JPH02262903A - Core height regulation method for bite - Google Patents

Core height regulation method for bite

Info

Publication number
JPH02262903A
JPH02262903A JP8314289A JP8314289A JPH02262903A JP H02262903 A JPH02262903 A JP H02262903A JP 8314289 A JP8314289 A JP 8314289A JP 8314289 A JP8314289 A JP 8314289A JP H02262903 A JPH02262903 A JP H02262903A
Authority
JP
Japan
Prior art keywords
light
center
axis direction
conical surface
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8314289A
Other languages
Japanese (ja)
Other versions
JP2686814B2 (en
Inventor
Harumitsu Senda
千田 治光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP8314289A priority Critical patent/JP2686814B2/en
Publication of JPH02262903A publication Critical patent/JPH02262903A/en
Application granted granted Critical
Publication of JP2686814B2 publication Critical patent/JP2686814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To eliminate trial cutting and prevent the wear of a bite by conducting the specular surface processing of the conical surface of a programing processed matter fitted to a chuck, and calculating a rotation center from the locus of a reflection light on a light receiving element obtained by the movement of a laser light, and conducting the fitting of an edge. CONSTITUTION:The specular surface cutting of a conical surface 21 a is conducted by the synchronous movements of a main shaft stand 2 in a Z axis direction and a fitting stand 15 in an X axis direction, and the fitting stand 15 is put at a position where a laser light a2 from a light emitter 16 is radiated to a conical surface 21a portion which is slightly at the back of the top of a cone, and a reflection laser light a2 is radiated onto the light sensing surface of a light receiving element 17. The impressed voltage of a piezoelectric element is continuously changed, and the fitting stand 15 is moved in a Y axis direction, and then, the reflection laser light a2 draws a circular arc locus on the light sensing surface of the light receiving element 17, and its center is sought by means of an NC unit 4, and it is decided that a horizon that passes the center of the scene of a CRT 22 is a line that passes a main shaft 3 rotation center. Laser lights a1, a2 are made to be on the same level with the mainshaft 3 rotation center, and a bite 20 is moved on the upper side of the Y axis direction by increasing gradually the impressed voltage of a piezoelectric element for a bite fitting stand 19, and when an edge intercepts the reflection laser light a2, a core height is decided by fixing the impressed voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超精密旋盤におけるバイトの芯高調整法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for adjusting the center height of a cutting tool in an ultra-precision lathe.

従来の技術 従来、光学レンズ及び反射鏡等を切削する超精密旋盤の
バイトの芯高調整方法は、工作物を試し切削してこれを
別の場所で干渉計等を使って評価していた。
2. Description of the Related Art Conventionally, the method of adjusting the center height of the cutting tool of an ultra-precision lathe for cutting optical lenses, reflective mirrors, etc. was to test cut a workpiece and evaluate it using an interferometer or the like at a different location.

発明が解決しようとする課題 従来の技術で述べた試し削りを行って調べる方法は時間
と労力を要し、その上何度も試し削りを行うことにより
バイトが摩耗して工具寿命が短くなるという問題点を有
している。
Problems to be Solved by the Invention The method of testing by performing trial cutting as described in the conventional technology requires time and effort, and in addition, repeated trial cutting causes wear of the cutting tool and shortens tool life. There are problems.

本発明は、従来の技術の有するこのような問題点に鑑み
なされたものであり、その目的とするところは、加工機
上で正確な芯高調整ができるバイトの芯高調整法を提供
しようとするものである。
The present invention was made in view of the above problems of the conventional technology, and its purpose is to provide a method for adjusting the center height of a cutting tool that allows accurate center height adjustment on a processing machine. It is something to do.

課題を解決するための手段 上記目的を達成するために本発明におけるバイトの芯高
調整法は、主軸チャックに把持した段取用加工物の円錐
面をその機械で鏡面加工し、レーザ発光器により前記円
錐面の軸方向かつ前記円錐面に向けてレーザ光を発射し
、前記円錐面からの反射レーザ光を前記レーザ発光器と
芯高調整方向に対して直角方向の同一平面上にある受光
位置の分解出力機能を有する受光素子で受け、前記レー
ザ発光器及び受光素子を同時に前記芯高調整方向に移動
して前記受光素子上に描かれる前記反射レーザ光の軌跡
から加工物の回転中心を割出し、該回転中心の高さに前
記レーザ光を合わせ、バイトを芯高調整方向に移動して
前記バイトの刃先がレーザ光りを遮る時点の高さに芯高
を合わせるものである。
Means for Solving the Problems In order to achieve the above object, the center height adjustment method of the cutting tool in the present invention is such that the machine mirror-finishes the conical surface of the setup workpiece held in the spindle chuck, and A laser beam is emitted in the axial direction of the conical surface and toward the conical surface, and the reflected laser beam from the conical surface is received at a light receiving position that is on the same plane as the laser emitter in a direction perpendicular to the center height adjustment direction. The center of rotation of the workpiece is separated from the locus of the reflected laser beam drawn on the light receiving element by simultaneously moving the laser emitter and the light receiving element in the center height adjustment direction. The laser beam is aligned with the height of the center of rotation, and the cutting tool is moved in the center height adjustment direction to adjust the center height to the height at which the cutting edge of the cutting tool blocks the laser beam.

作用 その機械でレーザ波長より小さい面粗度に鏡面加工され
た加工物の、円錐面の頂点より僅かに離れた位置に向け
て、Z軸方向にレーザ光を平行照射し、バイトの芯高調
整方向に、照射レーザ光を平行移動させると、受光素子
の感光面上に反射レーザ光の円弧状の軌跡が描かれる。
Function: Adjust the center height of the cutting tool by irradiating parallel laser light in the Z-axis direction to a position slightly away from the apex of the conical surface of the workpiece, which has been mirror-finished to a surface roughness smaller than the laser wavelength. When the irradiated laser beam is moved in parallel in the direction, an arcuate locus of the reflected laser beam is drawn on the photosensitive surface of the light receiving element.

この軌跡の円弧から加工物の中心を割り出し、レーザ光
を加工物の中心の高さに合わせておいて、バイト取付台
を芯高調整方向上側に移動して、バイトの刃先がレーザ
光を遮った時点の高さに芯高を設定する。
Determine the center of the workpiece from the arc of this trajectory, align the laser beam with the height of the center of the workpiece, and move the tool mounting base upward in the center height adjustment direction until the cutting edge of the tool blocks the laser light. Set the center height to the height at the point in time.

実施例 実施例について第1図〜第5図を参照して説明する。超
精密旋盤において、ベツドl上の左側に固着の、スライ
ドベース2の上面に削設されたZ軸方向のすべり案内面
上に、主軸台3が移動可能に′R置され、主軸台3に軸
承される主軸の先端に、チャック5が嵌着されている。
Embodiment An embodiment will be explained with reference to FIGS. 1 to 5. In an ultra-precision lathe, a headstock 3 is movably placed on a sliding guide surface in the Z-axis direction cut into the upper surface of a slide base 2, which is fixed to the left side of the bed l. A chuck 5 is fitted onto the tip of the main shaft that is supported.

そして主軸台3は、NG装置4により制御されるサーボ
モータ6により移動位置決めされる。更にベツドl上の
右側に固着のスライドベース7の上面に削設されたX軸
方向のすべり案内面上に、移動テーブル8が移動可能に
載置されでいる。そして移動テーブル8はNCr、I動
のサーボモータ9により移動位置決めされる。
The headstock 3 is moved and positioned by a servo motor 6 controlled by the NG device 4. Furthermore, a movable table 8 is movably placed on a slide guide surface in the X-axis direction cut into the upper surface of a slide base 7 fixed to the right side of the bed 1. The moving table 8 is moved and positioned by an NCr, I-motion servo motor 9.

移動テーブル8上の後側寄り位置にバイト芯高調整方向
(Y軸方向)のすべり案内面10aを有する基台10が
固着されており、すべり案内面10aに対して直角に昇
降台11が移動可能に設けられて、昇降台11はバイト
の芯高Flu調整のためねじ12により水平を保ってY
軸方向に移動されるようになっている。そして昇降台l
l上に配設された複数の圧電素子13上に取付台15が
Y軸方向に移動可能に載置され、取付台15上の前側に
レーザ発光器16が、また後側に受光素子17が取付け
られている。圧電素子13は印加電圧に比例して比較的
大きな変位が得ら“れるよう複数個の素子が極性が対向
するように積層されたものが使用され、レーザ発光器1
6は、Z軸方向主軸台側に向けて正しく平行を保ってレ
ーザ光a、が発射されるよう取付けられており、受光素
子17は受光面を主軸台側に向は感光面の中心がレーザ
発光器16のレーザ光軸と同一水平面上になるように取
付けられており、受光面に照射される反射レーザ光の位
置を分解して信号を出力するようになっている。更に取
付台15は主軸台側中央部に切欠き部15aを有し、昇
降台11上の切欠き部15a対応位置に、バイト取付台
19が図示しない圧電素子を介してY軸方向に移動可能
に取付けられており、バイト取付台19にバイト20が
着脱可能に固着されている。
A base 10 having a sliding guide surface 10a in the cutting tool center height adjustment direction (Y-axis direction) is fixed to a position near the rear of the moving table 8, and the lifting platform 11 moves at right angles to the sliding guide surface 10a. The lifting platform 11 is kept horizontal with screws 12 to adjust the center height Flu of the cutting tool.
It is adapted to be moved in the axial direction. and lifting platform
A mounting base 15 is mounted movably in the Y-axis direction on a plurality of piezoelectric elements 13 arranged on the mounting base 15, and a laser emitter 16 is mounted on the front side of the mounting base 15, and a light receiving element 17 is mounted on the rear side of the mounting base 15. installed. The piezoelectric element 13 is composed of a plurality of elements laminated with opposing polarities so that a relatively large displacement can be obtained in proportion to the applied voltage.
6 is installed so that the laser beam a is emitted while maintaining correct parallelism toward the headstock in the Z-axis direction, and the light-receiving element 17 has a light-receiving surface facing the headstock, so that the center of the photosensitive surface is aligned with the laser beam. It is mounted so as to be on the same horizontal plane as the laser optical axis of the light emitter 16, and outputs a signal by decomposing the position of the reflected laser light irradiated onto the light receiving surface. Furthermore, the mount 15 has a notch 15a in the center on the headstock side, and a tool mount 19 is movable in the Y-axis direction via a piezoelectric element (not shown) at a position corresponding to the notch 15a on the lifting table 11. A cutting tool 20 is removably fixed to a cutting tool mounting base 19.

続いて本実施例の作用について説明する。主軸チャック
5に芯高調整段取用の加工物21が取付けられ、主軸台
3のZ軸方向と、移動テーブル8のX−軸方向の同期移
動で円錐面が鏡面切削される。
Next, the operation of this embodiment will be explained. A workpiece 21 for center height adjustment setup is attached to the spindle chuck 5, and the conical surface is mirror-cut by synchronized movement of the headstock 3 in the Z-axis direction and the moving table 8 in the X-axis direction.

次いで主軸台3をZ軸方向左側に移動位置決めし、移動
テーブル8をX軸方向に移動して第2図に示すようにレ
ーザ発光器16から発射されるレーザ光a、が円錐の頂
点より僅かに後方の円錐面21aを照射する位置に位置
決めし、円錐面21aから反射するレーザ光a2が受光
素子17の感光面上を照射するようにする。この状態で
第3図に示すように圧電素子13に印加される電圧を連
続的に変えて、取付台15をY軸方向に移動すると、第
4図に示すように円錐面21aに当たって反射されるレ
ーザ光a2は、第5図に示すように受光素子17の感光
面上に円弧状の軌跡を描く。この受光素子上の反射レー
ザ光a2の軌跡は、NC装置4に送られ、NC装置内で
この円弧状の曲線を、演算により最小二乗法を使って円
弧近似して円弧の中心を求め、NC付属のCRT22の
画面に円弧及び求めた中心を通る水平な綿を表示する。
Next, the headstock 3 is moved and positioned to the left in the Z-axis direction, and the moving table 8 is moved in the X-axis direction so that the laser beam a emitted from the laser emitter 16 is slightly below the apex of the cone, as shown in FIG. The rear conical surface 21a is positioned at the irradiation position so that the laser beam a2 reflected from the conical surface 21a illuminates the photosensitive surface of the light receiving element 17. In this state, when the voltage applied to the piezoelectric element 13 is continuously changed and the mounting base 15 is moved in the Y-axis direction as shown in FIG. 3, the voltage is reflected by hitting the conical surface 21a as shown in FIG. The laser beam a2 draws an arcuate locus on the photosensitive surface of the light receiving element 17, as shown in FIG. The locus of the reflected laser beam a2 on the light-receiving element is sent to the NC device 4, where this arc-shaped curve is approximated as an arc using the method of least squares to find the center of the arc. An arc and a horizontal line passing through the determined center are displayed on the screen of the attached CRT 22.

そして表示した水平な線に対し円弧が直角状態で交叉し
、かつ円弧の最も右寄り位置に交点があることが確認さ
れて、CRT画面に表示された水平な線が主軸の回転中
心を通る線であると判断する。
It is then confirmed that the arc intersects the displayed horizontal line at right angles and that the intersection point is at the rightmost position of the arc, and that the horizontal line displayed on the CRT screen is a line that passes through the center of rotation of the spindle. I judge that there is.

次いで再び圧電素子13に印加される電圧が連続的に変
えられて、取付台15がY軸方向に移動され、受光素子
17から送られる反射レーザ光a2の移動を、CRT画
面に表示し、画面上の水平な線と一致した位置で、印加
電圧を固定して取付台15を停止し、レーザ光a1及び
反射レーザ光aを主軸の回転中心と同一水平面上とにす
る。次いでバイト取付台19用の圧電素子に印加する電
圧を連続的かつ徐々に高くして、バイト20をY軸方向
上側に移動し、バイト20の刃先が反射レーザ光a2を
遮った時点で印加電圧を固定してバイトの芯高を決める
Next, the voltage applied to the piezoelectric element 13 is continuously changed again, the mounting base 15 is moved in the Y-axis direction, and the movement of the reflected laser beam a2 sent from the light receiving element 17 is displayed on the CRT screen. At a position that coincides with the horizontal line above, the applied voltage is fixed and the mount 15 is stopped, so that the laser beam a1 and the reflected laser beam a are on the same horizontal plane as the rotation center of the main shaft. Next, the voltage applied to the piezoelectric element for the cutting tool mounting base 19 is continuously and gradually increased to move the cutting tool 20 upward in the Y-axis direction, and when the cutting edge of the cutting tool 20 blocks the reflected laser beam a2, the applied voltage is increased. to determine the center height of the bite.

発明の効果 本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。主軸チャックに取付けた段取用加工
物の円錐面をその機械で鏡面加工し、レーザ発光器から
Z軸方向円錐面に向けて発射したレーザ光を同一平面上
にある受光素子で受け、レーザ光をバイト芯高調整方向
に移動して得た受光素子上の反射レーザ光の軌跡から加
工物の回転中心を割り出す。そしてレーザ光を回転中心
に合わせてバイトを芯高調整方向に移動し、刃先がレー
ザ光を遮る時点の高さに合わせるようになしたので、試
し削りを行う必要がなくなり、労力と時間の節約ができ
るとともに、試し削りによるバイトの摩耗がないので工
具寿命が延びる。
Effects of the Invention Since the present invention is configured as described above, it produces the following effects. The machine mirror-finishes the conical surface of the setup workpiece attached to the spindle chuck, and the laser beam emitted from the laser emitter toward the conical surface in the Z-axis direction is received by a light-receiving element on the same plane. The center of rotation of the workpiece is determined from the trajectory of the reflected laser beam on the light receiving element obtained by moving the tool in the direction of adjusting the center height of the cutting tool. Then, the cutting tool is moved in the center height adjustment direction with the laser beam aligned with the center of rotation, and the cutting edge is adjusted to the height at which it blocks the laser beam, eliminating the need for trial cutting, saving labor and time. At the same time, the tool life is extended because there is no wear on the cutting tool due to trial cutting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は芯高調整機構を有する超精密旋盤の構造説明用
斜視図、第2図は主として発射レーザ光と反射レーザ光
との関係及びNC装置のCRT画面表示を示す第1図の
上視図、第3図は第2図の側面図、第4図は発射レーザ
光の移動方向に対するレーザ光の反射方向を示す円錐面
を頂点側から見た正面図、第5図は受光素子の感光面に
描かれる反射レーザ光の円弧状の軌跡を表す図である。 5 ・ ・ 16 ・ 20 ・ 1a 主軸チャック ・レーザ発光器 17・・受光素子 ・バイト  21・・加工物 ・・円錐面
Fig. 1 is a perspective view for explaining the structure of an ultra-precision lathe with a center height adjustment mechanism, and Fig. 2 is a top view of Fig. 1 mainly showing the relationship between the emitted laser beam and the reflected laser beam and the CRT screen display of the NC device. Figure 3 is a side view of Figure 2, Figure 4 is a front view of the conical surface showing the direction of reflection of the laser beam relative to the direction of movement of the emitted laser beam, viewed from the apex side, and Figure 5 is the photosensitive element of the light receiving element. FIG. 3 is a diagram showing an arcuate locus of reflected laser light drawn on a surface. 5 ・ ・ 16 ・ 20 ・ 1a Spindle chuck/Laser emitter 17... Light receiving element/Bite 21... Workpiece... Conical surface

Claims (1)

【特許請求の範囲】[Claims] (1)主軸チャック(5)に把持した段取用加工物(2
1)の円錐面(21a)をその機械で鏡面加工し、レー
ザ発光器(16)によりレーザ光(a_1)を前記円錐
面の軸方向かつ前記円錐面に向けて発射し、前記円錐面
からの反射レーザ光(a_2)を前記レーザ発光器と芯
高調整方向に対して直角方向の同一平面上にある受光位
置の分解出力機能を有する受光素子(17)で受け、前
記レーザ発光器及び受光素子を同時に前記芯高調整方向
に移動して前記受光素子上に描かれる前記反射レーザ光
の軌跡から加工物の回転中心を割出し、該回転中心の高
さに前記レーザ光を合わせ、バイト(20)を芯高調整
方向に移動して前記バイトの刃先がレーザ光を遮る時点
の高さに芯高を合わせることを特徴とするバイトの芯高
調整法。
(1) The setup workpiece (2) gripped by the spindle chuck (5)
The conical surface (21a) of 1) is mirror-finished by the machine, and the laser light (a_1) is emitted from the conical surface in the axial direction of the conical surface and toward the conical surface by the laser emitter (16). The reflected laser beam (a_2) is received by a light receiving element (17) having a decomposition output function and having a light receiving position on the same plane perpendicular to the laser emitter and the center height adjustment direction, and the laser emitter and the light receiving element is simultaneously moved in the center height adjustment direction to determine the rotation center of the workpiece from the locus of the reflected laser beam drawn on the light receiving element, align the laser beam with the height of the rotation center, and set the cutting tool (20 ) in the center height adjustment direction to adjust the center height to the height at which the cutting edge of the cutting tool blocks laser light.
JP8314289A 1989-03-31 1989-03-31 Tool core height adjustment method Expired - Lifetime JP2686814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8314289A JP2686814B2 (en) 1989-03-31 1989-03-31 Tool core height adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8314289A JP2686814B2 (en) 1989-03-31 1989-03-31 Tool core height adjustment method

Publications (2)

Publication Number Publication Date
JPH02262903A true JPH02262903A (en) 1990-10-25
JP2686814B2 JP2686814B2 (en) 1997-12-08

Family

ID=13793962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8314289A Expired - Lifetime JP2686814B2 (en) 1989-03-31 1989-03-31 Tool core height adjustment method

Country Status (1)

Country Link
JP (1) JP2686814B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162344A (en) * 2004-12-03 2006-06-22 Isuzu Motors Ltd Tool shape measuring device and method
CN115106835A (en) * 2022-07-25 2022-09-27 上海阿为特精密机械股份有限公司 Method for trying to find four-axis rotation center

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121466B2 (en) * 2008-01-10 2013-01-16 シチズンマシナリーミヤノ株式会社 Center height position adjusting device and center height position adjusting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162344A (en) * 2004-12-03 2006-06-22 Isuzu Motors Ltd Tool shape measuring device and method
JP4529664B2 (en) * 2004-12-03 2010-08-25 いすゞ自動車株式会社 Tool shape measuring apparatus and method
CN115106835A (en) * 2022-07-25 2022-09-27 上海阿为特精密机械股份有限公司 Method for trying to find four-axis rotation center
CN115106835B (en) * 2022-07-25 2023-08-25 上海阿为特精密机械股份有限公司 Method for finding four-axis rotation center through trial cutting

Also Published As

Publication number Publication date
JP2686814B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US5080540A (en) V-shaped groove forming machine
US4074104A (en) Opto-electronic position sensing method
US4687901A (en) Machine tool for cutting or the like
US5011282A (en) Laser beam path alignment apparatus for laser processing machines
CN109909602B (en) Optical-electromechanical cooperative control system of ultrafast laser processing equipment
CN109940270A (en) A kind of sevenfive axis ultrafast laser machining system
KR20180119124A (en) Laser processing method
GB2113592A (en) Laser machining apparatus
JP3657252B2 (en) Shape measurement system using workpiece shape measuring device
US4370834A (en) Machines for grinding toothed cutting tools
JPH02262903A (en) Core height regulation method for bite
JPS6320638B2 (en)
US3775011A (en) Optical control means
JPH071294A (en) Optical type work shape measuring device in numerically controlled machine tool
JPS62232184A (en) Mathod and apparatus for machining reference surface of laser diode assembly
JP3511049B2 (en) Laser processing equipment
US3039239A (en) Linear optical comparator for an operating machine tool
JP2898805B2 (en) Non-contact 3D measuring machine
JPH0315273Y2 (en)
JP2512202B2 (en) Processing equipment
JPH0716859B2 (en) Lathe tool centering device
JPH0985470A (en) Laser beam marking device
KR20220133098A (en) Laser processing apparatus
KR101164780B1 (en) Appraratus for manufacturing pattern on a light guide plate
JP4030634B2 (en) Exposure equipment