JPH02261911A - Fluid pressure driving continuous operating reciprocating actuator - Google Patents

Fluid pressure driving continuous operating reciprocating actuator

Info

Publication number
JPH02261911A
JPH02261911A JP1084329A JP8432989A JPH02261911A JP H02261911 A JPH02261911 A JP H02261911A JP 1084329 A JP1084329 A JP 1084329A JP 8432989 A JP8432989 A JP 8432989A JP H02261911 A JPH02261911 A JP H02261911A
Authority
JP
Japan
Prior art keywords
piston
chamber
fluid pressure
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1084329A
Other languages
Japanese (ja)
Other versions
JP2676110B2 (en
Inventor
Seiji Kimura
清二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aioi Seiki Inc
Original Assignee
Aioi Seiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aioi Seiki Inc filed Critical Aioi Seiki Inc
Priority to JP1084329A priority Critical patent/JP2676110B2/en
Publication of JPH02261911A publication Critical patent/JPH02261911A/en
Application granted granted Critical
Publication of JP2676110B2 publication Critical patent/JP2676110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To reduce the size and weight of an actuator by providing a supply valve mechanism which is opened when the fluid pressure in a retreating operation chamber is less than a second set value at the time of retreating operation of the piston, and connects the retreating operation chamber to a fluid pressure supplying port. CONSTITUTION:In a reciprocating actuator AC, pressurized air is supplied to and discharged from an advancing operating chamber 25 by means of a changeover valve mechanism 30 and a control valve mechanism 60 synchronously to the reciprocating motion of a piston 22, while pressurized air having pressure between first and second set values is constantly kept in a retreating operation chamber 26 by means of a relief valve mechanism 80 and a supply valve mechanism 81. The piston 22 continuously repeats, accordingly, the reciprocating motion and a plunger 24 on an end of an output rod 23 also repeats its reciprocating motion in a plunger hole 15. A hydraulic pump HP is so constructed as to retreatingly drive the piston 22, thereby a spring for resetting the piston 22 is disused and the speed of reciprocating cycle and output of the actuator AC are increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体圧駆動連続作動型往復動アクチュエータ
に関し、特に加圧エアや油圧の供給を受けて出力ロッド
を連続的に往復駆動するアクチュエータに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fluid pressure-driven continuously operating reciprocating actuator, and particularly to an actuator that continuously reciprocates an output rod by receiving pressurized air or oil pressure. Regarding.

〔従来技術〕[Prior art]

従来、この種の流体圧駆動連続作動型往復動アクチュエ
ータとしては、ハウジング内にバネ復帰型単動流体圧シ
リンダを組込み、シリンダの作動室に対して流体圧供給
口と排出口とを方向切換弁機構の切換作動により択一的
に連通可能にし、作動室と供給口が連通されると供給さ
れた流体圧く通常は圧縮空気)によりピストンと出力ロ
ッドが復帰バネに抗して進出駆動され、また作動室が排
出口に連通されるとピストンと出力ロッドが復帰バネに
より後退駆動され、且つピストンに連動連結された制御
弁機構により制御用流体圧流路が切換えられて方向切換
弁機構を切換作動させるように構成したものが知られて
いる。
Conventionally, this type of fluid-pressure-driven continuous-acting reciprocating actuator incorporates a spring return type single-acting fluid pressure cylinder in the housing, and connects the fluid pressure supply port and discharge port to the working chamber of the cylinder using a directional control valve. Communication is selectively enabled by the switching operation of the mechanism, and when the working chamber and the supply port are communicated, the piston and output rod are driven forward against the return spring by the supplied fluid pressure (usually compressed air). Furthermore, when the working chamber is communicated with the discharge port, the piston and output rod are driven backward by the return spring, and the control fluid pressure flow path is switched by the control valve mechanism interlocked with the piston to switch the direction switching valve mechanism. There are known devices configured to do this.

本願出願人は、特公昭55−40761号公報に示すよ
うに、従来装置の諸欠点を解消して小型・軽量にして比
較的安価に製作でき且つ作動確実性と耐久性に優れたも
のを実用化した。
As shown in Japanese Patent Publication No. 55-40761, the applicant has put into practical use a device that eliminates the various drawbacks of conventional devices, is small and lightweight, can be manufactured at a relatively low cost, and has excellent operational reliability and durability. It became.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記往復動アクチュエータは、作動室に供給される流体
圧でピストンと出力ロットを進出駆動させ、また復帰バ
ネでピストンと出力ロッドを復帰作動させる構成となっ
ていたので、次のような諸欠点が残っている。
The above-mentioned reciprocating actuator has a structure in which the piston and output rod are moved forward by the fluid pressure supplied to the working chamber, and the piston and output rod are moved back by the return spring, so it has the following drawbacks. Remaining.

上記往復動アクチュエータをプランジャ型油圧ポンプ駆
動用のアクチュエータに適用した場合を例にして説明す
ると、復帰バネを収容する為にピストンの往復動ストロ
ークと最大圧縮状態の復帰バネの長さの合計長さ以上の
バネ収容室を設けなければならないのでアクチュエータ
が大型化すること、出力アップつまり油圧ポンプの吐出
量増加の為にピストンの往復動サイクルを高速化すると
復帰バネが追従不能となり復帰バネが破損してしまうの
で高速化に限界があること、油圧ポンプの吐出量増加の
為にピストン及び出力ロッドのストロークを大きくする
と、復帰バネのバネ長が大きくなるので大型の復帰バネ
が必要となり全体として大型化してしまうこと、復帰バ
ネの追従性を高める為に復帰バネのバネ力を強くすると
1サイクル当りの出力が低下し油圧ポンプの吐出圧が低
下してしまうこと及び低圧の流体圧で駆動できなくなっ
て油圧ポンプの汎用性が低下すること、など種々の問題
がある。
To explain the case where the above reciprocating actuator is applied to an actuator for driving a plunger type hydraulic pump as an example, in order to accommodate the return spring, the total length of the reciprocating stroke of the piston and the length of the return spring in the maximum compression state is required. The actuator becomes larger because it is necessary to provide more spring accommodation chambers, and if the reciprocating cycle of the piston is made faster to increase the output, that is, increase the discharge amount of the hydraulic pump, the return spring will not be able to follow the movement and the return spring will be damaged. If the stroke of the piston and output rod is increased to increase the discharge amount of the hydraulic pump, the spring length of the return spring will become larger, which will require a larger return spring and increase the overall size. If you increase the spring force of the return spring to improve its followability, the output per cycle will decrease and the discharge pressure of the hydraulic pump will decrease, and the hydraulic pump will not be able to drive with low fluid pressure. There are various problems such as a decrease in the versatility of the hydraulic pump.

本発明は、復帰バネに代えて流体圧によりピストンを復
帰駆動し得るような流体圧駆動連続作動型往復動アクチ
ュエータを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fluid pressure-driven continuously operated reciprocating actuator that can return a piston using fluid pressure instead of a return spring.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る流体圧駆動連続作動型往復動アクチュエー
タは、ハウジング内にピストンとこのピストンに固着さ
れた出力ロッドとを有する複動流体圧シリンダを設け、
この流体圧シリンダにピストンを流体圧で進出駆動する
往動作動室とピストンを流体圧で後退駆動する復動作動
室を設け、上記往動作動室を流体圧供給口に接続する供
給位置と排出口に接続する排出位置とに択一的に切換え
られる切換弁体と、この切換弁体を供給位置に付勢する
付勢手段と、その付勢力に抗して切換弁体を流体圧で排
出位置に切換える弁作動室とを備えた切換弁機構を設け
、上記ピストンから延び切換弁体に挿通された弁部材を
介して、ピストンが後退限位置にあるときは弁作動室を
排出口に接続し且つピストンが後退限位置と進出限位置
の間にあるときは弁作動室を封止し且つピストンが進出
限位置にあるときは弁作動室を流体圧供給口に接続する
制御弁機構を設け、上記ピストンの進出作動時、復動作
動室内の流体圧が第1設定圧より高いときに開弁して復
動作動室を排出口に接続するリリーフ弁機構を設け、上
記ピストンの後退作動時、復動作動室内の流体圧が第1
設定圧以下の第2設定圧未満のときに開弁して復動作動
室を流体圧供給口に接続する供給弁機構を設けたもので
ある。
A fluid-pressure-driven continuously operating reciprocating actuator according to the present invention includes a double-acting fluid-pressure cylinder having a piston and an output rod fixed to the piston in a housing,
This fluid pressure cylinder is provided with a forward motion chamber that drives the piston forward using fluid pressure and a backward motion chamber that drives the piston backward using fluid pressure, and a supply position and an exhaust position that connect the forward motion chamber to the fluid pressure supply port. A switching valve body connected to an outlet and selectively switched to a discharge position, a biasing means for biasing the switching valve body to a supply position, and a fluid pressure to discharge the switching valve body against the biasing force. A switching valve mechanism is provided, which includes a valve operating chamber that is switched to a position, and the valve operating chamber is connected to the discharge port when the piston is at the retraction limit position via a valve member that extends from the piston and is inserted through the switching valve body. and a control valve mechanism is provided which seals the valve operating chamber when the piston is between the retraction limit position and the extension limit position and connects the valve operation chamber to the fluid pressure supply port when the piston is at the extension limit position. , a relief valve mechanism is provided which opens when the fluid pressure in the double action chamber is higher than the first set pressure when the piston moves forward to connect the double action chamber to the discharge port; , the fluid pressure in the double action chamber is the first
A supply valve mechanism is provided which opens the valve when the pressure is lower than the second set pressure and connects the double action chamber to the fluid pressure supply port.

〔作用〕[Effect]

本発明に係る流体圧駆動連続作動型往復動アクチュエー
タにおいては、流体圧供給口に圧力流体が供給されてい
る状態で、ピストンが後退限位置にあるときには制御弁
機構によって弁作動室が排出口に接続されているので、
切換弁体は付勢手段により供給位置に保持され、圧力流
体が流体圧供給口から往動作動室へ供給され、ピストン
は往動作動室内の流体圧によって復動作動室内の流体圧
に抗して進出駆動される。ピストンが後退限位置から進
出限位置に達するまでは制御弁機構によって弁作動室が
流体圧排出状態で封止されるので切換弁体は供給位置に
保持される。従って、上記のように往動作動室に圧力流
体が供給され、ピストンは進出駆動される。この間復動
作動室内の流体は加圧され、第1設定圧より高くなると
リリーフ弁機構によりリリーフされるので第1設定圧に
保持される。
In the fluid pressure-driven continuously operating reciprocating actuator according to the present invention, when the piston is at the retraction limit position with pressure fluid being supplied to the fluid pressure supply port, the valve operating chamber is moved to the discharge port by the control valve mechanism. Since it is connected,
The switching valve body is held in the supply position by the biasing means, pressure fluid is supplied from the fluid pressure supply port to the forward movement chamber, and the piston resists the fluid pressure in the backward movement chamber by the fluid pressure in the forward movement chamber. is driven forward. Until the piston reaches the retraction limit position from the retraction limit position, the valve operating chamber is sealed in a fluid pressure discharged state by the control valve mechanism, so that the switching valve body is held in the supply position. Therefore, as described above, pressure fluid is supplied to the forward movement chamber, and the piston is driven to move forward. During this time, the fluid in the reciprocating movement chamber is pressurized, and when it becomes higher than the first set pressure, it is relieved by the relief valve mechanism, so that the fluid is maintained at the first set pressure.

その後、ピストンが進出限位置に達すると、制御弁機構
により弁作動室が流体圧供給口に接続され、切換弁体は
弁作動室内の流体圧により付勢手段の付勢力に抗して排
出位置に切換えられるので、往動作動室は排出口に接続
され、復動作動室内の第1設定圧の圧力流体によりピス
トンは後退駆動を開始する。ピストンが進出限位置から
後退限位置に達するまでは弁作動室が流体圧充填状態で
封止されるので切換弁体は排出位置に保持される。
After that, when the piston reaches the extension limit position, the valve operating chamber is connected to the fluid pressure supply port by the control valve mechanism, and the switching valve body is moved to the discharge position by the fluid pressure in the valve operating chamber against the urging force of the urging means. Therefore, the forward motion chamber is connected to the discharge port, and the piston starts to be driven backward by the pressure fluid at the first set pressure in the backward motion chamber. Since the valve operating chamber is filled with fluid pressure and sealed until the piston reaches the backward limit position from the forward limit position, the switching valve body is held in the discharge position.

上記ピストンの後退に応して復動作動室内の流体圧が第
1設定圧以下の第2設定圧より低下したときには供給弁
機構が開いて復動作動室へ圧力流体が供給されるので第
2設定圧に保持され、ピストンは後退していく。こうし
て、ピストンが後退限位置に達すると、制御弁機構によ
り弁作動室が排出口に接続され、切換弁体が供給位置に
切換えられ、以下前記同様に繰返し、ピストンは往復駆
動されることになる。
When the fluid pressure in the double action chamber falls below the second set pressure which is lower than the first set pressure in response to the retraction of the piston, the supply valve mechanism opens and pressurized fluid is supplied to the double action chamber. The set pressure is maintained and the piston moves backward. In this way, when the piston reaches the retraction limit position, the valve operating chamber is connected to the discharge port by the control valve mechanism, the switching valve body is switched to the supply position, and the same as above is repeated, and the piston is driven back and forth. .

本発明の往復動アクチュエータにおいては、復動作動室
内に第1設定圧以下且つ第2設定圧以上の流体圧を保持
し、その流体圧でピストンを後退駆動するように構成し
たので、復帰バネを省略することが可能となり、往復動
サイクルを高速化して往復動アクチュエータの出力アッ
プを実現出来、ピストンの往復動のストロークを必要に
応して自由に大きく或いは小さく設計することが出来、
復動作動室はピストンの往復動ストロークに必要なだけ
の小型の作動室に形成できるため、往復動アクチュエー
タの小型化を図ることが出来る。しかも、第1設定圧及
び第2設定圧は必要に応して調節可能にも構成し得るの
で往復動アクチュエータの汎用性を向上させることも可
能である。
In the reciprocating actuator of the present invention, a fluid pressure lower than the first set pressure and higher than the second set pressure is maintained in the double motion chamber, and the piston is driven backward by the fluid pressure. This makes it possible to speed up the reciprocating cycle and increase the output of the reciprocating actuator, and the reciprocating stroke of the piston can be freely designed to be larger or smaller as necessary.
Since the reciprocating movement chamber can be formed into a small-sized working chamber that is necessary for the reciprocating stroke of the piston, it is possible to downsize the reciprocating actuator. Moreover, since the first set pressure and the second set pressure can be configured to be adjustable as necessary, it is also possible to improve the versatility of the reciprocating actuator.

〔発明の効果〕〔Effect of the invention〕

本発明に係る流体圧駆動連続作動型往復動アクチュエー
タによれば、上記〔作用〕の項で説明したように、リリ
ーフ弁機構と供給弁機構とによってピストンの位置に拘
らず復動作動室内の圧力流体を所定の範囲の圧力に保持
し、その圧力流体によりピストンを後退駆動するように
構成したことにより、復帰バネを省略できること、往復
動サイクルの高速化つまり出力アップを実現し得ること
、ピストンの往復動ストロークを必要に応して自由に大
きく或いは小さ(設計することが出来ること、復動作動
室を小型化して往復動アクチュエータを小型化し得るこ
と、往復動アクチュエータの汎用性を向上し得ること、
などの効果が得られる。
According to the fluid pressure-driven continuously operating type reciprocating actuator according to the present invention, as explained in the [Function] section above, the relief valve mechanism and the supply valve mechanism reduce the pressure in the double action chamber regardless of the position of the piston. By maintaining the fluid at a predetermined pressure range and using the pressure fluid to drive the piston backward, the return spring can be omitted, the reciprocating cycle can be made faster, and the output can be increased. The reciprocating stroke can be freely designed to be larger or smaller as needed; the reciprocating actuator can be made smaller by making the reciprocating movement chamber smaller; and the versatility of the reciprocating actuator can be improved. ,
Effects such as this can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本実施例は、圧縮空気(以下、加圧エアという)駆動連
続作動型往復動アクチュエータによりプランジャを駆動
するようにしたエア駆動式油圧ポンプに本発明を適用し
た場合の一例である。
This embodiment is an example in which the present invention is applied to an air-driven hydraulic pump in which a plunger is driven by a continuously operating reciprocating actuator driven by compressed air (hereinafter referred to as pressurized air).

第1図に示すように、この油圧ポンプHPは往復動アク
チュエータACとポンプ本体部PCとを備え、往復動ア
クチュエータACのハウジングlOは、上部ハウジング
11と中間ハウジング12と下部ハウジング13とを複
数のコモンボルト14で一体的に連結して構成されてい
る。
As shown in FIG. 1, this hydraulic pump HP includes a reciprocating actuator AC and a pump main body PC, and the housing lO of the reciprocating actuator AC has an upper housing 11, an intermediate housing 12, a lower housing 13, and a plurality of They are integrally connected by a common bolt 14.

ハウジング10内の下半部内には複動エアシリンダ20
が設けられ、このエアシリンダ20のシリンダ孔21内
にはピストン22が装着され、ピストン22の下端から
延びる出力ロソド23の下部にプランジャ24が形成さ
れ、シリンダ孔21のうちのピストン22の上側には往
動作動室25がまたピストン22の下側には復動作動室
26が夫々形成されている。
Inside the lower half of the housing 10 is a double acting air cylinder 20.
A piston 22 is installed in the cylinder hole 21 of the air cylinder 20, and a plunger 24 is formed at the lower part of the output rod 23 extending from the lower end of the piston 22. A forward movement chamber 25 and a backward movement chamber 26 are formed below the piston 22, respectively.

下部ハウジング13内にはプランジャ孔15が設けられ
、プランジャ24がプランジ中孔15内に進退駆動され
゛、吸入口16から吸入チエツク弁17を介してプラン
ジャ孔15に吸入された油はプランジャ24により圧縮
され、吐出チエツク弁18を介して吐出口19へ吐出さ
れる。
A plunger hole 15 is provided in the lower housing 13, and a plunger 24 is driven forward and backward into the plunger hole 15. It is compressed and discharged to the discharge port 19 via the discharge check valve 18.

−ト、記ハウジング10の上部の側部には外部の加圧エ
ア供給源から加圧エア(例えば、5.0kg/cdG)
が供給される加圧エア供給口3が設けられ、ハウジング
10の上端部内には排気口としてのマフラ4を介して大
気中に連通ずる排気室5が形成されている。
- Pressurized air (for example, 5.0 kg/cdG) is supplied to the upper side of the housing 10 from an external pressurized air supply source.
A pressurized air supply port 3 is provided to which air is supplied, and an exhaust chamber 5 is formed in the upper end of the housing 10 to communicate with the atmosphere via a muffler 4 serving as an exhaust port.

次に、切換弁機#!30について説明する。Next, the switching valve machine #! 30 will be explained.

中間ハウジング12の仕切壁31の上面には中間ハウジ
ング12内に収容された環状部材32が固着され、環状
部材32の外周側には加圧エア供給口3に連なる加圧エ
ア供給路33が形成され、仕切壁31の凹部34と環状
部材32の内側には切換弁体35が装着され、切換弁体
35の下端部の下部ピストン部36が凹部34に気密摺
動自在に装着されるとともに、切換弁体35の中段部に
は環状かつ鍔状の切換弁部37が形成され、切換弁体3
5の上端部の上部ピストン部38は環状部材32のシリ
ンダ孔39に気密摺動自在に内嵌され、切換弁部37と
下部ピストン36との間で切換弁体35の外周部には排
気路40により排気室5に連なる環状排気路41が形成
され、切換弁部37の外周側には通路42aにより往動
作動室25に連なる環状通路42が形成されている。環
状部材32には切換弁部37の上面の環状の第1弁面4
3が当接する第1弁座44が形成され、仕切壁31には
切換弁部37の下面の環状の第2弁面45が当接する第
2弁座46が形成され、第1弁面43と上部ピストン部
38との間で切換弁体35の外周側には通路47により
加圧エア供給路33に連なる環状の受圧室48が形成さ
れ、切換弁体35はスプリング49で下方へ弾性付勢さ
れている。
An annular member 32 housed in the intermediate housing 12 is fixed to the upper surface of the partition wall 31 of the intermediate housing 12, and a pressurized air supply path 33 connected to the pressurized air supply port 3 is formed on the outer peripheral side of the annular member 32. A switching valve body 35 is installed inside the recess 34 of the partition wall 31 and the annular member 32, and a lower piston portion 36 at the lower end of the switching valve body 35 is installed in the recess 34 in an airtight and slidable manner. An annular and brim-shaped switching valve portion 37 is formed in the middle part of the switching valve body 35.
The upper piston part 38 at the upper end of the switching valve body 35 is fitted into the cylinder hole 39 of the annular member 32 in an airtight and slidable manner. 40 forms an annular exhaust passage 41 which is connected to the exhaust chamber 5, and an annular passage 42 which is connected to the forward motion chamber 25 by a passage 42a is formed on the outer peripheral side of the switching valve portion 37. The annular member 32 has an annular first valve surface 4 on the upper surface of the switching valve section 37.
3 is in contact with the first valve seat 44, and the partition wall 31 is formed with a second valve seat 46 in which the annular second valve surface 45 on the lower surface of the switching valve part 37 is in contact. An annular pressure receiving chamber 48 connected to the pressurized air supply path 33 is formed by a passage 47 on the outer circumferential side of the switching valve body 35 between the upper piston portion 38 and the switching valve body 35 is elastically biased downward by a spring 49. has been done.

上記切換弁体35の第2弁面45が第2弁座46に当接
したときには第1弁面43と第1弁座44間が開き、往
動作動室25は通路42a、環状通路42、受圧室48
、通路47及び加圧エア供給路33により加圧エア供給
口3に連通される。
When the second valve surface 45 of the switching valve body 35 comes into contact with the second valve seat 46, the space between the first valve surface 43 and the first valve seat 44 opens, and the forward movement chamber 25 includes the passage 42a, the annular passage 42, Pressure receiving chamber 48
, a passage 47 and a pressurized air supply path 33 communicate with the pressurized air supply port 3 .

従って、このときの切換弁体35の位置を供給位置とい
う。
Therefore, the position of the switching valve body 35 at this time is called the supply position.

上記切換弁体35の第1弁面43が第1弁座44に当接
したときには第2弁面45と第2弁座46間が開き、往
動作動室25は通路42a1環状通路42、環状排気路
41及び排気路40により排気室5に連通される。従っ
て、このときの切換弁体35の位置を排出位置という。
When the first valve surface 43 of the switching valve body 35 comes into contact with the first valve seat 44, the space between the second valve surface 45 and the second valve seat 46 opens, and the forward movement chamber 25 is divided into the passage 42a1, the annular passage 42, the annular passage 42, and the annular passage 42a. It communicates with the exhaust chamber 5 through an exhaust path 41 and an exhaust path 40 . Therefore, the position of the switching valve body 35 at this time is called the discharge position.

上記切換弁体35の下部ピストン36と凹部34とで弁
作動室50が形成され、弁作動室50に加圧エアが供給
されないときには、切換弁体35は受圧室48の加圧エ
アとスプリング49とで供給位置に付勢され、弁作動室
50に後述のように加圧エアが供給されたときには、切
換弁体35は排出位置へ切換えられる。
A valve operating chamber 50 is formed by the lower piston 36 and the recess 34 of the switching valve body 35, and when pressurized air is not supplied to the valve operating chamber 50, the switching valve body 35 uses the pressurized air in the pressure receiving chamber 48 and the spring 49. When pressurized air is supplied to the valve operating chamber 50 as described later, the switching valve body 35 is switched to the discharge position.

次に、制御弁機構60について説明する。Next, the control valve mechanism 60 will be explained.

上記ピストン22の中心部に固着されたロッド状の弁部
材61は、仕切壁31の摺動孔62と切換弁体35の挿
通孔63とを挿通して上方へ延び、弁部材61の途中部
には小径部64が形成され、摺動孔62の内周部には弁
部材61の外周面に気密状に圧接される上下1対のOリ
ング65・66が装着され、挿通孔63の上端部の内周
部には弁部材61の外周面に気密状に圧接される0リン
グ67が装着され、仕切壁31には加圧エア供給口3に
連なる加圧エア通路68がOリング65・66の外側ま
で形成されている。
A rod-shaped valve member 61 fixed to the center of the piston 22 extends upward through a sliding hole 62 of the partition wall 31 and an insertion hole 63 of the switching valve body 35. A small-diameter portion 64 is formed in the sliding hole 62, and a pair of upper and lower O-rings 65 and 66 are attached to the inner circumferential portion of the sliding hole 62 and are pressed against the outer circumferential surface of the valve member 61 in an airtight manner. An O-ring 67 is attached to the inner periphery of the valve member 61, and the O-ring 67 is connected to the outer periphery of the valve member 61 in an airtight manner. It is formed to the outside of 66.

上記ピストン22が第1図に図示の後退限位置にあると
きには、小径部64によりOリング67の封止が解除さ
れ、弁作動室50が挿通孔63の弁部材61の外側の環
状隙間69により排気室5に連通され、またピストン2
2が第2図に図示の進出限位置にあるときにはOリング
67により環状隙間69が封止されるとともに小径部6
4により0リング65の封止が解除されて加圧エア通路
68が弁作動室50に連通され、またピストン22が後
退限位置と進出服位置の間にあるときには両0リング6
5・67により弁作動室50は封止される。
When the piston 22 is at the retraction limit position shown in FIG. It communicates with the exhaust chamber 5, and the piston 2
2 is at the advanced limit position shown in FIG.
4, the sealing of the O-ring 65 is released and the pressurized air passage 68 is communicated with the valve operating chamber 50, and when the piston 22 is between the retraction limit position and the advanced position, both O-rings 6
5.67 seals the valve operating chamber 50.

次に、リリーフ弁機構80と供給弁機構81について説
明する。
Next, the relief valve mechanism 80 and the supply valve mechanism 81 will be explained.

この往復動アクチュエータACは、往動作動室25に供
給された加圧エアによりピストン22と出力ロット23
を進出駆動させ、また復動作動室26内に常時収容され
ている第1設定圧(例えば、0.5kg/cnlG)以
下且つ第2設定圧(例えば、0゜4 kg / al 
G )以上の加圧エアによりピストン22と出力ロット
23を後退駆動させるように構成されている。その為、
ピストン22の進出作動時復動作動室26内の加圧エア
の圧力が第1設定圧より高いときにリリーフ作動するリ
リーフ弁機構80と、ピストン22の後退作動時復動作
動室26内の加圧エアの圧力が第2設定圧未満のときに
加圧エアを供給する供給弁機構81が次のように設けら
れている。
This reciprocating actuator AC is moved between the piston 22 and the output rod 23 by pressurized air supplied to the reciprocating movement chamber 25.
The pressure is lower than the first set pressure (e.g., 0.5 kg/cnlG) and the second set pressure (e.g., 0°4 kg/al.
G) The piston 22 and the output rod 23 are configured to be driven backward by the above pressurized air. For that reason,
A relief valve mechanism 80 that performs relief operation when the pressure of pressurized air in the double action chamber 26 when the piston 22 moves forward is higher than the first set pressure, and a relief valve mechanism 80 that operates in relief when the pressure of the pressurized air in the double action chamber 26 when the piston 22 moves backward; A supply valve mechanism 81 that supplies pressurized air when the pressure of the pressurized air is less than the second set pressure is provided as follows.

中間ハウジング12内において環状部材32には環状の
供給弁体83が気密摺動自在に外嵌され、この供給弁体
83の上方において上部ハウジング11には環状のリリ
ーフ弁体84が気密摺動自在に内嵌され、リリーフ弁体
84の下面には環状の第3弁面85が形成され、供給弁
体83の上端部には第3弁面85が当接する第3弁座8
6が形成され、供給弁体83の中段外周段部の上面には
環状の第4弁面87が形成され、上部ハウジング11の
鍔部89の下面には第4弁面87が当接する第4弁座8
8が形成され、鍔部89の上面にはリリーフ弁体84の
下限位置を規制する第1規制部90が形成され、環状部
材32の外周部には供給弁体83の下限位置を規制する
第2規制部91が形成されている。
An annular supply valve body 83 is fitted onto the annular member 32 in the intermediate housing 12 so as to be slidable in an airtight manner, and an annular relief valve body 84 is slidably and airtightly fitted in the upper housing 11 above the supply valve body 83. An annular third valve surface 85 is formed on the lower surface of the relief valve body 84 , and a third valve seat 8 with which the third valve surface 85 abuts is formed on the upper end of the supply valve body 83 .
6 is formed, an annular fourth valve surface 87 is formed on the upper surface of the middle outer peripheral step of the supply valve body 83, and a fourth valve surface 87 abuts on the lower surface of the flange 89 of the upper housing 11. Valve seat 8
8 is formed, a first regulating part 90 for regulating the lower limit position of the relief valve element 84 is formed on the upper surface of the flange part 89, and a first regulating part 90 for regulating the lower limit position of the supply valve element 83 is formed on the outer periphery of the annular member 32. Two regulating portions 91 are formed.

上記上部ハウジング11とリリーフ弁体84と供給弁体
83間には環状受圧室92が形成され、供給弁体83と
環状部材32間には連通孔93aにより環状受圧室92
に連通された環状の背圧室93が形成され、環状受圧室
92は通路94、ボルト孔と共通の環状通路95及び中
間ハウジング12の下端の孔96により復動作動室26
に連通されている。
An annular pressure receiving chamber 92 is formed between the upper housing 11, the relief valve body 84 and the supply valve body 83, and a communication hole 93a is formed between the supply valve body 83 and the annular member 32.
An annular back pressure chamber 93 is formed which communicates with the double action chamber 26 , and the annular pressure receiving chamber 92 is formed by a passage 94 , an annular passage 95 common to the bolt hole, and a hole 96 at the lower end of the intermediate housing 12 .
is communicated with.

更に、IJ IJ−フ弁体84は第1設定圧を設定する
為の圧縮コイルスプリングからなる第1スプリング97
で下方へ弾性付勢され、供給弁体83は第1スプリング
97と協働して第2設定圧を設定する為の圧縮コイルス
プリングからなる第2スプリング98で上方へ弾性付勢
されている。
Further, the IJ IJ-F valve body 84 has a first spring 97 made of a compression coil spring for setting the first set pressure.
The supply valve body 83 is elastically urged downward by a second spring 98, which is a compression coil spring that cooperates with the first spring 97 to set a second set pressure.

復動作動室26内の加圧エアの圧力が第1設定圧以下且
つ第2設定圧以上のときにリリーフ弁体84と供給弁体
83は第1図に図示の状態を保持し、第3弁面85と第
3弁座86間及び第4弁面87と第4弁座88間が夫々
閉じられている。
When the pressure of the pressurized air in the double action chamber 26 is lower than the first set pressure and higher than the second set pressure, the relief valve body 84 and the supply valve body 83 maintain the state shown in FIG. A space between the valve surface 85 and the third valve seat 86 and a space between the fourth valve surface 87 and the fourth valve seat 88 are respectively closed.

ピストン22の進出作動時、復動作動室26内の加圧エ
アの圧力が第1設定圧より高くなると、環状受圧室92
の加圧エアによりリリーフ弁体84が上方へ移動し、第
3弁面85が第3弁座8.6から離れて加圧エアがリリ
ーフされるので、復動作動室26の圧力は第1設定圧に
維持される。ピストン22の後退作動時、復動作動室2
6内の加圧エアの圧力が第2設定圧より低くなると、第
1スプリング97のバネ力でリリーフ弁体84が第2ス
プリング98に抗して供給弁体83を下方へ押動するの
で第4弁面87が第4弁座88から離れ、加圧エア供給
路33から環状受圧室92へ加圧エアが供給されるので
、復動作動室26の圧力は第2設定圧に維持される。
When the piston 22 moves forward and the pressure of the pressurized air in the double action chamber 26 becomes higher than the first set pressure, the annular pressure receiving chamber 92
Pressurized air moves the relief valve body 84 upward, and the third valve surface 85 separates from the third valve seat 8.6, releasing the pressurized air, so that the pressure in the double action chamber 26 is reduced to the first Maintained at set pressure. When the piston 22 moves backward, the double movement chamber 2
When the pressure of the pressurized air in 6 becomes lower than the second set pressure, the relief valve body 84 pushes the supply valve body 83 downward against the second spring 98 due to the spring force of the first spring 97. Since the fourth valve surface 87 is separated from the fourth valve seat 88 and pressurized air is supplied from the pressurized air supply path 33 to the annular pressure receiving chamber 92, the pressure in the double action chamber 26 is maintained at the second set pressure. .

尚、上記第1〜第4弁面43・45・85・87には耐
摩耗性に優れる合成樹脂部材が埋込まれている。
In addition, a synthetic resin member having excellent wear resistance is embedded in the first to fourth valve surfaces 43, 45, 85, and 87.

次に、上記往復動アクチュエータACの作動について説
明する。
Next, the operation of the reciprocating actuator AC will be explained.

加圧エア供給口3に加圧エアが供給されている状態で、
ピストン22が後退限位置にあるときには制御弁機構6
0によって弁作動室50が排気室5に接続されているの
で、切換弁体35は受圧室48の加圧エアとスプリング
49の付勢力により供給位置に保持され、加圧エアが加
圧エア供給口3から往動作動室25へ供給され、ピスト
ン22は往動作動室25内の加圧エアによつて復動作動
室26内の加圧エアに抗して進出駆動される。ピストン
22が後退限位置から進出限位置に達するまでは制御弁
機構60によって弁作動室50がエア圧排出状態で封止
されるので切換弁体35は供給位置に保持される。従っ
て、上記のように往動作動室25に加圧エアの供給が継
続され、ピストン22は進出駆動される。この間復動作
動室26内功エアは加圧され、第1設定圧より高くなる
とリリーフ弁機構80によりリリーフされるので第1設
定圧に保持される。
With pressurized air being supplied to the pressurized air supply port 3,
When the piston 22 is at the retraction limit position, the control valve mechanism 6
0 connects the valve operating chamber 50 to the exhaust chamber 5, the switching valve body 35 is held at the supply position by the pressurized air in the pressure receiving chamber 48 and the biasing force of the spring 49, and the pressurized air is supplied to the exhaust chamber 5. The piston 22 is supplied from the port 3 to the forward motion chamber 25 , and the piston 22 is driven forward by the pressurized air in the forward motion chamber 25 against the pressurized air in the backward motion chamber 26 . Since the valve operating chamber 50 is sealed in an air pressure discharge state by the control valve mechanism 60 until the piston 22 reaches the advanced limit position from the backward limit position, the switching valve body 35 is held in the supply position. Therefore, as described above, pressurized air continues to be supplied to the forward motion chamber 25, and the piston 22 is driven to move forward. During this time, the air in the reciprocating motion chamber 26 is pressurized, and when the pressure becomes higher than the first set pressure, it is relieved by the relief valve mechanism 80, so that the pressure is maintained at the first set pressure.

その後、ピストン22が進出限位置に達すると、制御弁
機構60により弁作動室50が加圧エア供給口3に接続
され、切換弁体35は弁作動室50内の加圧エアにより
受圧室48の加圧エアとスプリング49の付勢力に抗し
て排出位置に切換えられるので、往動作動室25は排気
室5に接続され、復動作動室26内の第1設定圧の加圧
エアによりピストン22は後退駆動を開始する。ピスト
ン22が進出限値1から後退限位置に達するまでは弁作
動室50が加圧エア充填状態で封止されるので切換弁体
35は排出位置に保持される。上記ピストン22の後退
に応して復動作動室26内のエア圧が第1設定圧以下の
第2設定圧より低下したときには供給弁機構81が開い
て復動作動室26へ加圧エアが供給されるので第2設定
圧に保持され、ピストン22の後退が′m続される。こ
うして、ピストン22が後退限位置に達すると、制御弁
機構60により弁作動室50が排気室5に接続され、切
換弁体35が供給位置に切換えられ、以下前記同様に繰
返し、ピストン22は往復駆動されることになる。
Thereafter, when the piston 22 reaches the extension limit position, the valve operating chamber 50 is connected to the pressurized air supply port 3 by the control valve mechanism 60, and the switching valve body 35 is connected to the pressure receiving chamber 48 by the pressurized air in the valve operating chamber 50. The forward motion chamber 25 is connected to the exhaust chamber 5, and the forward motion chamber 25 is connected to the exhaust chamber 5, and the pressurized air at the first set pressure in the backward motion chamber 26 Piston 22 begins to drive backward. Since the valve operating chamber 50 is filled with pressurized air and sealed until the piston 22 reaches the backward limit position from the advance limit value 1, the switching valve body 35 is held at the discharge position. When the air pressure in the double action chamber 26 drops below the second set pressure which is lower than the first set pressure in response to the retraction of the piston 22, the supply valve mechanism 81 opens and pressurized air is supplied to the double action chamber 26. Since the pressure is supplied, the second set pressure is maintained, and the retraction of the piston 22 continues. In this way, when the piston 22 reaches the retraction limit position, the valve operating chamber 50 is connected to the exhaust chamber 5 by the control valve mechanism 60, and the switching valve body 35 is switched to the supply position. It will be driven.

以上の説明から明らかなように、往復動アクチュエータ
ACにおいて、ピストン22の往復作動に同期して切換
弁機構30と制御弁機構60によって、往動作動室25
へ加圧エアが供給・排出され、またリリーフ弁機構80
と供給弁機構81によって復動作動室26内には常時第
工設定圧以下且つ第2設定圧以上の加圧エアが保持され
るので、ピストン22は往復動を連続的に繰返し、出力
ロット23の先端のプランジャ24はプランジャ孔15
内で往復動を連続的に繰返すことになる。従って、油圧
ポンプ本体部PCにおいては、油の吸入と圧縮・吐出と
を連続的に繰返すことになる。
As is clear from the above description, in the reciprocating actuator AC, the switching valve mechanism 30 and the control valve mechanism 60 operate the reciprocating motion chamber 25 in synchronization with the reciprocating motion of the piston 22.
Pressurized air is supplied to and discharged from the relief valve mechanism 80.
Since pressurized air below the first set pressure and above the second set pressure is always maintained in the double action movement chamber 26 by the supply valve mechanism 81, the piston 22 continuously repeats reciprocating motion, and the output lot 23 The plunger 24 at the tip of the plunger hole 15
This means that the reciprocating motion will be repeated continuously. Therefore, in the hydraulic pump main body PC, suction, compression, and discharge of oil are continuously repeated.

このように、本実施例の油圧ポンプHPにおいては、加
圧エアによりピストン22を後退駆動するように構成さ
れているので、ピストン22を後退駆動させるための復
帰バネを省略することが可能となり、往復動サイクルを
高速化して往復動アクチュエータACの出力アップを図
ることが出来、ピストン22の往復動のストロークを必
要に応して自由に大きく或いは小さく設計することが出
来、復動作動室26はピストン22の往復動ストローク
に必要なだけの小型に形成できるため、油圧ポンプHP
自体の小型化を図ることが出来る。
In this way, the hydraulic pump HP of this embodiment is configured to drive the piston 22 backward by pressurized air, so it is possible to omit the return spring for driving the piston 22 backward. It is possible to increase the output of the reciprocating actuator AC by speeding up the reciprocating motion cycle, and the reciprocating stroke of the piston 22 can be freely designed to be large or small as required, and the reciprocating motion chamber 26 is The hydraulic pump HP can be made small enough to accommodate the reciprocating stroke of the piston 22.
The device itself can be made smaller.

次に、前記実施例の変形例について、第3図〜第6図に
基いて説明する。尚、前記実施例と同一の機構には同一
符号を付してその説明を省略する。
Next, modifications of the above embodiment will be explained based on FIGS. 3 to 6. Incidentally, mechanisms that are the same as those in the previous embodiment are given the same reference numerals and their explanations will be omitted.

く変形例1〉 前記実施例の制御弁機構60の0リング67に代えて、
第3図に図示のような制御弁機構60Aを用いる。
Modification Example 1> In place of the O-ring 67 of the control valve mechanism 60 of the above embodiment,
A control valve mechanism 60A as shown in FIG. 3 is used.

切換弁体35Aには筒部工00が設けられ、筒部100
には弁孔lO1を開閉する第2弁部材102が装着され
、マフラ4には圧縮コイルバネからなる閉弁バネ103
が取付けられ、第2弁部材102は閉弁バネ103によ
り下方に弾性付勢され、第2弁部材102の下方にあっ
て、ピストン22の中心部に固着されたロッド状の弁部
材61Aは、前記実施例の弁部材61の小径部64の下
端よりも上方の部分を取り除いたものである。
The switching valve body 35A is provided with a cylindrical part 00, and a cylindrical part 100.
A second valve member 102 for opening and closing the valve hole lO1 is attached to the muffler 4, and a valve closing spring 103 made of a compression coil spring is attached to the muffler 4.
is attached, the second valve member 102 is elastically biased downward by the valve closing spring 103, and the rod-shaped valve member 61A, which is located below the second valve member 102 and is fixed to the center of the piston 22, The valve member 61 of the previous embodiment has a portion above the lower end of the small diameter portion 64 removed.

尚、制御弁機構60Aのその他の部分は前記実施例と同
様なので説明を省略する。
Note that the other parts of the control valve mechanism 60A are the same as those in the previous embodiment, so a description thereof will be omitted.

上記制御弁機構60Aにおいて、ピストン22が図示の
ように後退限位置にあるときは、弁部材61Aが閉弁バ
ネ103のバネ力に抗して第2弁部材102を突上げ弁
孔101を開孔するので、弁作動室50は環状隙間69
と弁孔101と筒部100の通路を介して排気室5に接
続されるので、切換弁体35Aは供給位置に保持され、
またピストン22が進出限位置にあるときには、第2弁
部材102は閉弁バネ103により下降して弁孔工OX
を閉じるとともに弁部材61Aの上端部がOリング66
の下方まで下降するので、加圧エア通路68が弁作動室
50に連通され、弁作動室50に加圧エアが充填されて
、切換弁体35Aは排出位置に切換えられる。その他の
作動は前記実施例と同様なので説明を省略する。
In the control valve mechanism 60A, when the piston 22 is at the retraction limit position as shown, the valve member 61A pushes up the second valve member 102 against the spring force of the valve closing spring 103 to open the valve hole 101. Since the hole is formed, the valve operating chamber 50 has an annular gap 69.
Since the switching valve body 35A is connected to the exhaust chamber 5 through the valve hole 101 and the passage of the cylindrical portion 100, the switching valve body 35A is held at the supply position.
Further, when the piston 22 is at the advanced limit position, the second valve member 102 is lowered by the valve closing spring 103 to open the valve hole OX.
When the upper end of the valve member 61A is closed, the O-ring 66
, the pressurized air passage 68 is communicated with the valve operating chamber 50, the valve operating chamber 50 is filled with pressurized air, and the switching valve body 35A is switched to the discharge position. Other operations are the same as those in the previous embodiment, so explanations will be omitted.

く変形例2〉 前記実施例の切換弁体35の切換弁部37に代えて、第
4図に図示のように切換弁機構30Aにおいて環状のシ
ール部材110を有する切換弁部37Bを切換弁体35
Bに設ける。第4図に図示のように切換弁体35Bが供
給位置にあるときは、シール部材110が第2弁座46
Bの内周面に当接し、往動作動室25は通路42a、環
状通路42、環状隙間111、受圧室48、通路47及
び加圧エア供給路33により加圧エア供給口3に連通さ
れる。
Modification 2〉 Instead of the switching valve part 37 of the switching valve body 35 of the above embodiment, a switching valve part 37B having an annular sealing member 110 is used as the switching valve body in the switching valve mechanism 30A as shown in FIG. 35
Provided at B. When the switching valve body 35B is in the supply position as shown in FIG.
The forward motion chamber 25 is in communication with the pressurized air supply port 3 through the passage 42a, the annular passage 42, the annular gap 111, the pressure receiving chamber 48, the passage 47, and the pressurized air supply path 33. .

一方、切換弁体35Bが排出位置に切換えられると、シ
ール部材110が第1弁座44Bの内周面に当接すると
ともに、環状隙間111は環状排気路41に連通した状
態になり、往動作動室25は通路42a1環状通路42
、環状隙間111、環状排気路41及び排気路40によ
り排気室5に連通される。その他の作動は前記実施例と
同様なのでその説明を省略する。
On the other hand, when the switching valve body 35B is switched to the discharge position, the sealing member 110 comes into contact with the inner peripheral surface of the first valve seat 44B, and the annular gap 111 becomes in communication with the annular exhaust passage 41, and the forward movement The chamber 25 has a passage 42a1 and an annular passage 42.
, an annular gap 111, an annular exhaust path 41, and an exhaust path 40 communicate with the exhaust chamber 5. The other operations are the same as those in the previous embodiment, so the explanation thereof will be omitted.

く変形例3〉 前記実施例のIJ IJ−フ弁機横80と供給弁機構8
1を省略し、それらに代えてリリーフ弁機構800と供
給弁機構810を下部ハウジング13のコーナ部13a
・13bに設ける。
Modification Example 3> IJ IJ-F valve machine side 80 and supply valve mechanism 8 of the above embodiment
1 is omitted, and the relief valve mechanism 800 and the supply valve mechanism 810 are installed in the corner portion 13a of the lower housing 13 instead.
- Provided in 13b.

リリーフ弁機構800について説明すると、第5図に図
示のようにコーナ部13aの下端面からリリーフ弁室1
21が凹設され、復動作動室26の底部からはリリーフ
弁室121に連通ずる排気孔122が形成され、コーナ
部13aの上部にはボルト孔と共通の環状通路95をリ
リーフ弁室121に連通ずる排気通路123が形成され
、上部ハウジング11には環状通路95と排気室5とを
連通ずる排気通路124が形成されている。
To explain the relief valve mechanism 800, as shown in FIG. 5, the relief valve chamber 1 is
21 is recessed, an exhaust hole 122 communicating with the relief valve chamber 121 is formed from the bottom of the double action chamber 26, and an annular passage 95 common to the bolt hole is formed in the upper part of the corner portion 13a to the relief valve chamber 121. An exhaust passage 123 is formed in communication with the exhaust passage 123 , and an exhaust passage 124 is formed in the upper housing 11 so as to communicate the annular passage 95 with the exhaust chamber 5 .

リリーフ弁室121の下部にはネジ部材125が下部ハ
ウジング13に螺着して設けられ、ネジ部材125には
アジャスト・スクリュ126が螺合され、アジャスト・
スクリュ126のリリーフ弁室121内に位置する上部
には凹部127が形成され、アジャスト・スクリュ12
6の下端部には溝128が形成されている。上記凹部1
27には、第1設定圧を設定する為の圧縮コイルバネか
らなる第1スプリング129が設けられ、第1スプリン
グ129の上部には排気孔122を内方より開閉する弁
子130が設けられ、弁子130は第1スプリング12
9により上方に弾性付勢されている。
A screw member 125 is provided in the lower part of the relief valve chamber 121 by being screwed onto the lower housing 13, and an adjustment screw 126 is screwed into the screw member 125 to adjust the adjustment screw.
A recess 127 is formed in the upper part of the screw 126 located inside the relief valve chamber 121, and the adjustment screw 12
A groove 128 is formed in the lower end portion of 6. Said recess 1
27 is provided with a first spring 129 made of a compression coil spring for setting a first set pressure, and a valve element 130 that opens and closes the exhaust hole 122 from the inside is provided on the upper part of the first spring 129. The child 130 is the first spring 12
9 is elastically biased upward.

次に、供給弁機構81Cについて説明すると、第6図に
図示のように下部ハウジング13のコーナ部13aと相
隔った別のコーナ部13bには、その下端面から供給弁
室141が凹設され、復動作動室26の底部からは供給
弁室141に連通ずる供給孔142が形成され、コーナ
部13bの上部には環状通路95を供給弁室141に連
通ずる供給通路143が形成され、中間ハウジング12
の上部には環状通路95を加圧エア供給路33に連通ず
る供給通路144が形成されている。
Next, to explain the supply valve mechanism 81C, as shown in FIG. 6, a supply valve chamber 141 is recessed from the lower end surface of another corner part 13b of the lower housing 13, which is spaced apart from the corner part 13a. A supply hole 142 that communicates with the supply valve chamber 141 is formed from the bottom of the double action chamber 26, a supply passage 143 that communicates the annular passage 95 with the supply valve chamber 141 is formed in the upper part of the corner portion 13b, and the middle Housing 12
A supply passage 144 that communicates the annular passage 95 with the pressurized air supply passage 33 is formed in the upper part of the air supply passage 144 .

供給弁室141の下部にはネジ部材145が下部ハウジ
ング13に螺着して設けられ、ネジ部材145にはアジ
ャスト・スクリュ146が螺合し、アジャスト・スクリ
ュ146の供給弁室141内に位置する上部には凹部1
47が形成され、アジャスト・スクリュ146の下端部
には溝148が形成されている。上記凹部147には第
2設定圧を設定する為の圧縮コイルバネからなる第2ス
プリング149が設けられ、第2スプリング149の上
部には供給通路143を開閉する弁子150が設けられ
、弁子150は第2スプリング149により上方に弾性
付勢されている。
A screw member 145 is provided in the lower part of the supply valve chamber 141 by being screwed into the lower housing 13, and an adjustment screw 146 is screwed into the screw member 145, and the adjustment screw 146 is located in the supply valve chamber 141. Concave part 1 at the top
47 is formed, and a groove 148 is formed at the lower end of the adjustment screw 146. A second spring 149 made of a compression coil spring for setting a second set pressure is provided in the recess 147, and a valve 150 for opening and closing the supply passage 143 is provided above the second spring 149. is elastically biased upward by a second spring 149.

このように構成されたリリーフ弁機構800・供給弁機
構81Cにおいて、復動作動室26内の加圧エアの圧力
が第1設定圧以下且つ第2設定圧以上のときには、弁子
130・150は第5図・第6図に図示の状態を保持し
、弁子130は排気孔122を封止し弁子150は供給
通路143を封止している。
In the relief valve mechanism 800 and supply valve mechanism 81C configured in this way, when the pressure of the pressurized air in the double action chamber 26 is lower than the first set pressure and higher than the second set pressure, the valves 130 and 150 are The state shown in FIGS. 5 and 6 is maintained, with the valve 130 sealing the exhaust hole 122 and the valve 150 sealing the supply passage 143.

ピストン22の進出作動時、復動作動室26内の加圧エ
アの圧力が第1設定圧より高くなると、そのエア圧によ
り弁子130が下方に移動し、弁子130による排気孔
122の封止が解除されて加圧エアが排気孔122、排
気通路123、環状通路95及び排気通路124により
排気室5にすリーフされるので復動作動室26は第1設
定圧に維持される。ピストン22の後退作動時、復動作
動室26内の加圧エアの圧力が第2設定圧より低くなる
と、加圧エア供給路33からのエア圧により弁子150
が下方に移動し、弁子150による供給通路143の封
止が解除され、復動作動室26に加圧エアが供給される
ので、復動作動室26の圧力は第2設定圧に維持される
When the piston 22 moves forward, when the pressure of the pressurized air in the double action chamber 26 becomes higher than the first set pressure, the air pressure moves the valve element 130 downward, causing the valve element 130 to seal the exhaust hole 122. Since the stop is released and pressurized air is released into the exhaust chamber 5 through the exhaust hole 122, the exhaust passage 123, the annular passage 95, and the exhaust passage 124, the double action chamber 26 is maintained at the first set pressure. When the piston 22 moves backward, when the pressure of the pressurized air in the double action chamber 26 becomes lower than the second set pressure, the valve 150 is moved by the air pressure from the pressurized air supply path 33.
moves downward, the sealing of the supply passage 143 by the valve 150 is released, and pressurized air is supplied to the double action chamber 26, so the pressure in the double action chamber 26 is maintained at the second set pressure. Ru.

また、アジャスト・スクリュ126・146の夫々の溝
128・148をスクリュドライバなどの工具で操作す
ることにより第1スプリング129、第2スプリング1
49のバネ力を調節することが出来、第1設定圧と第2
設定圧の設定を変えることが出来る。更に、前記実施例
のリリーフ弁機構80・供給弁機構81を構成する比較
的大型な部材である供給弁体83、リリーフ弁体84、
第1スプリング97及び第2スプリング98にかえて、
下部ハウジング13を有効利用してリリーフ弁機構80
C・供給弁機構8ICをコンパクトに構成出来るので、
往復動アクチュエータAC自体を小型・軽量にすること
が出来る。
In addition, by operating the respective grooves 128 and 148 of the adjustment screws 126 and 146 with a tool such as a screwdriver, the first spring 129 and the second spring 1 can be adjusted.
49 spring force can be adjusted, and the first setting pressure and the second setting pressure can be adjusted.
You can change the set pressure setting. Furthermore, a supply valve body 83, a relief valve body 84, which are relatively large members constituting the relief valve mechanism 80 and supply valve mechanism 81 of the embodiment,
Instead of the first spring 97 and the second spring 98,
Relief valve mechanism 80 by effectively utilizing lower housing 13
C. Since the supply valve mechanism 8IC can be configured compactly,
The reciprocating actuator AC itself can be made smaller and lighter.

尚、本実施例において加圧エアに代えて油圧を用いても
よく、また本発明は油圧ポンプの他に、油圧増圧ポンプ
、ガス増圧ポンプなど往復駆動を利用する各種装置に適
用することが出来る。
In this embodiment, hydraulic pressure may be used instead of pressurized air, and the present invention can be applied to various devices that use reciprocating drive, such as hydraulic pressure booster pumps and gas pressure booster pumps, in addition to hydraulic pumps. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の実施例を示すもので、第1図
はピストンが後退限位置にあるときの油圧ポンプの縦断
面図、第2図はピストンが進出限位置にあるときの油圧
ポンプの縦断面図、第3図〜第6図は本実施例の変形例
を示すもので、第3図は制御弁機構の変形例を示す油圧
ポンプの部分縦断面図、第4図は切換弁部の変形例を示
す油圧ポンプの部分縦断面図、第5図はリリーフ弁機構
の変形例を示す油圧ポンプの縦断面図、第6図は供給弁
機構の変形例を示す油圧ポンプの縦断面図である。 AC・・往復動アクチュエータ、 3・・加圧エア供給
口、 5・・排気室、 10・・ハウジング、 20・
・複動エアシリンダ、 ・・ピストン、  23・・出力ロッド、・・往動作動
室、 26・・復動作動室、切換弁機構、 35・35
B・・切換弁9・・スプリング、 50・・弁作動室、
OA・・制御弁機構、 61・・弁部材、OC・・リリ
ーフ弁機構、 IC・・供給弁機構。 特 許 出 願 人  相生精機株式会社第 図 80C:リリーフ弁機構 ↑ 第 図 /
Figures 1 to 6 show embodiments of the present invention, with Figure 1 being a longitudinal cross-sectional view of the hydraulic pump when the piston is at its retraction limit position, and Figure 2 being a longitudinal cross-sectional view of the hydraulic pump when the piston is at its extension limit position. FIGS. 3 to 6 are longitudinal cross-sectional views of the hydraulic pump, and FIGS. 3 to 6 show modifications of the present embodiment. FIG. 5 is a partial longitudinal sectional view of a hydraulic pump showing a modification of the switching valve section, FIG. 5 is a longitudinal sectional view of a hydraulic pump showing a modification of the relief valve mechanism, and FIG. 6 is a hydraulic pump showing a modification of the supply valve mechanism. FIG. AC: reciprocating actuator, 3: pressurized air supply port, 5: exhaust chamber, 10: housing, 20:
・Double acting air cylinder, ・・Piston, 23・・Output rod, ・・Forward motion chamber, 26・・Backward motion chamber, switching valve mechanism, 35・35
B...Switching valve 9...Spring, 50...Valve operating chamber,
OA...control valve mechanism, 61...valve member, OC...relief valve mechanism, IC...supply valve mechanism. Patent applicant: Aioi Seiki Co., Ltd. Figure 80C: Relief valve mechanism ↑ Figure /

Claims (1)

【特許請求の範囲】[Claims] (1)ハウジング内にピストンとこのピストンに固着さ
れた出力ロッドとを有する複動流体圧シリンダを設け、
この流体圧シリンダにピストンを流体圧で進出駆動する
往動作動室とピストンを流体圧で後退駆動する復動作動
室を設け、 上記往動作動室を流体圧供給口に接続する供給位置と排
出口に接続する排出位置とに択一的に切換えられる切換
弁体と、この切換弁体を供給位置に付勢する付勢手段と
、その付勢力に抗して切換弁体を流体圧で排出位置に切
換える弁作動室とを備えた切換弁機構を設け、 上記ピストンから延び切換弁体に挿通された弁部材を介
して、ピストンが後退限位置にあるときは弁作動室を排
出口に接続し且つピストンが後退限位置と進出限位置の
間にあるときは弁作動室を封止し且つピストンが進出限
位置にあるときは弁作動室を流体圧供給口に接続する制
御弁機構を設け、 上記ピストンの進出作動時、復動作動室内の流体圧が第
1設定圧より高いときに開弁して復動作動室を排出口に
接続するリリーフ弁機構を設け、上記ピストンの後退作
動時、復動作動室内の流体圧が第1設定圧以下の第2設
定圧未満のときに開弁して復動作動室を流体圧供給口に
接続する供給弁機構を設けたことを特徴とする流体圧駆
動連続作動型往復動アクチュエータ。
(1) providing a double-acting hydraulic cylinder having a piston and an output rod fixed to the piston in a housing;
This fluid pressure cylinder is provided with a forward motion chamber that drives the piston forward using fluid pressure and a backward motion chamber that drives the piston backward using fluid pressure, and a supply position and an exhaust position that connect the forward motion chamber to the fluid pressure supply port. A switching valve body connected to an outlet and selectively switched to a discharge position, a biasing means for biasing the switching valve body to a supply position, and a fluid pressure to discharge the switching valve body against the biasing force. A switching valve mechanism is provided, which includes a valve operating chamber that is switched to the reverse position, and the valve operating chamber is connected to the discharge port when the piston is at the retraction limit position via a valve member that extends from the piston and is inserted through the switching valve body. and a control valve mechanism is provided which seals the valve operating chamber when the piston is between the retraction limit position and the extension limit position and connects the valve operation chamber to the fluid pressure supply port when the piston is at the extension limit position. , a relief valve mechanism is provided that opens when the fluid pressure in the double action chamber is higher than the first set pressure when the piston advances, and connects the double action chamber to the discharge port, and when the piston moves backward; , characterized in that a supply valve mechanism is provided that opens when the fluid pressure in the double action chamber is lower than the first set pressure and lower than the second set pressure to connect the double action chamber to the fluid pressure supply port. Fluid pressure driven continuous reciprocating actuator.
JP1084329A 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator Expired - Fee Related JP2676110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084329A JP2676110B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084329A JP2676110B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Publications (2)

Publication Number Publication Date
JPH02261911A true JPH02261911A (en) 1990-10-24
JP2676110B2 JP2676110B2 (en) 1997-11-12

Family

ID=13827477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084329A Expired - Fee Related JP2676110B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Country Status (1)

Country Link
JP (1) JP2676110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147442B2 (en) * 2003-05-22 2006-12-12 Kuo-Chung Yeh Automatic oil pump, with a valved pumping piston and a valved driving piston unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147442B2 (en) * 2003-05-22 2006-12-12 Kuo-Chung Yeh Automatic oil pump, with a valved pumping piston and a valved driving piston unit

Also Published As

Publication number Publication date
JP2676110B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
KR101262772B1 (en) Decompression switching valve
KR101398930B1 (en) Energy-saving valve
KR101655420B1 (en) Hydraulic Power Cylinder with Booser Pump Equipment
US6705082B2 (en) Hydraulic pressure booster cylinder
JPH04502281A (en) Cushioned, fluid-actuated fastener installation tool
KR20000071764A (en) Servo driving pilot type solenoid valve
KR930006322A (en) Variable displacement swing swash plate compressor
JPH02218873A (en) Pumping apparatus actuated by compressed air
CA2174710C (en) Lost motion pilot valve for diaphragm pump
CN112567140A (en) Supercharging device
US4621496A (en) Actuator control system
JP2852953B2 (en) Fluid pressure piston mover
JPH02261911A (en) Fluid pressure driving continuous operating reciprocating actuator
JPH10267002A (en) Pressure booster
EP0428406B1 (en) Reciprocating actuator
JP7426122B2 (en) Engine and hydraulic pump device equipped with the engine
JPH0749041Y2 (en) Fluid pressure continuously operated reciprocating actuator
JP2955220B2 (en) In-line pressure booster
JP2676111B2 (en) Fluid pressure continuously operated reciprocating actuator
KR101830165B1 (en) Actuator for valve
KR102413429B1 (en) Piston pump for brake system
JP2591498Y2 (en) Pressure fluid driven pump
JP3342929B2 (en) High pressure fluid generator
RU2046223C1 (en) Fluid-pressure intensifier
US4443162A (en) Fluid pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees