助剤を熱分解除去し、マ
ンドレルを取り除いた。この成形体の空隙に実施例3と
同じくポリカーポジランによる含浸処理3回を施し、そ
の後、熱間等方圧プレスによる圧密を行った。このよう
にして制御された選択配向性を有する炭化ケイ素ウィス
カにより補強され、炭化ケイ素を母材質とする燃焼器部
品を得た。
(Example 6) Same silicon carbide whiskers as Example 3, silicon carbide powder,
A molding aid mainly composed of a low molecular weight polypropylene resin was added to the mixed system consisting of the combination of the sintering aid and the sintering aid, and the mixture was heated and kneaded at 150° C. for 30 minutes, and then the collective nozzle 22 shown in FIG. (Nozzle diameter 1mm, number of nozzles 19
Threading was performed while extruding using a This results in
A parallel bundle of filament shaped bodies having a diameter of about 0.05 II was obtained, and this was further twisted and spun to obtain a twisted yarn bundle. Using this bundle 23 as an intermediate molded body, as shown in FIG. 21(a),
~ As shown in (d), the first layer (a) is wound on a steel cylindrical mandrel 24 at +3 with respect to the direction perpendicular to the cylinder axis.
0°, the second layer (b) is 0°, the third layer (C) is -30°,
The fourth layer fd) was repeated until it reached a predetermined thickness such as Oo, and a laminate molded product 25 was obtained. A thin rubber film was coated on this laminate molded product, and then warm isostatic pressing was performed at 100° C., which is near the softening point of the polypropylene resin molding aid, to obtain an integral molded product. After cooling to room temperature, the rubber film was removed, and the molding aid was thermally decomposed and removed by heating to 500° C., and the mandrel was removed. The voids of this molded body were impregnated with polycarposilan three times in the same manner as in Example 3, and then compacted by hot isostatic pressing. In this way, a combustor component reinforced with silicon carbide whiskers having controlled selective orientation and having silicon carbide as the base material was obtained.

(実施例7) 実施例6と同じ糸状集束体23を中間成形体とし、これ
を第22図に示すように円筒形芯金26上に巻き付けて
中空円板27を形成させると同時に半径方向にも翼形状
の集束成形体28を構成させ、3次元織物状のタービン
ロータ形状の積層成形体29を得た。この成形体に実施
例6と同じ温間静水圧プレス処理を行って一体成形体と
した後、成形助剤を加熱除去し、実施例5と同じメチル
クロロシラン−水素混合ガスを反応ガスとする炭化ケイ
素母材質の含浸形成を行なった。このような方法により
3次元形状に按分された選択配向性を有する炭化ケイ素
ウィスカにより補強され、炭化ケイ素を母材質とする超
高温用高強度高靭性タービンロータを得ることができた
(Example 7) The same filament bundle 23 as in Example 6 was used as an intermediate molded body, and as shown in FIG. 22, this was wound around a cylindrical core metal 26 to form a hollow disc 27. A blade-shaped bundled molded body 28 was also constructed, and a three-dimensional fabric-like turbine rotor-shaped laminated molded body 29 was obtained. This molded body was subjected to the same warm isostatic press treatment as in Example 6 to form an integral molded body, the molding aid was removed by heating, and carbonization was performed using the same methylchlorosilane-hydrogen mixed gas as in Example 5 as the reaction gas. Impregnation formation of silicon matrix material was carried out. By such a method, it was possible to obtain a high-strength, high-toughness turbine rotor for ultra-high temperatures, which is reinforced with silicon carbide whiskers having a selective orientation proportionally divided into three-dimensional shapes and whose base material is silicon carbide.

(実施例8) 実施例3で示される方法により得られた炭化ケイ素ウィ
スカが一方向に選択配向した膜状中間成形体及び実施例
6で示される方法により得られた炭化ケイ素ウィスカが
一方向に選択配向した糸状中間成形体を用い第23図(
a)〜(e)に示すように、円筒形芯金30上に積層し
、成形体を形成させた。即ち、第1層(a)は糸状中間
成形体31を円筒軸と直角方向(0°)に巻き取り、第
2層(b)は膜状中間成形体32を、45゛のバイアス
角度として積層、第3層(C)は膜状中間成形体32を
バイアス角度90°として積層し、また第4層(d)を
第2層(b)のバイアス角度と逆にバイアス角度をもた
せて膜状中間成形体32を巻き付け、第5層(e)と゛
して、第1層(a)と同様に糸状中間成形体32を巻き
付け、これら積層を繰り返した。
(Example 8) A film-like intermediate molded product in which silicon carbide whiskers obtained by the method shown in Example 3 are selectively oriented in one direction, and a film-like intermediate formed body in which silicon carbide whiskers obtained by the method shown in Example 6 are selectively oriented in one direction. Figure 23 (
As shown in a) to (e), they were laminated on a cylindrical core metal 30 to form a molded body. That is, in the first layer (a), the thread-like intermediate molded body 31 is wound in a direction (0°) perpendicular to the cylinder axis, and in the second layer (b), the film-like intermediate molded body 32 is laminated at a bias angle of 45°. , the third layer (C) is formed by laminating the film-like intermediate molded bodies 32 at a bias angle of 90°, and the fourth layer (d) is formed by laminating the film-like intermediate molded bodies 32 at a bias angle opposite to that of the second layer (b). The intermediate molded body 32 was wound around to form a fifth layer (e), and the filamentous intermediate molded body 32 was wound in the same manner as the first layer (a), and these laminations were repeated.

その後、実施例6と同じ温間静水圧プレス処理、ポリカ
ーポジラン含浸処理および熱間等方圧プレス処理を経て
、制御された選択配向性を有する炭化ケイ素ウィスカに
より補強され、炭化ケイ素を母材質とする高温部品を得
な。
After that, through the same warm isostatic pressing treatment, polycarposilan impregnation treatment, and hot isostatic pressing treatment as in Example 6, the silicon carbide is reinforced with silicon carbide whiskers having a controlled selective orientation, and the silicon carbide is transformed into a base material. Obtain high temperature parts.

(実施例9) 実施例1に示した方法により得られる炭化ウィスカが一
方向に配向した膜状中間成形体を用い、第24図(a)
、 (b)、 (c) ニ示すように、繊維33の選択
方向を成形体34の場所によって変化させ、かつ積層−
層毎に位相をずらせつつ基板上に積層を行った。所定の
厚さと形状の積層成形体が得られた後、成形助剤の軟化
点近傍の80°Cにてプレス処理を行い、積層膜が一体
化された成形体を得た。
(Example 9) Using a film-like intermediate molded body in which carbonized whiskers were oriented in one direction, obtained by the method shown in Example 1, as shown in FIG. 24(a).
, (b) and (c), the selection direction of the fibers 33 is changed depending on the location of the molded body 34, and the lamination
Lamination was performed on the substrate while shifting the phase of each layer. After obtaining a laminate molded product having a predetermined thickness and shape, a press treatment was performed at 80° C. near the softening point of the molding aid to obtain a molded product in which the laminate film was integrated.

その後、実施例1と同じ方法にて脱脂及びホットプレス
焼結を行い、制御された配向方向を有する炭化ケイ素ウ
ィスカにより補強され、窒化ケイ素系セラミックスを母
材質とするタービン用高温ライナ部品を得た。
Thereafter, degreasing and hot press sintering were performed in the same manner as in Example 1 to obtain a high-temperature turbine liner component reinforced with silicon carbide whiskers having a controlled orientation direction and having silicon nitride ceramic as the base material. .

[発明の効果j 以上説明したように本発明によれば次のごとき優れた効
果を発揮する。
[Effects of the Invention j As explained above, the present invention exhibits the following excellent effects.

■ セラミックスまたは金属のどのような材質の母材質
に対しても最適な短M&維を選定して、複合材料および
同部品として形造ることができる。
■ It is possible to select the most suitable short M&fiber for any base material, ceramic or metal, and form it into composite materials and parts.

このような複合材料化により、高強度高剛性の短繊維が
母材を補強して強度を著しく向上させることも可能とな
り、あるいは母材中の短繊維が亀裂の進展を阻害して靭
性を著しく向上させることも可能となる。
By creating such composite materials, it is possible for high-strength, high-rigidity short fibers to reinforce the base material and significantly improve its strength, or short fibers in the base material can inhibit crack propagation and significantly improve toughness. It is also possible to improve it.

■ 部品としての構造強度状必要な方位に短繊維を選択
配向させつつ、任意の複雑精密形状を形造ることができ
る。特に部品内の多軸強度分布を按分により制御するこ
とができる。
■ Structural strength as a component It is possible to form arbitrary complex and precise shapes while selectively orienting the short fibers in the required direction. In particular, the multiaxial strength distribution within the component can be controlled by apportionment.

■ 中間成形体として膜状又は板状、ないしは糸状よな
は棒状のものを用い、これを所定の短繊維配向方向と所
定の寸法形状に加工を行う等して積層あるいは集束し、
所定の繊維配向性を持った成形体形状を得る方式を取る
なめ、中間成形体の段階では量産が可能で、かつ成形体
のF2はでは大量生産の場合だけでなく多品種少欲生産
にも対応できる。
■ Film-like, plate-like, thread-like, or rod-like products are used as intermediate compacts, which are laminated or bundled by processing into a predetermined short fiber orientation direction and predetermined size and shape;
By adopting a method to obtain a molded body shape with a predetermined fiber orientation, mass production is possible at the intermediate molding stage, and the molded body F2 is suitable not only for mass production but also for high-mix low-volume production. can.

■ 短la雌を含む原料に剪断力を負荷して短繊維を選
択配向させ、かつその際剪断力を負荷するための治具と
しての側壁の間隙や形状を短繊維の長さに対して所定の
条件を満足するように選定するため、短繊維が十分に一
方向に選択配向したWAまたは板、ないし糸または棒が
得られる。
■ Apply shearing force to the raw material containing short laminated fibers to selectively orient the short fibers, and at this time, set the gap and shape of the side wall as a jig for applying the shearing force to a predetermined value based on the length of the short fibers. Since the selection is made so as to satisfy the following conditions, a WA or plate, thread or rod in which short fibers are sufficiently selectively oriented in one direction can be obtained.

■ 母材質を形成すべき粉体を予め補強用短繊維と混合
して原料とし、成形した後焼結等によって母材質形成を
行わせる場合にも、短繊維が十分に一方向に選択配向し
た膜または板、ないし糸または棒の積層あるいは集束し
た成形体であるため、焼結収縮の方向と量が制御でき、
高品質で寸法制度も高い部品が得られる。
■ Even when the powder to form the base material is mixed in advance with reinforcing short fibers as a raw material, and the base material is formed by sintering after molding, the short fibers are sufficiently selectively oriented in one direction. Because it is a laminated or bundled formed body of membranes, plates, threads, or rods, the direction and amount of sintering shrinkage can be controlled.
High quality parts with high dimensional accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する説明図、第2〜4図は
本発明の詳細な説明する概略図、第5〜15図は、本発
明の第2工程の各側を示す断面図、第16図は第2工程
で得られる中間成形体を圧縮する例を説明する平面図、
第17図は第16図の正面断面図、第18〜24図は本
発明の複合体を形成する工程の具体的な例を示す図であ
る。 図中、5は配向性短繊維強化筏合体、6は短!a雌、9
 ハ原IJ!、10LLftlllu、11は中間成形
体である。 第1図 (a) (b) (a) 第1 図 (b) 第5図 第6図 第7図 第12図 哨13図 第 6図 第 8図 第20図 第2 図
Fig. 1 is an explanatory diagram explaining the present invention in detail, Figs. 2 to 4 are schematic diagrams explaining the invention in detail, and Figs. 5 to 15 are sectional views showing each side of the second step of the invention. , FIG. 16 is a plan view illustrating an example of compressing the intermediate molded product obtained in the second step,
FIG. 17 is a front sectional view of FIG. 16, and FIGS. 18 to 24 are diagrams showing specific examples of steps for forming the composite of the present invention. In the figure, 5 is a combination of oriented short fiber reinforced rafts, and 6 is short! a female, 9
Hahara IJ! , 10LLftllu, 11 is an intermediate molded body. Fig. 1 (a) (b) (a) Fig. 1 (b) Fig. 5 Fig. 6 Fig. 7 Fig. 12 Fig. 13 Fig. 6 Fig. 8 Fig. 20 Fig. 2

Claims (8)

【特許請求の範囲】[Claims] 1.補強用短繊維と成形助剤とを含む原料に外部より剪
断力を負荷して上記補強用短繊維を選択配向させた中間
成形体を製造し、該中間成形体を積層あるいは集束して
一体成形体とした後、その積層あるいは集束成形体中に
母材質を形成することからなる配向性短繊維強化複合体
の製造方法。
1. A shearing force is externally applied to a raw material containing reinforcing short fibers and a forming aid to selectively orient the reinforcing short fibers to produce an intermediate molded body, and the intermediate molded body is laminated or bundled to form an integral body. A method for producing an oriented short fiber-reinforced composite comprising forming a base material into a laminated or bundled molded body after forming a composite body.
2.側壁間で原料を強制的に流動させて原料に剪断力を
負荷させる請求項1に記載の配向性短繊維強化複合体の
製造方法。
2. 2. The method for producing an oriented short fiber reinforced composite according to claim 1, wherein the raw material is forced to flow between the side walls and a shearing force is applied to the raw material.
3.相対的に異なった速度で移動する側壁間で、原料を
強制的に変形させて原料に剪断力を負荷させる請求項1
記載の配向性短繊維強化複合体の製造方法。
3. Claim 1: A shearing force is applied to the raw material by forcibly deforming the raw material between the side walls moving at relatively different speeds.
The method for producing the oriented short fiber reinforced composite as described above.
4.相対的に異なった速度で移動する側壁間で原料を強
制的に変形させると共に、強制的に流動をも行わせて原
料に剪断力を負荷させる請求項1記載の配向性短繊維強
化複合体の製造方法。
4. The oriented short fiber reinforced composite according to claim 1, wherein the raw material is forcibly deformed between the side walls moving at relatively different speeds, and the raw material is also forced to flow to apply a shearing force to the raw material. Production method.
5.中間成形体として積層あるいは集束したものが、複
合体の機械的特性に方向性を与えるべく、一つ毎に選定
された短繊維配向方向と選定された寸法形状とを有して
いる中間成形体の膜または板あるいは糸または棒の複数
箇を積層または集束すると共にこれを一体化して成形体
の形状を得ることからなる請求項1記載の配向性短繊維
強化複合体の製造方法。
5. An intermediate molded product that is laminated or bundled as an intermediate molded product and has a short fiber orientation direction selected for each piece and a selected size and shape so as to give directionality to the mechanical properties of the composite. 2. The method for producing an oriented short fiber reinforced composite according to claim 1, which comprises laminating or converging a plurality of membranes, plates, threads, or rods and integrating them to obtain the shape of a molded body.
6.原料が母材質を形成すべき粉体を含むものである請
求項1記載の配向性短繊維強化複合体の製造方法。
6. 2. The method for producing an oriented short fiber reinforced composite according to claim 1, wherein the raw material contains a powder to form a base material.
7.母材質がセラミックスであることからなる請求項6
記載の配向性短繊維強化複合体の製造方法。
7. Claim 6 wherein the base material is ceramics.
The method for producing the oriented short fiber reinforced composite as described above.
8.母材質が金属または金属間化合物であることからな
る請求項6記載の配向性短繊維強化複合体の製造方法。
8. 7. The method for producing an oriented short fiber reinforced composite according to claim 6, wherein the base material is a metal or an intermetallic compound.
JP1084650A 1989-04-05 1989-04-05 Method for producing oriented short fiber reinforced composite Expired - Fee Related JP2620366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084650A JP2620366B2 (en) 1989-04-05 1989-04-05 Method for producing oriented short fiber reinforced composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084650A JP2620366B2 (en) 1989-04-05 1989-04-05 Method for producing oriented short fiber reinforced composite

Publications (2)

Publication Number Publication Date
JPH02263768A true JPH02263768A (en) 1990-10-26
JP2620366B2 JP2620366B2 (en) 1997-06-11

Family

ID=13836584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084650A Expired - Fee Related JP2620366B2 (en) 1989-04-05 1989-04-05 Method for producing oriented short fiber reinforced composite

Country Status (1)

Country Link
JP (1) JP2620366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182363A (en) * 1990-11-13 1992-06-29 Tsumoru Hatayama Ceramic composite material
JP2005263537A (en) * 2004-03-17 2005-09-29 Rikogaku Shinkokai Method for manufacturing porous ceramic body having through-hole

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182363A (en) * 1990-11-13 1992-06-29 Tsumoru Hatayama Ceramic composite material
JP2005263537A (en) * 2004-03-17 2005-09-29 Rikogaku Shinkokai Method for manufacturing porous ceramic body having through-hole
JP4669925B2 (en) * 2004-03-17 2011-04-13 国立大学法人東京工業大学 Method for producing ceramic porous body having through hole

Also Published As

Publication number Publication date
JP2620366B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US6899777B2 (en) Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
EP0536264B1 (en) A process for manufacturing reinforced composites and filament material for use in said process
US6803003B2 (en) Compositions and methods for preparing multiple-component composite materials
US5645781A (en) Process for preparing textured ceramic composites
US6797220B2 (en) Methods for preparation of three-dimensional bodies
JP2950902B2 (en) Consolidated member, method of manufacturing the same, and preform
Kotani et al. Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite
WO2016132821A1 (en) Method for manfacturing ceramic-based composite material
JP4795600B2 (en) Continuous composite coextrusion method, apparatus, and composition
CN111636040B (en) 3D reinforced aluminum matrix composite material with controllable structure and preparation method thereof
US5443770A (en) High toughness carbide ceramics by slip casting and method thereof
小谷政規 et al. Fabrication and oxidation-resistance property of allylhydridopolycarbosilane-derived SiC/SiC composites
WO2001053059A1 (en) Method for fabricating ceramic composites, fibrous ceramic monoliths
JPH02263768A (en) Production of orientative short fiber-reinforcing composite body
JPH07223876A (en) Fiber-reinforced composite material, production thereof and member using the same
US11274066B1 (en) Ceramic armor and other structures manufactured using ceramic nano-pastes
JPH02196071A (en) Production of fiber reinforced ceramic composite material and pioneer structure
KR101956683B1 (en) Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler
Gohil et al. Emerging techniques for waste residue composites
Samanta et al. Processing of Composites with Metallic, Ceramic, and Polymeric Matrices
Singh et al. Different Techniques for Designing and Fabrication of Advanced Composite Materials
King The influence of architecture on the elasticity and strength of Si (3) N (4)/BN fibrous-monolithic ceramic laminates
JP4183162B2 (en) Composite structure
Kim et al. Mullite (3Al2O3· 2SiO2)–Aluminum Phosphate (AlPO4), Oxide, Fibrous Monolithic Composites
Halbig et al. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees