JPH02263630A - Multi-layered circuit substrate - Google Patents

Multi-layered circuit substrate

Info

Publication number
JPH02263630A
JPH02263630A JP1084830A JP8483089A JPH02263630A JP H02263630 A JPH02263630 A JP H02263630A JP 1084830 A JP1084830 A JP 1084830A JP 8483089 A JP8483089 A JP 8483089A JP H02263630 A JPH02263630 A JP H02263630A
Authority
JP
Japan
Prior art keywords
organic
ceramic
resin
substrate
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1084830A
Other languages
Japanese (ja)
Other versions
JP2644885B2 (en
Inventor
Koichi Shinohara
浩一 篠原
Tsuneyuki Kanai
恒行 金井
Akira Nagai
晃 永井
Hideo Suzuki
秀夫 鈴木
Hironori Kodama
弘則 児玉
Masahide Okamoto
正英 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1084830A priority Critical patent/JP2644885B2/en
Publication of JPH02263630A publication Critical patent/JPH02263630A/en
Application granted granted Critical
Publication of JP2644885B2 publication Critical patent/JP2644885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To obtain a multi-layered circuit substrate for mounting electric parts using a ceramic supper conductor having a less reactive property to an insulation substrate by adapting, in a supper conductor as a conductor, an organic substance to an insulation body or holding body in contact with the supper conductor. CONSTITUTION:A glass cloth 3 comprising SiO2 or the like is immersed with varnish of non-cured epoxy resin, and dried in a thermostatic bath then so as to obtain prepreg sheets. The specified number of, these prepregs are laminated and adhered to one another and bonded by press under heating, thereby manufacturing an organic substrate. Both sides of the organic substrate are subjected to masking in a part, and a perovskite ceramic supper conductor layer 3 of Bi-Sr-Ca-Cu-O having Bi2Sr2CaCu2Ox is formed by the use of laser sputtering method. Following this, the prepregs comprising the manufactured epoxy organic substrate and non-cured epoxy resin are held alternately in order to be tightly adhered and laminated thereon, further, board by means of a drilling, and subjected to copper coating, and then formed with a through hole therein, thus making an electric source substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な多層回路板に係り、特にセラミック系
の超伝導体を用いた電子部品搭載用多層回路板に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel multilayer circuit board, and particularly to a multilayer circuit board for mounting electronic components using a ceramic superconductor.

〔従来の技術〕[Conventional technology]

従来、AQzOs+ MgO,Zr0z等のセラミック
スを絶縁材料とし、セラミック超電導材料(Y−Ba−
Cu−0系等)を配線導体としたセラミック回路基板ま
たは集積回路は得られている。
Conventionally, ceramics such as AQzOs+ MgO, Zr0z, etc. were used as insulating materials, and ceramic superconducting materials (Y-Ba-
Ceramic circuit boards or integrated circuits using Cu-0 series etc.) as wiring conductors have been obtained.

また、セラミック超電導体の粉末を有機物で結合したよ
うな複合材料も得られている。特開昭63−26374
5号公報には超伝導材と常電導材との複合材からなる配
線材が開示されている。
Composite materials have also been obtained in which ceramic superconductor powder is bonded with organic substances. Japanese Patent Publication No. 63-26374
No. 5 discloses a wiring material made of a composite material of a superconducting material and a normal conducting material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来配線導体としてセラミック超電導材料を適用し、絶
縁材料をセラミックとした電子材料の問題点は、セラミ
ック超電導体が非常に反応性に富み、容易に絶縁材料の
セラミックと反応してセラミック超電導体の超電導性を
失ってしまうことにある。特にセラミック多層回路基板
を作製する時には、セラミック超電導体の適正焼成温度
が1000℃付近にあるため、同時焼結のためには絶縁
材料も1000℃付近で焼結する必要がある。そして、
この温度付近で焼結可能なセラミック絶縁材料としては
、ホウケイ酸ガラスを含んだものが多い。
Conventionally, the problem with electronic materials in which ceramic superconducting materials are applied as wiring conductors and ceramic is used as insulating materials is that ceramic superconductors are highly reactive and easily react with the ceramic insulating material, causing the superconducting of ceramic superconductors to occur. It lies in losing one's sexuality. In particular, when producing a ceramic multilayer circuit board, since the appropriate firing temperature for ceramic superconductors is around 1000°C, it is necessary to sinter the insulating material at around 1000°C for simultaneous sintering. and,
Many ceramic insulating materials that can be sintered at around this temperature include borosilicate glass.

しかしこの系のガラスはセラミック超電導材料と反応し
て、セラミック超電導体の超電導性を失わせやすい問題
がある。つまり、セラミック超電導体を適用した電子部
品に絶縁材料としてセラミックを選んだのでは、セラミ
ック絶縁材料が非常に制限され、セラミック超電導体を
適用した電子部品を得る障害となっていた。
However, this type of glass tends to react with ceramic superconducting materials, causing the ceramic superconductor to lose its superconductivity. In other words, if ceramic was chosen as the insulating material for electronic components to which ceramic superconductors were applied, the ceramic insulating material would be extremely limited, and this would be an obstacle to obtaining electronic components to which ceramic superconductors were applied.

本発明の目的は、絶縁基板との反応性の少ないセラミッ
ク超電導体を適用した電子部品搭載用多層回路基板を提
供するにある。
An object of the present invention is to provide a multilayer circuit board for mounting electronic components to which a ceramic superconductor having low reactivity with an insulating substrate is applied.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、導体として超電導体を、その超電導体に接す
る絶縁体または保持体に有機物を適用した電子部品を搭
載する多層回路基板にある。
The present invention resides in a multilayer circuit board on which electronic components are mounted, in which a superconductor is used as a conductor and an organic material is applied to an insulator or a holder in contact with the superconductor.

セラミック超電導材料を電子部品に適用することを困難
にしている。原因は、セラミック超電導材料がセラミッ
クとの反応性が高く、反応して超電導性を失ってしまう
ことにある。そこでセラミック超電導体を適用するため
のセラミック超電導体に接する絶縁材として有機物を適
用した。
This makes it difficult to apply ceramic superconducting materials to electronic components. The cause is that ceramic superconducting materials are highly reactive with ceramics, and they react and lose their superconductivity. Therefore, we applied an organic substance as an insulating material in contact with the ceramic superconductor.

有機物は一般的に良質な絶縁体であり、セラミックと有
機物は反応性はほとんどない。また有機物とセラミック
は比較的強固に接合できる。そして、セラミック超電導
体はセラミックス中では比較的熱膨張係数が大きいが、
この点に関しては有機物は一般に熱膨張係数が大きく、
セラミック超電導体との適合性が良い。
Organic materials are generally good insulators, and ceramics and organic materials have almost no reactivity. Furthermore, organic substances and ceramics can be bonded relatively firmly. Ceramic superconductors have a relatively large coefficient of thermal expansion among ceramics, but
In this regard, organic materials generally have a large coefficient of thermal expansion;
Good compatibility with ceramic superconductors.

超電導体に接している部分に有機物があればよいのであ
って、素子または基板等の電子材料全体を有機物で構成
する必要はない。つまり、はとんどすべてをセラミック
スまたは金属で構成し、接触部を有機物としてもよい。
It is sufficient that the organic material is present in the portion that is in contact with the superconductor, and it is not necessary that the entire electronic material such as the element or the substrate be made of the organic material. In other words, almost all of the parts may be made of ceramic or metal, and the contact parts may be made of organic material.

またジョセフソン接合部の作製は、絶縁層に有機物を適
用する以外に、セラミック超電導体の超電導性を失わせ
るような物質、例えばS i Oz。
In addition to applying an organic substance to the insulating layer, the Josephson junction can also be fabricated using a substance that causes the ceramic superconductor to lose its superconductivity, such as SiOz.

Booδを含んだガラスを数人程度ジョセフソン接合部
に塗布し、セラミック超電導体のジョセフソン接合部付
近のみの超電導性を失わせるような方法で作製してもよ
い。
The ceramic superconductor may be manufactured by applying a glass containing Boo δ to the Josephson junction by a method such that the superconductivity is lost only in the vicinity of the Josephson junction of the ceramic superconductor.

ジョセフソン素子のジョセフソン接合部の絶縁体として
の有機薄膜の形成法としてLB法(ラングミュア・プロ
ジェット法)またはプラズマ重合法が適用され、ジョセ
フソン素子のジョセフソン接合部の有機薄膜は、単分子
膜または単分子を複数積層したジョセフソン素子とする
のが好ましい。
The LB method (Langmuir-Prodgett method) or plasma polymerization method is applied as a method for forming an organic thin film as an insulator at the Josephson junction of a Josephson element. It is preferable to use a Josephson device in which a plurality of molecular films or single molecules are laminated.

更に、ジョセフソン素子のジョセフソン接合部の有機薄
膜の厚さが5〜100人であるのが好ましい。
Furthermore, it is preferable that the thickness of the organic thin film at the Josephson junction of the Josephson device is 5 to 100 nm thick.

またセラミック超電導体と有機物を接合すると一般に有
機物の方が熱膨張係数が大きいため、接合した後に液体
窒素中で冷却すると、セラミックに圧縮応力が、有機物
に引張応力が働く。このことは、引張りに強い有機物に
引張りが、圧縮に強いセラミックに圧縮が働くことにな
り信頼性上好ましいことである。ここで使用する有機物
は、有機物単独であっても、ガラスクロスまたはセラミ
ック粉末等のフィシを含んだ有機複合材であってもよい
が、この有機複合材も含めた有機物とセラミック超電導
体の熱膨張係数差は、接着性等の熱サイクルでの信頼性
から考えて約1×1O−117℃以下に抑えた方がよい
Furthermore, when a ceramic superconductor and an organic substance are bonded together, the organic substance generally has a larger coefficient of thermal expansion, so when the ceramic superconductor and the organic substance are cooled in liquid nitrogen after being bonded, compressive stress acts on the ceramic and tensile stress acts on the organic substance. This is preferable in terms of reliability, since tension acts on the organic material, which is strong in tension, and compression acts on the ceramic, which is strong in compression. The organic substance used here may be an organic substance alone or an organic composite material containing fibers such as glass cloth or ceramic powder, but the thermal expansion of the organic substance including this organic composite material and the ceramic superconductor It is better to suppress the coefficient difference to about 1×1 O−117° C. or less in consideration of reliability in thermal cycles such as adhesion.

なお、本発明に適用可能なペロブスカイト型超電導体は
、Y−Ba−Cu−0系、B1−8r−Ca −Cu−
0系、 TQ−Ba−Ca−Cu−0系を基本組成とす
るが、その他5モル%以下程度の少量のアルカリ金gt
FiJ!化物(LizO,NazO。
Note that perovskite superconductors applicable to the present invention include Y-Ba-Cu-0 series, B1-8r-Ca-Cu-
0 series, TQ-Ba-Ca-Cu-0 series is the basic composition, but in addition, a small amount of alkali gold gt of about 5 mol% or less
FiJ! compounds (LizO, NazO.

KzO)、アルカリ土類全厚酸化物(BeO,MgO。KzO), alkaline earth full thickness oxides (BeO, MgO.

Cab、Bad、5rO)、希土類元素酸化物及びSi
、B、AQ等のその他の元素が含まれていてもよい、超
伝導材料の臨界温度は液体窒素の沸点以上又はその電気
抵抗率は1μΩ1以下がよい。
Cab, Bad, 5rO), rare earth element oxides and Si
The critical temperature of the superconducting material, which may contain other elements such as , B, and AQ, is preferably higher than the boiling point of liquid nitrogen, and the electrical resistivity thereof is preferably 1 μΩ1 or lower.

セラミック超電導体に接する有機薄膜の作製法としては
、マスクし、又はマスクなしでラングミュア・プロジェ
ット法の他に熱蒸着1分子ビームエピタキシ、液相エピ
タキシ、融液エピタキシ。
Methods for producing organic thin films in contact with ceramic superconductors include the Langmuir-Prodgett method with or without a mask, thermal evaporation single molecule beam epitaxy, liquid phase epitaxy, and melt epitaxy.

イオンブレーティング、イオン打込み、クラスタイオン
ビーム、レーザスパッタリング、CVD。
Ion brating, ion implantation, cluster ion beam, laser sputtering, CVD.

蒸着、電解重合法等がある。また、このようにして得ら
れた有機物シートを展伸して結晶性を向上させておくこ
とが、超電導材料の特性を向上する上で特に望ましい。
There are methods such as vapor deposition and electrolytic polymerization. Furthermore, it is particularly desirable to improve the crystallinity of the organic material sheet obtained in this manner by stretching it in advance, in order to improve the properties of the superconducting material.

電源基板の臨界電流密度は1万A/−以上がよい。The critical current density of the power supply board is preferably 10,000 A/- or more.

〔作用〕[Effect]

導体としてセラミック系超電導体または有機系超電導体
を、その超電導体に接する絶縁体または。
A ceramic superconductor or an organic superconductor as a conductor, and an insulator or an insulator in contact with the superconductor.

保持体として有機物を適用した。有機物とセラミック系
超電導体または有機系超電導体は、反応して超電導性を
失わせることはない、また有機物とセラミック超電導体
、有機物と有機系超電導体は。
Organic matter was applied as a carrier. Organic substances and ceramic superconductors or organic superconductors do not react and lose their superconductivity, nor do organic substances and ceramic superconductors or organic substances and organic superconductors.

比較的強固に接着できるため、セラミック超電導体また
は有機系超電導体を適用した多層回路板を得ることがで
きる。
Since it can be bonded relatively firmly, a multilayer circuit board to which a ceramic superconductor or an organic superconductor is applied can be obtained.

〔実施例〕〔Example〕

(実施例1) 成分としてMgO,CaO,Ag2O3,B20δ。 (Example 1) Ingredients are MgO, CaO, Ag2O3, B20δ.

SiOx等からなるガラスクロスに硬化前のエポキシ樹
脂のワニスを含浸させ、恒温槽中で乾燥し、プリプレグ
シートを得た。得られたプリプレグを所定枚数重ね加圧
加熱下でプレスにより積層、接着してエポキシ系有機基
板を作製した。なお、本実施例ではフィシとしてガラス
クロスを適用したが、その他にもA Q z○3または
5iOz等の粉末や繊維であってもよい。
A glass cloth made of SiOx or the like was impregnated with epoxy resin varnish before curing and dried in a constant temperature bath to obtain a prepreg sheet. A predetermined number of the obtained prepregs were laminated and bonded by pressing under pressure and heat to produce an epoxy organic substrate. In this example, glass cloth was used as the fiber, but powder or fiber such as AQ z○3 or 5iOz may also be used.

次にこの有機基板の両面に一部マスクをし、レーザース
パッタ法を用いて、BizSrzCaCuzOx (x
 弁8)の組成を有するB1−5r−Ca−Cu−0系
のペロブスカイト型セラミック超電導体層を形成した。
Next, both sides of this organic substrate are partially masked and BizSrzCaCuzOx (x
A B1-5r-Ca-Cu-0 based perovskite ceramic superconductor layer having the composition of valve 8) was formed.

厚さは、約5μmである1本実施例では。In one embodiment, the thickness is approximately 5 μm.

B1−8r−Ca−Cu−0系のセラミック超電導体を
適用したが、その他にもY−Ba−Cu−〇系やTQ−
Ba−Ca−Cu−0系のペロブスカイト型超電導体も
適用が可能である。第1図にこのようにして作製したエ
ポキシ系有機基板の概要を示す0次に上記で作製したエ
ポキシ系有機基板と硬化前のエポキシ樹脂からなるプリ
プレグを交互にはさんで圧着して積層した。さらにドリ
ルで穴あけをし、銅メツキをしてスルーホールを形成し
た。このようにして作製した多層基板をLSIチップへ
給電をするために用いられる電源基板とした。なお、こ
の電源基板は液体窒素で冷却されている。セラミック超
電導体は、有機物との反応もなく超電導特性を失うこと
もなかった。超電導体部分は、電気抵抗が零であるため
発熱がない。
B1-8r-Ca-Cu-0 series ceramic superconductor was applied, but other types such as Y-Ba-Cu-○ series and TQ-
A Ba-Ca-Cu-0 based perovskite superconductor can also be applied. FIG. 1 shows an outline of the epoxy organic substrate thus produced. Next, the epoxy organic substrate produced above and a prepreg made of an uncured epoxy resin were alternately sandwiched and pressed together to laminate them. I then drilled a hole and plated it with copper to form a through hole. The multilayer board thus produced was used as a power supply board used to supply power to an LSI chip. Note that this power supply board is cooled with liquid nitrogen. Ceramic superconductors did not react with organic substances and did not lose their superconducting properties. The superconductor part has zero electrical resistance and therefore does not generate heat.

なお電源層を流れる電流は約1000Aであった。Note that the current flowing through the power layer was about 1000A.

またll電源基板のモジュール外からの給電は。Also, power is supplied from outside the module to the power supply board.

Cu導体によって行われる。セラミック超電導体とCu
との接合部は、直接接合したのでは熱膨張係数差に伴う
熱応力が発生して信頼性を損なうため、熱応力を緩和す
る目的で、セラミック超電導体の粉末とCuの粉末を1
:1の割合で混合し、焼結して複合化したものを作製し
た。さらにこの複合材を応力緩和材としてCuとセラミ
ック超電導体の間にはさんで接合した。熱応力緩和材と
してはその他の材料も適用が可能であるが、このような
構成とすることで、信頼性の高い接続が可能となる。第
2図に本実施例で作製した電源基板の概要を示す。
This is done by Cu conductors. Ceramic superconductor and Cu
If the joints are directly joined with the metal, thermal stress will occur due to the difference in the coefficient of thermal expansion, which will impair reliability. Therefore, in order to alleviate the thermal stress, ceramic superconductor powder and Cu powder are mixed together to reduce the thermal stress.
:1 ratio was mixed and sintered to produce a composite. Furthermore, this composite material was sandwiched and bonded between Cu and the ceramic superconductor as a stress relaxation material. Although other materials can be used as the thermal stress relieving material, this configuration allows for highly reliable connections. FIG. 2 shows an outline of the power supply board manufactured in this example.

(実施例2) 実施例1と同様にしてエポキシ系有機基板を作製した6
次に電源端子をもったCu板の一部をエツチングで取り
除きビンを差し込むための穴をあけた。そして、実施例
1と同様にしてレーザースパッタ法を用いて、Cu板上
にペロブスカイト型セラミック超電導体層を形成した。
(Example 2) An epoxy-based organic substrate was prepared in the same manner as in Example 1.
Next, a part of the Cu board with the power terminal was removed by etching and a hole was made to insert the bottle. Then, in the same manner as in Example 1, a perovskite ceramic superconductor layer was formed on the Cu plate using the laser sputtering method.

そして実施例1と同様にして、プリプレグを交互にはさ
んで積層し、さらに有機基板にスルーホールを形成した
Then, in the same manner as in Example 1, prepregs were alternately sandwiched and stacked, and through holes were further formed in the organic substrate.

このようにして作製した電源基板とモジュールをはんだ
で接続した。なお電源基板は、液体窒素で冷却されてい
る。セラミック超電導体は、有機物との反応もなく超電
導特性を失わなかった。また電源層の電流は、電気抵抗
が零の超電導体部分を流れるため発熱がない。電源層の
電流は約1000Aである。このようにCu板上にセラ
ミック超電導層を形成すると機械的な信頼性を向上させ
ることができる。第3図に本実施例で作製した電源基板
の概要を示す。
The thus produced power supply board and module were connected by solder. Note that the power supply board is cooled with liquid nitrogen. The ceramic superconductor did not react with organic matter and did not lose its superconducting properties. Furthermore, the current in the power supply layer does not generate heat because it flows through the superconductor portion, which has zero electrical resistance. The current in the power layer is about 1000A. Forming a ceramic superconducting layer on a Cu plate in this manner can improve mechanical reliability. FIG. 3 shows an outline of the power supply board manufactured in this example.

(実施例3) 実施例1と同様にしてエポキシ系有機基板を作製した。(Example 3) An epoxy organic substrate was produced in the same manner as in Example 1.

次にこの基板の両面に一部を除いてほぼ全面に厚さ約5
μmのCuメツキをした。さらにCVD法により両面の
Cu膜の上にB1−3r−Ca−Cu−0系のセラミッ
ク超電導体をCVD法により厚さ約10μmの膜を形成
した。セラミック超電導体の構造は、BizSrzCa
CuzOx (x 岬8 )または、BizSrzCa
zCuaOx (x ’= 10 )のものである。次
に実施例1と同様にして電源基板を作製した。セラミッ
ク超電導体は、脆い材料であるためN撃等で機械的引張
応力が加わった場合には、断線等の問題が発生する可能
性がある。しかし、本実施例のようにセラミック超電導
体の保護膜としてCuを用いると断線や特性の安定化な
どに対する信頼性が向上する。
Next, on both sides of this board, a thickness of about 5 mm is applied to almost the entire surface except for a part.
It was plated with μm Cu. Furthermore, a B1-3r-Ca-Cu-0 based ceramic superconductor film having a thickness of about 10 μm was formed on the Cu films on both sides by the CVD method. The structure of the ceramic superconductor is BizSrzCa
CuzOx (x Misaki8) or BizSrzCa
zCuaOx (x′=10). Next, a power supply board was produced in the same manner as in Example 1. Since ceramic superconductors are brittle materials, problems such as wire breakage may occur when mechanical tensile stress is applied, such as by N shock. However, when Cu is used as the protective film of the ceramic superconductor as in this embodiment, reliability against disconnection and stabilization of characteristics is improved.

(実施例4) 実施例1と同様にしてフッ素を含んだ有機物であるフッ
素樹脂と5iOzガラスクロスからなる有機系基板を作
製した。次にこの樹脂の表面を金属ナトリウム等のアル
カリ金属で処理しCuメツキをした。さらにエツチング
により所定の配線パターンにCu配線を形成した。次に
この基板の両面にマスクをしてスパッタ法によって、Y
−Ba−Cu−0系セラミック超電導体の膜を約1μm
形成した。セラミック超電導体の構造は、YBazCu
aO7−a(0<δ<0.3)のものである。さらにド
リルまたはレーザで穴あけをし、穴の内部をアルカリ金
属で表面処理した後にCuメツキをした。次にこのよう
にして作製した有機系基板を積層して380℃で圧着し
多層化した。さらにドリルで穴あけをし、穴の内部を表
面処理した後にCuメツキをしてスルーホールを形成し
た。そしてこの有機系多層基板を液体窒素で冷却した。
(Example 4) In the same manner as in Example 1, an organic substrate consisting of a fluororesin, which is an organic substance containing fluorine, and a 5iOz glass cloth was produced. Next, the surface of this resin was treated with an alkali metal such as metallic sodium and plated with Cu. Furthermore, Cu wiring was formed in a predetermined wiring pattern by etching. Next, with masks on both sides of this substrate, Y
-Approximately 1 μm thick Ba-Cu-0 ceramic superconductor film
Formed. The structure of the ceramic superconductor is YBazCu
aO7-a (0<δ<0.3). Further, a hole was made using a drill or laser, and the inside of the hole was surface-treated with an alkali metal, followed by Cu plating. Next, the organic substrates thus produced were stacked and pressed together at 380° C. to form a multilayer structure. Further, a hole was made with a drill, and after the inside of the hole was surface treated, Cu plating was applied to form a through hole. This organic multilayer substrate was then cooled with liquid nitrogen.

特性を測定したところセラミック超電導体の電気抵抗は
零であった。電気信号は、セラミック超電導体が電気抵
抗が零のためほとんど損失なく伝播した。
When the characteristics were measured, the electrical resistance of the ceramic superconductor was found to be zero. Electric signals propagated with almost no loss because the ceramic superconductor has zero electrical resistance.

また同様にして有機物としてイソメラミン系樹脂及びポ
リイミド系樹脂を用いて有機系多層回路基板を作製した
。さらにこの基板を液体窒素で冷却したところ、どちら
の場合もセラミック超電導体は超電導性を示した。また
電気信号はほとんど損失なく伝播した。
Similarly, an organic multilayer circuit board was fabricated using isomelamine resin and polyimide resin as organic substances. When this substrate was further cooled with liquid nitrogen, the ceramic superconductor exhibited superconductivity in both cases. Also, electrical signals propagated with almost no loss.

(実施例5) ポリイミド系脂を絶縁材とし、セラミック超電導体を配
線導体として適用した薄膜多層回路基板を作製した。ま
ずグレージングして平坦化したガラスセラミック系多層
回路基板の上にポリイミド層を塗布し、さらにリフトオ
フ層を塗布し、さらにドライエツチングマスクを形成し
た後にドライエツチングによりポリイミドに配線パター
ンを形成した。さらにレーザースパッタ法によりB1−
3r−Ca−Cu−0系のセラミック超電導体配線を形
成した。セラミック超電導体の構造はBizSrzCa
CuzOx(x ”= 8 )または、BizSrzC
azCuaOx(X″:10)のものである。さらにリ
フトオフ層を除去した。そして、この層の上に上記と同
様の方法を用いてスルーホールを形成した。次にこのよ
うな操作を複数回繰り返して多層化した。ポリイミド絶
縁体の熱膨張係数は5×10″″6 / ℃であった。
(Example 5) A thin film multilayer circuit board was manufactured using polyimide resin as an insulating material and ceramic superconductor as a wiring conductor. First, a polyimide layer was applied on a glass-ceramic multilayer circuit board that had been flattened by glazing, and then a lift-off layer was applied, and after a dry etching mask was formed, a wiring pattern was formed on the polyimide by dry etching. Furthermore, B1-
A 3r-Ca-Cu-0 ceramic superconductor wiring was formed. The structure of ceramic superconductor is BizSrzCa
CuzOx (x”=8) or BizSrzC
azCuaOx (X'': 10).The lift-off layer was further removed.Then, through holes were formed on this layer using the same method as above.Next, such operations were repeated multiple times. The polyimide insulator had a thermal expansion coefficient of 5×10″6/°C.

配線幅は20μmであり、配線高さは1μm、配線ピッ
チは60μmであった。このようにして作製した基板を
液体窒素中で冷却したところ、配線の電気抵抗は零であ
り超電導性を示した。
The wiring width was 20 μm, the wiring height was 1 μm, and the wiring pitch was 60 μm. When the substrate thus prepared was cooled in liquid nitrogen, the electrical resistance of the wiring was zero, indicating superconductivity.

電気抵抗が零であるため、電気信号はほとんど損失なく
伝播した。第4図に本実施例で作製した薄膜多層回路基
板の概要を示す。
Since the electrical resistance is zero, electrical signals propagate with almost no loss. FIG. 4 shows an outline of the thin film multilayer circuit board produced in this example.

(実施例6) セラミック系超電導材料を利用して、ジョセフソン接合
を形成した。超電導材料は1本実施例では、実施例2で
使用したB i −S r −Ca −Cu−〇系を使
用したが、YBazCuaO7−a (0<δく0.3
)のものやT1zBazCaCu20x (x ”= 
8 )やTlzBazCazCuaOx (x = 1
0 )のようなTQ−Ba−Ca−Cu−0系を基本組
成としたセラミック超電導材料は適用可能である。まず
、セラミック超電導材料の基板上にLB法(ラングミュ
ア・ブロジェット法)により厚さ数10人の有機薄膜を
形成した。有機薄膜の作製法としては、非常に薄くて均
質な膜が必要なためLB法による薄膜形成法が好ましい
。次に有機薄膜の上に、上記で使用したセラミック超電
導体の膜をレーザースパッタ法で形成した。本実施例で
は有機薄膜として、ハトデセニルカルボキシナトリウム
を適用したが、この他にも例えばハトデシニルリン酸ナ
トリウムのように親水基と疎水基をもった有機物であれ
ば適用可能である。
(Example 6) A Josephson junction was formed using a ceramic superconducting material. In this example, the B i -S r -Ca -Cu-〇 system used in Example 2 was used as the superconducting material.
) and T1zBazCaCu20x (x ”=
8) and TlzBazCazCuaOx (x = 1
Ceramic superconducting materials having a basic composition of TQ-Ba-Ca-Cu-0 such as 0) are applicable. First, an organic thin film with a thickness of several tens of layers was formed on a substrate of a ceramic superconducting material by the LB method (Langmuir-Blodgett method). As a method for producing an organic thin film, a thin film forming method using the LB method is preferable because a very thin and homogeneous film is required. Next, the ceramic superconductor film used above was formed on the organic thin film by laser sputtering. In this example, sodium hatodecenylcarboxylate was used as the organic thin film, but any other organic substance having a hydrophilic group and a hydrophobic group can be used, such as sodium hatodecenyl phosphate.

このようにして作製した素子を液体窒素中で冷却した。The device thus produced was cooled in liquid nitrogen.

セラミック超電導体は、有機物と反応して超電導特性を
失うことはなく電気抵抗は零であった。また電流電圧特
性を測定したところある電流値までは接合体の両端に電
圧は発生せず、ある電流値以上では、電圧が発生した。
The ceramic superconductor did not lose its superconducting properties by reacting with organic matter, and its electrical resistance was zero. Furthermore, when the current-voltage characteristics were measured, no voltage was generated across the bonded body up to a certain current value, but voltage was generated above a certain current value.

つまりいわゆるジョセフソン効果を示した。次にこの素
子を利用して電磁波センサ、微小電位センサ、ジョセフ
ソン接合とリング状配線から磁気センサを作製した。原
理は、現在得られている金属系超電導体と同様である。
In other words, it showed the so-called Josephson effect. Next, using this device, we created an electromagnetic wave sensor, a micropotential sensor, and a magnetic sensor using a Josephson junction and ring-shaped wiring. The principle is the same as that of currently available metallic superconductors.

つまり磁気、電磁波によって接合部に発生するジョセフ
ソン効果による電位を測定することによって検出するも
のである。第5図にセンサの原理を示す。電磁波の検出
は、マイクロ波から光波長帯までの検出が可能となる。
In other words, it is detected by measuring the potential due to the Josephson effect generated at the junction by magnetic or electromagnetic waves. Figure 5 shows the principle of the sensor. Detection of electromagnetic waves can be performed from microwaves to optical wavelengths.

(実施例7) 実施例6で作製した方法と同様にして、実施例6で使用
したセラミック超電導体と有機薄膜からなるジョセフソ
ン接合素子を形成した。第6図にこの素子の概要を示す
。さらにこのジョセフソン接合素子を応用した論理素子
を形成した。超電導体を絶縁するための有機物としては
、ポリイミド系樹脂を適用した。次にN型半導体に相当
するテトラシアノキノジメタン系有機物とP型半導体に
相当するテトラチアフルバレン系有機物を真空蒸着を用
いて接合した。さらにこの接合体の両面にセラミック超
電導体をCVD法によって形成し。
(Example 7) A Josephson junction element made of the ceramic superconductor used in Example 6 and an organic thin film was formed in the same manner as in Example 6. FIG. 6 shows an outline of this device. Furthermore, a logic element was formed by applying this Josephson junction element. Polyimide resin was used as the organic material to insulate the superconductor. Next, a tetracyanoquinodimethane-based organic material corresponding to an N-type semiconductor and a tetrathiafulvalene-based organic material corresponding to a P-type semiconductor were bonded using vacuum evaporation. Furthermore, ceramic superconductors were formed on both sides of this joined body by CVD.

ダイ、オードを作製した。また、有機物の上にセラミッ
ク超電導体配線を形成し、超電導電流を利用した記憶素
子を作製した。さらに上記のような素子を多数集積して
LSIを形成した。さらに液体窒素中で冷却して動作を
確認したところジョセフソン接合を形成している部分の
有機薄膜に、フッ素樹脂、ポリイミド等を適用した場合
には、有機物の比誘電率が今までの無機物に比較して小
さいため、スイッチング速度は今までのジョセフソン素
子より高速になった。さらにセラミック超電導体は、有
機物と接合されているため反応等によって超電導性を失
うことがなく特性の安定化が可能になった。なお素子以
外のLSI内の配線部分は、論理素子等に使用したもの
と同じセラミック超電導材料による配線が形成されてい
る。配線を絶縁している絶縁体は、ポリイミド等の有機
物であるため、超電導性を失うことがなかった。第7図
にLSI内の配線部分の概要を示す。有機物は低誘電率
であるため、配線を伝播する信号の高速化が可能である
。ジョセフソン接合部は、本実施例のLB法以外にも、
フッ素樹脂またはポリイミド等有機物のスパッタ、CV
D、蒸着等によっても形成可能である。またC2F8ガ
スによるプラズマ重合によるフッ素樹脂膜の形成も可能
である。
I made a die and an ode. Furthermore, ceramic superconductor wiring was formed on the organic material, and a memory element using superconducting current was fabricated. Furthermore, a large number of elements as described above were integrated to form an LSI. Furthermore, we confirmed the operation by cooling in liquid nitrogen and found that when fluororesin, polyimide, etc. were applied to the organic thin film forming the Josephson junction, the dielectric constant of the organic material was lower than that of the conventional inorganic material. Because it is relatively small, the switching speed is faster than conventional Josephson devices. Furthermore, since ceramic superconductors are bonded with organic substances, they do not lose their superconductivity due to reactions, etc., making it possible to stabilize their characteristics. Note that wiring portions within the LSI other than the elements are formed using the same ceramic superconducting material as that used for logic elements and the like. Since the insulator that insulated the wiring was an organic material such as polyimide, it did not lose its superconductivity. FIG. 7 shows an outline of the wiring inside the LSI. Since organic materials have a low dielectric constant, it is possible to increase the speed of signals propagated through wiring. In addition to the LB method of this example, the Josephson junction can be
Sputtering of organic materials such as fluororesin or polyimide, CV
D. It can also be formed by vapor deposition or the like. It is also possible to form a fluororesin film by plasma polymerization using C2F8 gas.

(実施例8) 展伸などの方法により一方向に結晶を配向させたポリエ
チレンの表面を有機チタン化合物等により処理しCVD
法により、セラミック系超電導膜を作製した。配向して
いる結晶の上にセラミック超電導膜を形成するとセラミ
ック系超電導体の結晶の方向がそろい、臨界電流密度の
高いセラミック超電導体を得ることができた。
(Example 8) The surface of polyethylene whose crystals were oriented in one direction by a method such as stretching was treated with an organic titanium compound, etc., and CVD was performed.
A ceramic superconducting film was fabricated using this method. By forming a ceramic superconducting film on top of the oriented crystals, the crystals of the ceramic superconductor were aligned in the same direction, making it possible to obtain a ceramic superconductor with a high critical current density.

(実施例9) 実施例4と同様にしてポリイミド樹脂とSiO2ガラス
クロスからなる有機系基板を作製した0次にこの基板上
にテトラシアノキノジメタン(TCNQ)を塗布し、フ
ォトリソグラフィ技術を用いて配線パターンを形成した
。さらにドリルまたはレーザで穴あけをし、穴の内部を
表面処理した後にpbメツキをした0次にこのようにし
て作製した有機系基板を積層して230℃で圧着し多層
化した。
(Example 9) An organic substrate made of polyimide resin and SiO2 glass cloth was prepared in the same manner as in Example 4. Next, tetracyanoquinodimethane (TCNQ) was applied onto this substrate, and photolithography was used to coat the substrate with tetracyanoquinodimethane (TCNQ). A wiring pattern was formed. Further, holes were drilled with a drill or laser, and after surface treatment of the inside of the hole, the organic substrates prepared in this manner were laminated and bonded at 230° C. to form a multilayer structure with PB plating.

さらにドリルで穴あけをし、穴の内部を表面処理した後
にpbメツキをしてスルーホールを形成した。そしてこ
の有機系多層基板を液体ヘリウムで冷却した。特性を測
定したところテトラシアノキノジメタンは、超電導性を
示し電気抵抗は零であった。有機系超電導体であるテト
ラシアノキノジメタンが電気抵抗が零のため、電気信号
はほとんど損失なく伝播した。配線と絶縁体はともに有
機物であるため接着性及び機械的衝撃に対する信頼性が
向上した。
Further, a hole was made with a drill, and after surface treatment of the inside of the hole, PB plating was applied to form a through hole. This organic multilayer substrate was then cooled with liquid helium. When its properties were measured, tetracyanoquinodimethane showed superconductivity and had zero electrical resistance. Because tetracyanoquinodimethane, an organic superconductor, has zero electrical resistance, electrical signals propagated with almost no loss. Since both the wiring and the insulator are made of organic materials, the adhesiveness and reliability against mechanical shock are improved.

〔発明の効果〕〔Effect of the invention〕

有機物を絶祢材とし、液体窒素温度で超電導性を示すセ
ラミック超電導体を適用することにより、超電導体を適
用した製造容易な電子部品搭載用の多層回路基板が得ら
れる。
By using a ceramic superconductor that uses an organic material as a highly durable material and exhibits superconductivity at liquid nitrogen temperatures, a multilayer circuit board for mounting electronic components that is easy to manufacture and uses a superconductor can be obtained.

また液体窒素で超電導性を示す超電導体を適用できるた
め、従来のように液体ヘリウム等を使用する必要がなく
、より高温で使用可能である。
Furthermore, since a superconductor that exhibits superconductivity in liquid nitrogen can be used, there is no need to use liquid helium or the like as in the past, and it can be used at higher temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ガラスクロスを含む有機系基板の両面にセラ
ミック超電導体層を形成した基板の断面図、第2図及び
第3図は、電源基板の導体層に超電導体を適用した多層
回路板の断面図、第4図は。 セラミック超電導体を配線導体として適用したポリイミ
ド薄膜多層基板をセラミック基板の上に形成したものの
断面図、第5図は、センサの原理を示した回路図、第6
図は、ジョセフソン接合部に有機物を適用したものの断
面図、第7図は、シリコンの上にポリイミドを絶縁材と
し、セラミック超電導体を多層配線したLSIの断面図
、第8図は、本発明の多層基板、電源基板を適用した大
型電子計算機用モジュールの断面図である。 1・・・セラミック超電導体層、2・・・有機物、3・
・・ガラスクロス、4・・・セラミック多層回路基板、
5・・・銅、6・・・応力緩和材、7・・・はんだ、8
・・・ピン、9・・・ピアホール、10・・・グレーズ
層、11・・・ガラスセラミックス、12・・・銅配線
、13・・・ポリイミド、14・・・AQNキャップ、
15・・・LSIチップ、16・・・セラミック超電導
体配線、17・・・AQ配線、18・・・5iOz絶縁
膜、19・・・シリコン半4体、20・・・液体窒素、
21・・・放熱体。
Figure 1 is a cross-sectional view of a substrate in which ceramic superconductor layers are formed on both sides of an organic substrate containing glass cloth, and Figures 2 and 3 are multilayer circuit boards in which a superconductor is applied to the conductor layer of a power supply board. A cross-sectional view, Figure 4. Figure 5 is a cross-sectional view of a polyimide thin-film multilayer substrate formed on a ceramic substrate using a ceramic superconductor as a wiring conductor, and Figure 6 is a circuit diagram showing the principle of the sensor.
The figure is a cross-sectional view of an LSI in which an organic material is applied to the Josephson junction, Figure 7 is a cross-sectional view of an LSI in which polyimide is used as an insulating material on silicon and ceramic superconductors are interconnected in multiple layers, and Figure 8 is a cross-sectional view of an LSI according to the present invention. 1 is a cross-sectional view of a module for a large computer to which a multilayer board and a power supply board are applied. 1... Ceramic superconductor layer, 2... Organic substance, 3...
...Glass cloth, 4...Ceramic multilayer circuit board,
5... Copper, 6... Stress relaxation material, 7... Solder, 8
... Pin, 9 ... Pier hole, 10 ... Glaze layer, 11 ... Glass ceramics, 12 ... Copper wiring, 13 ... Polyimide, 14 ... AQN cap,
15... LSI chip, 16... Ceramic superconductor wiring, 17... AQ wiring, 18... 5iOz insulating film, 19... Four silicon halves, 20... Liquid nitrogen,
21... Heat sink.

Claims (3)

【特許請求の範囲】[Claims] 1.有機絶縁基板に有機物又は金属酸化物超伝導配線が
形成されていることを特徴とする多層回路基板。
1. A multilayer circuit board characterized in that an organic material or metal oxide superconducting wiring is formed on an organic insulating substrate.
2.フッ素樹脂,フェノール樹脂,エポキシ樹脂,ポリ
イミド樹脂,イソメラミン系樹脂,ポリエステル,ポリ
エチレン,ポリブタジエン,メタクリル酸系樹脂,アク
リル系樹脂,マレイミド材,ポリ塩化ビニル,ポリプロ
ピレン,スチレン系樹脂,シリコーンゴム,ジアリルフ
タレイト樹脂,ポリフェニレンオキサイド樹脂,ポリス
ルフォン,ポリエーテルスルフォン,ビスマレイミドト
リアジン及びポリエーテルイミドから選ばれた有機絶縁
基板に有機物結晶又は YBa_2Cu_2O_7_−_δ(0<δ<0.3)
,Bi_2Sr_2CaCu_2O_x,Bi_2Sr
_2Ca_2Cu_3O_x,Tl_2Ba_2CaC
u_2O_x,Tl_2Ba_2Ca_2Cu_3O_
xから選ばれた金属酸化物からなる超伝導配線が形成さ
れていることを特徴とする多層回路基板。
2. Fluororesin, phenolic resin, epoxy resin, polyimide resin, isomelamine resin, polyester, polyethylene, polybutadiene, methacrylic acid resin, acrylic resin, maleimide material, polyvinyl chloride, polypropylene, styrene resin, silicone rubber, diallyl phthalate An organic crystal or YBa_2Cu_2O_7_-_δ (0<δ<0.3) is applied to an organic insulating substrate selected from resin, polyphenylene oxide resin, polysulfone, polyethersulfone, bismaleimide triazine, and polyetherimide.
, Bi_2Sr_2CaCu_2O_x, Bi_2Sr
_2Ca_2Cu_3O_x, Tl_2Ba_2CaC
u_2O_x, Tl_2Ba_2Ca_2Cu_3O_
A multilayer circuit board characterized in that a superconducting wiring made of a metal oxide selected from x is formed.
3.モジュールの電源として使用する電源基板,論理素
子,記憶素子,ダイオード,LSI,磁気センサ,電磁
波センサ,微小電位センサ,磁石適用部品,電磁波発生
装置及び起電力発生装置から選ばれた電子装置が特許請
求の範囲第1項又は第2項に記載の多層回路基板を備え
ている電子装置。
3. A patent is claimed for an electronic device selected from power supply boards, logic elements, memory elements, diodes, LSIs, magnetic sensors, electromagnetic wave sensors, minute potential sensors, magnet application parts, electromagnetic wave generators, and electromotive force generators used as power sources for modules. An electronic device comprising the multilayer circuit board according to item 1 or 2.
JP1084830A 1989-04-05 1989-04-05 Multilayer circuit board Expired - Fee Related JP2644885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084830A JP2644885B2 (en) 1989-04-05 1989-04-05 Multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084830A JP2644885B2 (en) 1989-04-05 1989-04-05 Multilayer circuit board

Publications (2)

Publication Number Publication Date
JPH02263630A true JPH02263630A (en) 1990-10-26
JP2644885B2 JP2644885B2 (en) 1997-08-25

Family

ID=13841688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084830A Expired - Fee Related JP2644885B2 (en) 1989-04-05 1989-04-05 Multilayer circuit board

Country Status (1)

Country Link
JP (1) JP2644885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531945A (en) * 1992-04-13 1996-07-02 Mitsubishi Gas Chemical Company, Inc. Process for the production of base board for printed wiring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531945A (en) * 1992-04-13 1996-07-02 Mitsubishi Gas Chemical Company, Inc. Process for the production of base board for printed wiring

Also Published As

Publication number Publication date
JP2644885B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US6329603B1 (en) Low CTE power and ground planes
KR960013632B1 (en) Multichip integrated circuit package configuration and method
US6307261B1 (en) Method for the manufacturing of a semiconductor device which comprises at least one chip and corresponding device
KR102389777B1 (en) Flexible wiring for low temperature applications
US20120031653A1 (en) Printed Circuit Board made from a Composite Material
JPH01307236A (en) Electronic device assembly and its manufacture
US5567330A (en) Electrical interconnect structures and processes
US20060003624A1 (en) Interposer structure and method
KR100272069B1 (en) Ball grid array having no through holes or via interconnections
JPH02263630A (en) Multi-layered circuit substrate
JPH02134882A (en) Method of forming high-density interconnected body
JPH01258457A (en) Semiconductor integrated circuit package structure and manufacture thereof
JPS63124555A (en) Substrate for semiconductor device
JP3210740B2 (en) Multilayer circuit board, electronic module and electronic device
US6228470B1 (en) Composite substrate for electronic components
CN213960397U (en) Layer structure for a component carrier
JPH01157560A (en) Semiconductor module with active device provided in cavity of substrate
Onyshkevych Low expansion porcelain-coated copper-clad invar substrates
Krokoszinski et al. Additive thin film technology for hybrid circuit fabrication
JPH08186300A (en) Pickup coil for oxide squid
JPS63299192A (en) Manufacture of superconducting printed substrate
JPS63299195A (en) Manufacture of superconducting printed substrate
JPH03297159A (en) Semiconductor device
JPH01160081A (en) Manufacture of wiring board
JPH01209789A (en) Manufacture of superconducting printed circuit substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees