JPH0226279A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH0226279A
JPH0226279A JP63173347A JP17334788A JPH0226279A JP H0226279 A JPH0226279 A JP H0226279A JP 63173347 A JP63173347 A JP 63173347A JP 17334788 A JP17334788 A JP 17334788A JP H0226279 A JPH0226279 A JP H0226279A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
fiber
ultrasonic
resin sheet
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63173347A
Other languages
Japanese (ja)
Inventor
Yoshinobu Imasaka
喜信 今坂
Masanori Sumihara
正則 住原
Hiroshi Komeno
米野 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63173347A priority Critical patent/JPH0226279A/en
Publication of JPH0226279A publication Critical patent/JPH0226279A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To make no noise and to keep holding force constant in standstill by forming an oscillating body of an ultrasonic motor by a resin sheet-like moulded body containing milled fiber at a predetermined rate. CONSTITUTION:An ultrasonic motor is constituted by pressurizing a moving body 3 and by bringing it into contact with a tabular oscillating body 2 equipped with a tabular piezoelectric body 1. This moving body 3 is furnished with a frictional contact section 4 to come into frictionally contact with the oscillating body 2 and a power transmission section 5. In this connection, the above frictional contact section 4 is formed by a resin sheet-like moulded body containing milled fiber at the rate of not less than 5weight% and not more than 40weight%. This milled fiber is so fine a fiber in shape that there are less scratching phenomenon and less attackingness against its assortive material on the frictional contact surface and smooth sliding can be materialized between the oscillating body 2 and moving body 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体によって発生する超音波振動の進行波
を用いることにより駆動力を得る、超音波モータに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that obtains driving force by using traveling waves of ultrasonic vibrations generated by a piezoelectric body.

従来の技術 進行波方式からなる超音波モータは、板状圧電体を装着
した板状振動体の表面を、加圧接触させ、前記圧電体に
超音波周波数の高周波電力を入力することにより、前記
圧電体および前記振動体に板厚方向における超音波振動
の横波状進行波を生じ、前記移動体が、前記振動体表面
における前記進行波の波頭部により摩擦手段を介して駆
動されるようにしたものである。進行波は、時間差と位
相差をつけ圧電体に超音波周波数の高周波電力を入力す
ることにより得ることができる。このような超音波モー
タにおいて、振動体と移動体の接触加圧状態は、起動ト
ルク、無負荷回転数、モータ効率、および寿命などの緒
特性に多大の影響を与えるものである。圧電体を装着し
てなる固定体に移動体を加圧接触させ、圧電体の進行波
からなる微少振動により移動体が移動する超音波モータ
において、従来移動体は金属により構成されていた。別
法として、スライダーというゴムなどの摩擦係数の大き
な第三の物体を移動部に装着し、撮動体に加圧接触させ
るという方法も提案されていた。
Conventional technology An ultrasonic motor using a traveling wave method brings the surface of a plate-shaped vibrating body equipped with a plate-shaped piezoelectric body into pressure contact, and inputs high-frequency power at an ultrasonic frequency to the piezoelectric body. A transverse wave-like traveling wave of ultrasonic vibration is generated in the piezoelectric body and the vibrating body in the plate thickness direction, and the movable body is driven by the wave head of the traveling wave on the surface of the vibrating body via a friction means. This is what I did. The traveling wave can be obtained by inputting high frequency power at an ultrasonic frequency to the piezoelectric body with a time difference and a phase difference. In such an ultrasonic motor, the contact pressure state between the vibrating body and the movable body has a great influence on the motor characteristics such as starting torque, no-load rotation speed, motor efficiency, and service life. In ultrasonic motors in which a movable body is brought into pressure contact with a fixed body having a piezoelectric body mounted thereon, and the movable body is moved by minute vibrations formed by traveling waves of the piezoelectric body, the movable body has conventionally been made of metal. As an alternative method, a method has been proposed in which a third object called a slider, which has a large coefficient of friction such as rubber, is attached to the moving part and brought into pressure contact with the imaging object.

発明が解決しようとする課題 超音波モータにおいて、振動体と移動体の接触面におい
て、モータとしての良好な性能を得、実用に耐えうるも
のは、いまだ存在しない。振動体をステンレス、アルミ
ニウム、鉄鋼などの金属材料で構成し、金属の移動体を
用いる金属どうしの接触では、振動体および移動体の接
触面は、超精密加工を施す必要があった。さらに、超音
波振動下では金属どうしの接触による騒音が発生し実用
上問題であった。
Problems to be Solved by the Invention Among ultrasonic motors, there is still no ultrasonic motor that achieves good performance as a motor at the contact surface between the vibrating body and the movable body and is suitable for practical use. When the vibrating body is made of a metal material such as stainless steel, aluminum, or steel, and a moving metal body is used for metal-to-metal contact, the contact surfaces of the vibrating body and the moving body must be processed with ultra-precision processing. Furthermore, under ultrasonic vibration, noise is generated due to metal-to-metal contact, which is a practical problem.

金属以外の接触として、ゴムなどの摩擦係数の大きなス
ライダーなどの提案が成されているが、通常の市販のそ
のような材料を用いると、接触面が摩擦することによっ
て生じる磨耗などが原因で、起動トルク、無負荷回転数
、効率等の諸性能の劣化が起こり、モータの寿命が非常
に短くなるという欠点を有していた。
As a non-metallic contact, proposals have been made to use sliders with a high coefficient of friction such as rubber, but using such materials on the market would result in wear caused by friction between the contact surfaces. This has the disadvantage that various performances such as starting torque, no-load rotation speed, and efficiency deteriorate, and the life of the motor becomes extremely short.

実用に供しうる超音波モータの要件としては、(1)モ
ータ駆動時に騒音がでに(いこと、(2)加圧接触する
ことによって生じる駆動力(トルク)が大きいこと、(
3)モータの駆動時に接触面が摩擦することにより発生
する磨耗量が極力少な(、長時間安定に性能が維持でき
ること、(4)モータの停止状態において移動体が保持
されている力(保持トルク)が一定であること、の4点
が挙げられる。
The requirements for an ultrasonic motor that can be put to practical use are: (1) the motor should be low in noise when driven; (2) the driving force (torque) generated by pressurized contact should be large;
3) The amount of wear caused by friction on the contact surfaces when the motor is driven is as small as possible (and performance can be maintained stably for a long time); (4) The force that holds the moving object when the motor is stopped (holding torque) ) is constant.

課題を解決するための手段 板状圧電体を装着した板状振動体の表面を、移動体と加
圧接触させ、前記圧電体に超音波周波数の高周波電力を
入力することにより、前記圧電体および前記撮動体に板
厚方向における超音波振動の横波状進行波を生じ、前記
移動体が、前記振動体表面における前記進行波の波頭部
により摩擦手段を介して駆動される超音波モータにおい
て、前記移動体を、ミルドファイバーを少なくとも5重
量%以上40重量%以下の割合で含有する樹脂シート状
成型体からなり前記振動体と摩擦接触する部分を含むよ
う構成する。
Means for Solving the Problem By bringing the surface of a plate-shaped vibrating body equipped with a plate-shaped piezoelectric body into pressure contact with a moving body, and inputting high-frequency power at an ultrasonic frequency to the piezoelectric body, the piezoelectric body and An ultrasonic motor in which a transverse traveling wave of ultrasonic vibration is generated in the plate thickness direction on the imaging body, and the moving body is driven by a wave head of the traveling wave on the surface of the vibrating body via a friction means, The movable body is made of a resin sheet-like molded body containing milled fibers in a proportion of at least 5% by weight and not more than 40% by weight, and is configured to include a portion that comes into frictional contact with the vibrating body.

作用 上記のように構成することにより、接触状態の均質性が
向上し、超音波モータとしての回転の安定性および制御
性がよ(なる。さらに樹脂シート状成型体であるからあ
る程度の振動吸収能をもたせることができ、騒音は全く
生じないようにできる。ミルドファイバーは形状的に非
常に細かい繊維であるから、摩擦接触表面においてひっ
かかり現象や相手材に対する攻撃性は少な(振動体と移
動体間の円滑な滑りを実現することができる。すなわち
、固定体の摩擦接触面を損傷することなく固定体の摩擦
接触面の状態を常に安定に維持する役目をさせることが
できる。それゆえ、モータの停止状態において移動体が
保持されている力(保持トルク)、起動トルク、無負荷
回転数などを一定にすることができる。さらに、少なく
とも5重量%以上40重量%以下のミルドファイバーを
含ませることにより、機械的強度が向上し、樹脂シート
状成型体としての取り扱いも容易である。さらにこのよ
うなミルドファイバーを含有させることにより耐熱性が
比較的高(なり超音波の振動を伴うような過酷な摩擦状
態でも焼き付けのような現象あるいは溶融することなく
安定に使用することができるので、モータの駆動時に接
触面が摩擦することにより発生する磨耗量が少なく、長
時間安定に性能が維持できる。
Effect By configuring as described above, the homogeneity of the contact state is improved, and the stability and controllability of rotation as an ultrasonic motor are improved.Furthermore, since it is a resin sheet-shaped molded body, it has a certain degree of vibration absorption ability. Milled fibers are very fine in shape, so they are less likely to get caught on the friction contact surface and have less attack against the other material (between the vibrating body and the moving body). In other words, the friction contact surface of the fixed body can be kept in a stable state at all times without damaging the friction contact surface of the fixed body.Therefore, the motor The force with which the moving body is held in a stopped state (holding torque), starting torque, no-load rotation speed, etc. can be made constant.Furthermore, at least 5% by weight or more and 40% by weight or less of milled fibers must be included. This improves mechanical strength and makes it easy to handle as a resin sheet-like molded product.Furthermore, by including such milled fibers, heat resistance is relatively high (which means that it cannot be used in harsh conditions such as those accompanied by ultrasonic vibrations). It can be used stably even under severe friction conditions without causing seizure or melting, so the amount of wear caused by friction between the contact surfaces when the motor is driven is small, and performance can be maintained stably for a long period of time.

実施例 本発明の超音波モータの基本構成を第1図に示す。超音
波モータは、板状圧電体1を装着した板状振動体2に移
動体3を加圧接触させる構成をとる。移動体3は、撮動
体2との摩擦接触する摩擦接触部4を含んで構成されて
いる。摩擦接触部4は、ミルドファイバーを少なくとも
5重量%以上40重量%以下の割合で含有する樹脂シー
ト状成型体からなる。ここでは、摩擦接触部4と外部に
出力を供給するためのある程度の機械的強度の有する動
力伝達部5とから構成した場合について示した。ミルド
ファイバーは繊維を粉砕した形状のものをいい、その繊
維長さは5〜600μ輸以下、2〜30μ■以上のもの
である。ミルドファイバーとしては耐熱性、機械的強度
などを向上させるためガラス繊維ミルドファイバーや炭
素繊維ミルドファイバーを用いるのが好ましい。
Embodiment The basic configuration of an ultrasonic motor according to the present invention is shown in FIG. The ultrasonic motor has a configuration in which a movable body 3 is brought into pressure contact with a plate-shaped vibrating body 2 on which a plate-shaped piezoelectric body 1 is attached. The moving body 3 is configured to include a frictional contact portion 4 that makes frictional contact with the moving body 2 . The friction contact portion 4 is made of a resin sheet-like molded body containing milled fibers in a proportion of at least 5% by weight and not more than 40% by weight. Here, a case is shown in which the power transmission section 5 is composed of a friction contact section 4 and a power transmission section 5 having a certain degree of mechanical strength for supplying an output to the outside. Milled fiber refers to fibers in the form of pulverized fibers, and the fiber length is 5 to 600 μm or less and 2 to 30 μm or more. As the milled fiber, it is preferable to use glass fiber milled fiber or carbon fiber milled fiber in order to improve heat resistance, mechanical strength, etc.

樹脂シート状成型体の厚みとしては、O,1mより薄(
なりすぎるとシート状成型物の振動吸収能は極端に低下
し金属どうしの摩擦接触のように騒音の発生が生じ好ま
しくない。一方、2.0weより厚くなるとシート状成
型物の軟質性により横波進行波をも吸収し、効率の低下
等をまねく。
The thickness of the resin sheet-like molded product is thinner than 0.1 m (
If it becomes too much, the vibration absorbing ability of the sheet-like molded product will be extremely reduced, and noise will be generated like frictional contact between metals, which is undesirable. On the other hand, if the thickness exceeds 2.0we, the sheet-like molded material absorbs traveling transverse waves due to its softness, resulting in a decrease in efficiency.

移動体と接触する振動体は、通常、振動減衰の少ないス
テンレス材、鋼材などの金属材料からなる。本発明を実
際に超音波モータとして構成した例として円盤状の超音
波モータ(第2図)および円環状の超音波モータ(第3
図)が挙げられる。
The vibrating body that comes into contact with the moving body is usually made of a metal material such as stainless steel or steel that has low vibration damping. Examples of the present invention actually configured as an ultrasonic motor include a disk-shaped ultrasonic motor (Figure 2) and an annular ultrasonic motor (Figure 3).
Figure).

以下、ミルドファイバーを少なくとも5重量%以上40
重量%以下の割合で含有する樹脂シート状成型体からな
る摩擦接触部について詳細にその具体的実施例を述べる
Below, at least 5% by weight of milled fiber 40
Specific examples will be described in detail regarding the friction contact portion made of a resin sheet-like molded body containing less than % by weight.

実施例1 ガラス繊維からなるミルドファイバ(繊維径10μm、
繊維長さ30〜100μm、旭グラスファイバー■製〉
2重量部と樹脂としてフルオロカーボン重合体であるポ
リテトラフルオロエチレン(ダイキン化学工業■製)8
重量部とを乾式混合によりミルドファイバを樹脂中に均
質に分散させた。この粉末を予備圧縮成型(350kg
 / cd )することにより付形し、その後380℃
の温度条件で焼成することにより厚さ1.0msの非常
に細かい繊維が均質に分散された樹脂シート状成型物を
得た。さらに、樹脂シート状成型物の表面の接着性を向
上させるため市販の表面処理剤を用い接着処理した。
Example 1 Milled fiber made of glass fiber (fiber diameter 10 μm,
Fiber length 30-100μm, made by Asahi glass fiber■
2 parts by weight and polytetrafluoroethylene (manufactured by Daikin Chemical Industries, Ltd.), which is a fluorocarbon polymer, as a resin 8
The milled fibers were homogeneously dispersed in the resin by dry mixing with parts by weight. This powder is pre-compression molded (350 kg)
/ cd) and then heated to 380°C.
A resin sheet-like molded product with a thickness of 1.0 ms in which very fine fibers were homogeneously dispersed was obtained by firing at a temperature of 1.0 ms. Furthermore, in order to improve the adhesiveness of the surface of the resin sheet-like molded product, adhesive treatment was performed using a commercially available surface treatment agent.

これを摩擦接触部6として動力伝達部7に市販のガラス
繊維含有エポキシ樹脂系の接着剤を用い接着し、さらに
、摩擦接触部の表面を旋盤を用い超硬バイトにて表面研
削し移動体9を作成した。
This is bonded to the power transmission part 7 as a friction contact part 6 using a commercially available glass fiber-containing epoxy resin adhesive, and the surface of the friction contact part is ground with a carbide cutting tool using a lathe to form a moving body 9. It was created.

表面研削することにより前記表面処理剤を取り除くとと
もに、摩擦接触する面の表面精度を向上させた。
By surface grinding, the surface treatment agent was removed and the surface precision of the surface in frictional contact was improved.

一方、撮動体9は、予め第2図に示す形状に加工し、電
極を配置し分極処理を施した圧電体10を接着すること
により構成した。振動体は、ステンレス材にて作成し、
その外径を40mmとした。
On the other hand, the imaging body 9 was constructed by bonding a piezoelectric body 10 which had been processed in advance into the shape shown in FIG. 2 and had electrodes arranged thereon and subjected to a polarization process. The vibrating body is made of stainless steel,
Its outer diameter was 40 mm.

さらに、前述した移動体を組み込み、加圧力としてバネ
力により4 kg / cdを与えた。この時、停止状
態にて移動体を動かすのに必要な力、すなわち保持トル
クは1400gf−cIIとなった。
Furthermore, the above-mentioned moving body was incorporated, and a spring force of 4 kg/cd was applied as a pressing force. At this time, the force required to move the movable body in the stopped state, that is, the holding torque, was 1400 gf-cII.

このような状態で回転させたところ、入力電流一定のの
条件で、起動トルクとして1200gf−c曙、無負荷
回転数550rpmの性能を有するモータが得られた。
When the motor was rotated in such a state, a motor with a starting torque of 1200 gf-c and a no-load rotation speed of 550 rpm was obtained under the condition that the input current was constant.

超音波モータの経時変化を調べるため実際に超音波モー
タを600時間駆動させた。
In order to investigate changes in the ultrasonic motor over time, the ultrasonic motor was actually driven for 600 hours.

駆動条件としては、連続回転にて負荷を400gf−C
11とし、回転数が25Orpmで行った。その間、回
転数、トルク、効率、保持トルクなどの超音波モータの
諸性能はほとんど変化は無く安定していた。これは、細
かい繊維が均質に分散されたことにより超音波モータの
摩擦接触面状態が非常に安定化されたからであると考え
られる。さらに、駆動前後の固定体の摩擦接触面の表面
状態を観察したところ変化がみられなかった。一方、樹
脂シート状成型体からなる摩擦接触部の磨耗した深さを
表面形状測定器にて測定したところ、その磨耗量は60
0時間後でも8μ閤と非常に少なかった。
The driving conditions are a load of 400gf-C with continuous rotation.
11, and the rotational speed was 25 Orpm. During that time, the performance of the ultrasonic motor, such as rotational speed, torque, efficiency, and holding torque, remained stable with almost no change. This is thought to be because the condition of the frictional contact surface of the ultrasonic motor was extremely stabilized due to the homogeneous dispersion of the fine fibers. Furthermore, when the surface condition of the frictional contact surface of the fixed body was observed before and after driving, no change was observed. On the other hand, when the depth of wear of the friction contact part made of a resin sheet-shaped molded body was measured using a surface profile measuring device, the amount of wear was 60.
Even after 0 hours, the amount was 8μ, which was very small.

同様の方法で作成したガラス繊維からなるミルドファイ
バーを含有する樹脂シート状成型体を使用した場合の結
果(実施例2〜5)を第1表に示す。
Table 1 shows the results (Examples 2 to 5) when resin sheet-like molded bodies containing milled fibers made of glass fibers prepared in a similar manner were used.

化学工業■製)95重量部とを乾燥式混合にミルドファ
イバを樹脂中に均質に分散させた。この粉末を予備圧縮
成型(350ktlcd>することにより付形し、その
後380℃の温度条件で焼成することにより厚さ1.0
mmのシート状成型物を得た。さらに、シート状成型物
の表面の接着性を向上させるため市販の表面処理剤を用
い接着処理した。
The milled fibers were homogeneously dispersed in the resin by dry mixing with 95 parts by weight (manufactured by Kagaku Kogyo ■). This powder is shaped by pre-compression molding (350 ktlcd) and then fired at a temperature of 380°C to a thickness of 1.0 mm.
A sheet-like molded product of mm in size was obtained. Furthermore, in order to improve the adhesiveness of the surface of the sheet-like molded product, adhesive treatment was performed using a commercially available surface treatment agent.

これを摩擦接触部6として動力伝達部7に市販のエポキ
シ樹脂系の接着剤を用い接着し、さらに、摩擦接触部の
表面を円筒研削法゛により表面研削し移動体9を作成し
た。表面研削することにより前記表面処理剤を取り除く
とともに、摩擦接触する面の表面精度を向上させた。
This was used as the frictional contact part 6 and adhered to the power transmission part 7 using a commercially available epoxy resin adhesive, and the surface of the frictional contact part was ground by the cylindrical grinding method to create the movable body 9. By surface grinding, the surface treatment agent was removed and the surface precision of the surface in frictional contact was improved.

これを実施例1と同様の試験をした結果および同様の方
法で作成した異なった組成の炭素繊維からなるミルドフ
ァイバーを含有する樹脂シート状成型体を使用した場合
の結果(実施例7〜10)を第2表に示す。
The results of testing this in the same manner as in Example 1 and the results of using resin sheet-like molded bodies containing milled fibers made of carbon fibers with different compositions prepared by the same method (Examples 7 to 10) are shown in Table 2.

これらの結果は同条件でおこなった金属どうしの摩擦接
触による磨耗量よりはるかに少ない(比較例1)。また
、金属どうしの摩擦にみられたような駆動中の騒音の発
生は全くなかった。さらに、比較としてミルドファイバ
ーを全(含まないテトラフルオロエチレン単体を用いた
場合には、樹脂シート状成型体の機械的強度が極端に小
さ(なりトルクが充分に得られずまた磨耗も激しく実用
に適してはいなかったく比較例2)。すなわち、5重量
%以上のミルドファイバーを加えなければ本発明の作用
効果を得ることはできない。
These results are far less than the amount of wear due to frictional contact between metals under the same conditions (Comparative Example 1). Furthermore, there was no noise during driving, which is caused by friction between metals. Furthermore, as a comparison, when using tetrafluoroethylene alone (without milled fibers), the mechanical strength of the resin sheet molded product is extremely low (as a result, sufficient torque cannot be obtained and wear is severe, making it impractical for practical use). Comparative Example 2) was not suitable.In other words, the effects of the present invention cannot be obtained unless 5% by weight or more of milled fibers are added.

一方、ミルドファイバーの量が40重量%より多くなる
と成型が非常に困難になり(充填率が小さ()本発明の
作用効果は得られない(比較例3)。
On the other hand, when the amount of milled fibers exceeds 40% by weight, molding becomes extremely difficult (filling ratio is small), and the effects of the present invention cannot be obtained (Comparative Example 3).

実施例6 炭素繊維からなるミルドファイバ(単繊維直径7μL繊
維の平均長さ80μm、三菱レーヨン■製)5重量部と
樹脂としてフルオロカーボン重合体であるポリテトラフ
ルオロエチレン(ダイキン以上、樹脂としてはポリテト
ラフルオロエチレンについてのみ述べたが、本発明に使
用し得る樹脂としては、ポリテトラフルオロエチレン以
外に、テトラフルオロエチレン−ヘキサフルオロプロピ
レン共重合体、ポリクロロトリフルオロエチレン、テト
ラフルオロエチレン−パーフルオロアルキルビニルエー
テル共重合体、ポリビニリデンフルオライド、ポリビニ
ルフルオライド、エチレン−テトラフルオロエチレン共
重合体、クロロトノフルオロエチレン−エチレン共重合
体などのフルオロカーボン重合体を用いるとこれらの特
徴である良好な固体潤滑性能が発揮され、本発明と同等
の作用効果が期待できる。
Example 6 5 parts by weight of milled fiber made of carbon fiber (single fiber diameter 7 μL, average fiber length 80 μm, made by Mitsubishi Rayon ■) and polytetrafluoroethylene, a fluorocarbon polymer (from Daikin or higher, as a resin, polytetrafluoroethylene) Although only fluoroethylene has been described, in addition to polytetrafluoroethylene, resins that can be used in the present invention include tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, and tetrafluoroethylene-perfluoroalkyl vinyl ether. When using fluorocarbon polymers such as copolymers, polyvinylidene fluoride, polyvinyl fluoride, ethylene-tetrafluoroethylene copolymers, and chlorotonofluoroethylene-ethylene copolymers, the good solid lubricating performance that is characteristic of these can be achieved. Therefore, the same effects as the present invention can be expected.

さらに、フルオロカーボン重合体以外の樹脂であるポリ
イミド樹脂フェノール樹脂、不飽和ポリエステル樹脂な
どを用いても、本発明に述べた均質性が向上した摩擦接
触部を作成することができる。
Furthermore, the friction contact portion with improved homogeneity as described in the present invention can be created even by using resins other than fluorocarbon polymers, such as polyimide resins, phenolic resins, and unsaturated polyester resins.

発明の効果 本発明によれば、摩擦接触部分の均質性が向上し、磨耗
によるモータ諸性能の低下および劣化がほとんど起こら
ず円滑に回転し、トルクも大きく、モータ回転時に全く
騒音がです、静止状態の移動体の保持力が一定な実用に
提供しうる超音波モータを実現できる。
Effects of the Invention According to the present invention, the homogeneity of the frictional contact part is improved, and the motor rotates smoothly with almost no deterioration or deterioration of various motor performance due to wear, has a large torque, and there is no noise when the motor rotates. It is possible to realize an ultrasonic motor that can be used practically and has a constant holding force for a moving body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における超音波モータの基
本構成を示す要部断面図、第2図は、円盤状の超音波モ
ータの構成を示す斜視図、第3図は、円環状の超音波モ
ータの構成を示す斜視図である。 1.10・・・圧電体、2,9・・・振動体、3.8・
・・移動体、4,6・・・摩擦接触部、5,7・・・動
力伝達部
FIG. 1 is a sectional view of essential parts showing the basic configuration of an ultrasonic motor in an embodiment of the present invention, FIG. 2 is a perspective view showing the configuration of a disc-shaped ultrasonic motor, and FIG. 3 is a circular-shaped ultrasonic motor. FIG. 2 is a perspective view showing the configuration of an ultrasonic motor. 1.10... Piezoelectric body, 2,9... Vibrating body, 3.8.
... Moving body, 4, 6... Friction contact part, 5, 7... Power transmission part

Claims (4)

【特許請求の範囲】[Claims] (1)板状圧電体を装着した板状振動体の表面を、移動
体と加圧接触させ、前記圧電体に超音波周波数の高周波
電力を入力することにより、前記圧電体および前記振動
体に板厚方向における超音波振動の横波状進行波を生じ
、前記移動体が、前記振動体表面における前記進行波の
波頭部により摩擦手段を介して駆動される超音波モータ
において、前記移動体が、ミルドファイバーを少なくと
も5重量%以上40重量%以下の割合で含有する樹脂シ
ート状成型体からなり前記振動体と摩擦接触する部分を
含んで構成されていることを特徴とする超音波モータ。
(1) The surface of a plate-shaped vibrating body equipped with a plate-shaped piezoelectric body is brought into pressure contact with a moving body, and by inputting high-frequency power at an ultrasonic frequency to the piezoelectric body, the piezoelectric body and the vibrating body are An ultrasonic motor that generates a transverse traveling wave of ultrasonic vibration in the plate thickness direction, and in which the moving body is driven by a wave head of the traveling wave on the surface of the vibrating body via a friction means, wherein the moving body An ultrasonic motor comprising a molded resin sheet containing milled fibers in a proportion of at least 5% by weight and not more than 40% by weight, and including a portion that comes into frictional contact with the vibrating body.
(2)ミルドファイバーがガラス繊維および炭素繊維か
らなる群の少なくとも一つからなる特許請求の範囲第1
項記載の超音波モータ。
(2) Claim 1 in which the milled fiber is at least one of the group consisting of glass fiber and carbon fiber.
Ultrasonic motor as described in section.
(3)樹脂シート状成型体がフルオロカーボン重合体と
ミルドファイバーからなる特許請求の範囲第1項記載の
超音波モータ。
(3) The ultrasonic motor according to claim 1, wherein the resin sheet-like molded body is made of a fluorocarbon polymer and milled fiber.
(4)フルオロカーボン重合体がポリテトラフルオロエ
チレンからなる特許請求の範囲第3項記載の超音波モー
タ。
(4) The ultrasonic motor according to claim 3, wherein the fluorocarbon polymer is polytetrafluoroethylene.
JP63173347A 1988-07-12 1988-07-12 Ultrasonic motor Pending JPH0226279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63173347A JPH0226279A (en) 1988-07-12 1988-07-12 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63173347A JPH0226279A (en) 1988-07-12 1988-07-12 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH0226279A true JPH0226279A (en) 1990-01-29

Family

ID=15958731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63173347A Pending JPH0226279A (en) 1988-07-12 1988-07-12 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0226279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297553A (en) * 2004-03-17 2005-10-27 Citizen Watch Co Ltd Printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297553A (en) * 2004-03-17 2005-10-27 Citizen Watch Co Ltd Printer

Similar Documents

Publication Publication Date Title
JP2568564B2 (en) Lining material and ultrasonic drive motor using the lining material
KR910003669B1 (en) Ultrasonic motor
JPH01270776A (en) Moving body of ultrasonic motor
JPH0226279A (en) Ultrasonic motor
JPS62196082A (en) Ultrasonic motor
JPH0270273A (en) Manufacture of ultrasonic motor and sheet of molded material
JPS63265574A (en) Ultrasonic motor
JPH0246182A (en) Ultrasonic motor
JPH027880A (en) Ultrasonic motor
JPH01311879A (en) Ultrasonic motor
JPH01206880A (en) Ultrasonic motor
JP2604764B2 (en) Ultrasonic motor
JPS63136986A (en) Ultrasonic motor
JPH01248975A (en) Ultrasonic-wave motor
JP2575028B2 (en) Ultrasonic motor
JPH0479237B2 (en)
JPH01238473A (en) Lining material and ultrasonic drive motor using the same material
JPH0217873A (en) Ultrasonic motor
JPS62193568A (en) Ultrasonic motor
JPH0217872A (en) Ultrasonic motor
JPS62147978A (en) Ultrasonic wave motor
JPH03173369A (en) Oscillatory wave motor
JPH01255483A (en) Lining material and ultrasonic-drive motor utilizing same
JPH0632572B2 (en) Ultrasonic motor
JPH0687672B2 (en) Ultrasonic motor device