JPH02260643A - Gold alloy fine wire for bonding use - Google Patents

Gold alloy fine wire for bonding use

Info

Publication number
JPH02260643A
JPH02260643A JP1082607A JP8260789A JPH02260643A JP H02260643 A JPH02260643 A JP H02260643A JP 1082607 A JP1082607 A JP 1082607A JP 8260789 A JP8260789 A JP 8260789A JP H02260643 A JPH02260643 A JP H02260643A
Authority
JP
Japan
Prior art keywords
wire
bonding
weight
ppm
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1082607A
Other languages
Japanese (ja)
Inventor
Kenji Mori
健次 森
Masanori Tokita
時田 正憲
Takatoki Fukuda
福田 孝祝
Eiichi Fujimoto
栄一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP1082607A priority Critical patent/JPH02260643A/en
Publication of JPH02260643A publication Critical patent/JPH02260643A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To make it possible to cope with the title wire to an automatic high- speed bonder and to use the wire as a bonding wire for a thin package by a method wherein a prescribed weight of Y, Ca, Ge and silver are added to high-purity gold. CONSTITUTION:3 to 100 weight ppm of Y, 1 to 50 weight ppm of Ca and 5 to 50 weight ppm of Ge are added to high-purity gold and the total amount of these additive elements is limited to a range of 9 to 110 weight ppm. Moreover, by adding 5 to 100 weight ppm of silver, an alloy fine wire for bonding use is obtained. The shape of a ball, which is formed of the wire formed in such a way, and the height of the loop of the wire are proper and a vibration breaking rate can be significantly reduced. Thereby, the wire can correspond to an automatic high-speed bonder and at the same time, as the wire does not cause a wire flow as well, the wire can be used as a bonding wire for a thin package.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体素子上の電極と外部リードとを接合す
るために使用する耐熱性に優れた金合金細線に関し、よ
り詳しくは接合後の半導体組立作業中における振動、衝
撃による断線を大巾に低減させるボンディング用金合金
細線に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a gold alloy fine wire with excellent heat resistance used for joining electrodes on a semiconductor element and external leads, and more specifically, to This invention relates to a gold alloy thin wire for bonding that greatly reduces wire breakage due to vibration and impact during semiconductor assembly work.

(従来技術と問題点) 従来、ケイ素半導体素子上の電極と外部り一ドとの間を
接続するボンディング線としては、金細線が使用されて
きた。このように金細線が多用されてきたのは、金ボー
ルの形成が真円球状となり、形成された金ボールの硬さ
が適切であって、接合時の圧力によってケイ素半導体素
子を損傷することがなく、確実な接続ができ、その信頼
性が極めて高いためであった。しかし、金細線を自動ボ
ングーにかけて金細線の先端を溶融して金ボールを形成
させて接合を行なうと、金細線は金ボール形成の直上部
において引張強度が不足し断線を起したり、断線をまぬ
がれて接合された金細線は樹脂封止によって断線したり
、ワイヤフローを呈し短絡を起すという問題がある。
(Prior Art and Problems) Conventionally, a thin gold wire has been used as a bonding wire for connecting an electrode on a silicon semiconductor element and an external lead. The reason why thin gold wires have been so widely used is that the gold balls are formed into perfect spherical shapes, have appropriate hardness, and do not damage silicon semiconductor devices due to pressure during bonding. This was because the connection was reliable and extremely reliable. However, when joining a thin gold wire by applying it to an automatic bongo and melting the tip of the thin gold wire to form a gold ball, the thin gold wire lacks tensile strength just above the formation of the gold ball, and the wire may break or become disconnected. There is a problem in that the thin gold wires that are accidentally joined may break due to resin sealing or exhibit wire flow, causing short circuits.

これを解決するために、接続時に形成させる金ボールの
形状および硬さを損わない程度に、高純度金中に微量の
添加元素を加えて破断強度と耐熱性を向上させた種々の
ボンディング用金合金細線が公表されているが、接合の
ループ高さが適切でないため、高く、近年急速に普及し
つつある薄型のパッケージ用デバイスに対応させるには
十分でないという問題がある。
To solve this problem, we have developed a variety of bonding products that improve breaking strength and heat resistance by adding trace amounts of additive elements to high-purity gold to the extent that the shape and hardness of the gold balls formed during bonding are not affected. Although gold alloy thin wires have been published, there is a problem in that they are high because the bonding loop height is not appropriate, and are not sufficient to accommodate the thin package devices that are rapidly becoming popular in recent years.

(発明が解決しようとする問題点) 一方、半導体装置の製造分野では集積度の高密化が一段
と進み、接合の高速化と共に30〜25μm径の耐熱性
を有する金合金細線が多く使用されているが、接合後、
半導体組立作業を経たボンディング線がネック切れを起
し、接合の信頼性が低下するという問題がある。この問
題は半導体組立作業中での振動および搬送工程で起る機
械的な振動、衝撃などの疲労によってボンディング線が
ネック切れを起し、接合不良率が増加するものである。
(Problems to be Solved by the Invention) On the other hand, in the field of manufacturing semiconductor devices, the degree of integration has progressed further, and as bonding speeds have increased, heat-resistant thin gold alloy wires with a diameter of 30 to 25 μm are increasingly being used. However, after joining,
There is a problem in that the bonding wire that has undergone semiconductor assembly work may break, reducing the reliability of the bond. This problem is caused by vibrations during semiconductor assembly work and fatigue caused by mechanical vibrations and shocks occurring during the transportation process, which causes the bonding wire to break, resulting in an increase in the rate of defective connections.

第1図および第2図はネック断線を呈する説明図を示し
たもので、例えば、25μm径の耐熱性金合金細線を用
いて半導体素子をマウントする基体上のアイランド(1
)に半導体素子(2)を接合剤(3)によって固定し、
ボンディング線(6)の先端をポール状(7)に溶融し
て、半導体素子(2)上の電極(4)とインナーリード
(5)をボンディング線(6)によって接合した後、半
導体組立作業を行うと、工程中振動および衝撃を受けて
インナーリード(5)が上(5゛)、下(5“)に振動
すると共に、ボンディング線(6)も上(6゛)、下(
6”)に振動を繰返すことになる。そのためボンディン
グ線(6)は接合のボール(7)形成時の熱によって形
成される再結晶粒部(8)の粗大結晶粒の部分でネック
断線を起すことになる。実際には、インナーリード(5
)の振動と共にアイランド(1)も振動し、ボンディン
グ線(6)はかなりの衝撃を受けることになる。このよ
うなネック切れ断線はインナーリード幅がより細くなる
高密化実装の多極ピンを有するICパッケージが問題と
なる。
Figures 1 and 2 are explanatory diagrams showing neck disconnection. For example, an island (1
) to fix the semiconductor element (2) with a bonding agent (3),
After melting the tip of the bonding wire (6) into a pole shape (7) and joining the electrode (4) on the semiconductor element (2) and the inner lead (5) using the bonding wire (6), the semiconductor assembly work is performed. When this is done, the inner lead (5) vibrates upward (5゛) and downward (5") due to vibration and shock during the process, and the bonding wire (6) also vibrates upward (6゛) and downward (5").
6"). Therefore, the bonding wire (6) causes a neck breakage in the coarse crystal grain part of the recrystallized grain part (8) formed by the heat during the formation of the bonding ball (7). Actually, the inner lead (5
), the island (1) also vibrates, and the bonding wire (6) receives a considerable shock. Such neck breakage becomes a problem in IC packages having multi-pole pins that are mounted in high density and have narrower inner lead widths.

ネック切れ断線を低減するには、ループ高さを高くし、
使用するボンディング線の線径を大きくすればよいが、
ループ高さを高くすると、半導体素子を樹脂で封止する
ときにワイヤフローを呈したり、線径を大きくすると、
金材料使用による経済性が満足されない。
To reduce neck breakage, increase the loop height and
The wire diameter of the bonding wire used can be increased, but
If the loop height is increased, wire flow may occur when the semiconductor element is sealed with resin, and if the wire diameter is increased,
The economic efficiency of using gold materials is not satisfactory.

そのため、本発明者らは、先にループ高さが低く、接合
が良好なボンディング線として、高純度金中にイツトリ
ウム、カルシウムおよびゲルマニウムを添加したボンデ
ィング用金合金細線を特願平1−41188号で提案し
たが、半導体組立作業中で振動、衝撃などを受けた場合
、ネック切れ断線において必ずしも十分でなく、改善す
る必要があることがわかった。
Therefore, the present inventors first developed a thin gold alloy wire for bonding in which yttrium, calcium, and germanium were added to high-purity gold as a bonding wire with a low loop height and good bonding in Japanese Patent Application No. 1-41188. However, it was found that it was not always sufficient to prevent necks and wires from breaking when vibrations, shocks, etc. were received during semiconductor assembly work, and it was found that improvements were needed.

本発明は、上記に鑑みてなされたもので、特願平1−4
1188号の有する緒特性を損わずに、振動破断率を大
巾に低減し得るボンディング用金合金細線を提供するこ
とを目的とするものである。
The present invention has been made in view of the above, and is
The object of the present invention is to provide a thin gold alloy wire for bonding that can significantly reduce the vibration rupture rate without impairing the properties of No. 1188.

(問題点を解決するための手段) 本発明者らは、上記の課題を解決するために振動破断率
を低減させる添加元素の有無について鋭意検討を行った
結果、銀を特定割合で含有させたボンディング線として
使用すると、ボール形状およびループ高さが適切で、振
動破断率が大巾に低減できることを見出して本発明を完
成したものである。
(Means for Solving the Problems) In order to solve the above problems, the inventors of the present invention have conducted intensive studies on the presence or absence of additive elements that reduce the vibration rupture rate, and as a result, they have incorporated silver in a specific proportion. The present invention was completed by discovering that when used as a bonding wire, the ball shape and loop height are appropriate and the vibration rupture rate can be significantly reduced.

本発明は、高純度金にイツトリウム3〜100重量pp
m 、カルシウム1〜50重量ppm 、ゲルマニウム
5〜50重N p p mをそれぞれ添加し、これら添
加元素の総量を9〜110重量ppmの範囲とし、更に
銀5〜100重量 ppmを添加したボンディング用金
合金細線である。
The present invention uses 3 to 100 pp by weight of yttrium in high purity gold.
For bonding, 1 to 50 weight ppm of calcium, 5 to 50 weight ppm of germanium are added, and the total amount of these added elements is in the range of 9 to 110 weight ppm, and further 5 to 100 weight ppm of silver is added. It is a thin gold alloy wire.

以下、本発明の構成について更に説明する。The configuration of the present invention will be further explained below.

本発明で使用する高純度金とは、純度が99.99重蚤
%以上の金を含有し残部が不可避不純物から成るもので
、特に根の不純物が5重量ppm未満のものである。
The high-purity gold used in the present invention is one that contains gold with a purity of 99.99% by weight or more, with the remainder consisting of unavoidable impurities, particularly one with root impurities of less than 5 ppm by weight.

イツトリウム、カルシウム、ゲルマニウムの添加は、金
の結晶格子に歪を与えて再結晶温度を高め、結晶粒界に
イツトリウム、カルシウム、ゲルマニウムを析出させて
常温強度と耐熱性を向上させ、接合時のループ高さを低
くして、珪つ高速自動ボンダーにも適合させるものであ
る。
The addition of yttrium, calcium, and germanium distorts the gold crystal lattice, increases the recrystallization temperature, and precipitates yttrium, calcium, and germanium at the grain boundaries, improving room temperature strength and heat resistance, and looping during bonding. The height has been reduced to make it suitable for high-speed automatic bonders.

イツトリウムの添加量が3重、lppm未満であるとき
は、耐熱性が向上せず、封止樹脂の影習を受けてワイヤ
フローを呈し、且つループ高さにバラツキが生じ不安定
な接合となる。逆に、イツトリウムの添加量が50重W
 p p m近傍を超えると、その添加にかかわらず耐
熱性効果は飽和状態となって余り向上せず、110重量
ppmを超えると、ボール表面に酸化皮膜が形成され、
ボール形状に歪を生じ、且つイツトリウムが金の結晶粒
界に析出して脆性を生じ、伸線加工性を阻害する。その
好ましい添加量は3〜60重量ppmである。
When the amount of yttrium added is less than 3 ppm, the heat resistance will not improve, wire flow will occur due to the effect of the sealing resin, and the loop height will vary, resulting in unstable bonding. . On the other hand, the amount of yttrium added is 50w
If it exceeds around ppm, the heat resistance effect will reach a saturated state and will not improve much regardless of its addition, and if it exceeds 110 ppm by weight, an oxide film will be formed on the ball surface,
Distortion occurs in the ball shape, and yttrium precipitates at the gold grain boundaries, resulting in brittleness and inhibiting wire drawability. The preferred amount added is 3 to 60 ppm by weight.

カルシウムの添加量が1重1 p p m未満であると
きは、イツトリウムおよびゲルマニウムとの相剰作用に
欠け、耐熱性が不安定となり、ループ高さにバラツキを
生じ、僅かながらワイヤフローを呈する。逆に、50重
量ppmを超えると、ボール表面に酸化皮膜が形成され
、ボール形状に歪を生じ、且つカルシウムが金の結晶粒
界に析出して脆性を生じ、伸線加工性を阻害する。
When the amount of calcium added is less than 1 ppm per weight, there is a lack of mutual action with yttrium and germanium, the heat resistance becomes unstable, the loop height becomes uneven, and a slight wire flow is exhibited. On the other hand, if it exceeds 50 ppm by weight, an oxide film is formed on the ball surface, causing distortion in the ball shape, and calcium precipitates at the gold grain boundaries, causing brittleness and inhibiting wire drawability.

その好ましい添加量は1〜40重量ppmである。The preferred amount added is 1 to 40 ppm by weight.

ゲルマニウムの添加量が5重Mk p p m未満であ
るときは、常温の機械的強度をより向上できない。逆に
50重fflppmを超えると、ボール表面に酸化皮膜
が形成され、ボール形状に歪を生じ、ボンディング時の
再結晶による結晶粒界破断を起して、ネック切れが生じ
やすくなる。その好ましい添加量は5〜30重itpp
mである。
When the amount of germanium added is less than 5 times Mk pp m, the mechanical strength at room temperature cannot be further improved. On the other hand, if it exceeds 50 fflppm, an oxide film is formed on the ball surface, causing distortion in the ball shape, causing crystal grain boundary fracture due to recrystallization during bonding, and making neck breakage more likely. The preferable addition amount is 5 to 30 weight itpp.
It is m.

従って、イツトリウム、カルシウム、ゲルマニウムの添
加総量を9〜110重量ppmとするが、好ましい添加
総量は9〜50重量ppmである。
Therefore, the total amount of yttrium, calcium, and germanium added is set at 9 to 110 ppm by weight, and the preferred total amount added is 9 to 50 ppm by weight.

銀の添加は、イツトリウム、カルシウム、ゲルマニウム
の結晶粒界析出を抑制し、ボンディング線の靭性特性を
向上させる。銀の添加量が5重量ppm未満である“と
きは、イツトリウム、カルシウム、ゲルマニウムの粒界
析出を抑制する効果を欠き、ボンディング線の靭性特性
を示さなく、振動破断率が大きい。逆に100重量pp
mを超えると、ボール形状が悪くなり接合の信輔性を低
下させる。その好ましい添加量は10〜60重量ppm
である。
Addition of silver suppresses grain boundary precipitation of yttrium, calcium, and germanium and improves the toughness characteristics of the bonding wire. When the amount of silver added is less than 5 ppm by weight, it lacks the effect of suppressing the grain boundary precipitation of yttrium, calcium, and germanium, does not exhibit the toughness characteristics of the bonding wire, and has a high vibration rupture rate. pp
If it exceeds m, the shape of the ball becomes poor and the reliability of the bond decreases. The preferable amount added is 10 to 60 ppm by weight.
It is.

(実施例) 以下、実施例について説明する。(Example) Examples will be described below.

金純度が99.99重量%以上の電解金を用いて、第1
表に示す化学成分の金合金を高周波真空溶解炉で溶解鋳
造し、その鋳塊を圧延した後、常温で伸線加工を行ない
最終線径を25μmφの金合金細線とし、大気雰囲気中
で連続焼鈍して伸び値が4%になるように調質する。
Using electrolytic gold with a gold purity of 99.99% by weight or more, the first
A gold alloy with the chemical composition shown in the table is melted and cast in a high-frequency vacuum melting furnace, the ingot is rolled, and then wire-drawn at room temperature to form a fine gold alloy wire with a final wire diameter of 25 μmφ, which is then continuously annealed in an atmospheric atmosphere. and tempered so that the elongation value becomes 4%.

得られた金合金細線について、常温引張強度、ループ高
さ、ボール形状、ワイヤフローの有無および振動破断率
を調べた結果を第1表に併記した。
The obtained gold alloy thin wire was examined for room temperature tensile strength, loop height, ball shape, presence or absence of wire flow, and vibration rupture rate. The results are also listed in Table 1.

接合のループ高さは、高速自動ボンダーを使用して半導
体素子上の電極と外部リードとの間を接合した後、形成
されるループの頂高とチップの電極面とを光学顕微鏡で
観察してその高さを測定する。
The bonding loop height is determined by observing the top height of the formed loop and the electrode surface of the chip using an optical microscope after bonding between the electrode on the semiconductor element and the external lead using a high-speed automatic bonder. Measure its height.

ボールの形状は、高速自動ボンダーを使用し、電気トー
チ放電によって得られる金合金ボールを走査電子顕微鏡
で観察し、ボール表面に酸化物が生ずるもの、ボールの
形状がイビッになるもの、半導体素子の電極に良好な形
状で接合できないものをX印で、良好なものを○印で評
価した。
The shape of the ball is determined by observing the gold alloy ball obtained by electric torch discharge using a high-speed automatic bonder with a scanning electron microscope. Those that could not be bonded to the electrode in a good shape were marked with an X mark, and those that were good were marked with an ○ mark.

ワイヤフローは、高速自動ボンダーで半導体素子上の電
極と外部リードとを接合し、薄型モールドの金型内にセ
ットして封止用樹脂を注入した後、得られたパッケージ
をX線で観察し、封止用樹脂によるボンディング線の歪
み、すなわち、直線接合からの最大わん面距離と接合ス
パン距離とを測定し、歪値からワイヤフローの良否を評
価した。
Wireflow involves bonding electrodes on a semiconductor element and external leads using a high-speed automatic bonder, placing them in a thin mold, injecting sealing resin, and then observing the resulting package using X-rays. The strain of the bonding wire due to the sealing resin, that is, the maximum plane distance from the straight line bond and the bond span distance, was measured, and the quality of the wire flow was evaluated from the strain value.

○印:歪値3%未満(FJ型パッケージに適合する) △印:歪値3〜10% ×印:歪値11%以上 振動破断率は、半導体素子をマウントするPLCC基板
(ボンディングスパン:1mm、インナーリードピンが
68本四方に配列されているICパンケージ用42Ni
−Fe合金基板を1枚中に6個有するもの)を10枚、
マガジンに収納し、前記25μmφの金合金細線を自動
高速ボンダーにかけて、半導体素子上の電極とインナー
リードとを接合し、マガジンに収納する。
○ mark: Strain value less than 3% (suitable for FJ type package) △ mark: Strain value 3 to 10% × mark: Strain value 11% or more , 42Ni for IC pancakes with 68 inner lead pins arranged squarely.
- 10 pieces of Fe alloy substrates (6 pieces per piece),
The thin gold alloy wire of 25 μmφ is passed through an automatic high-speed bonder to bond the electrodes on the semiconductor element and the inner leads, and the semiconductor element is stored in a magazine.

該マガジンを荷台車にのせ、長さ4mの縞板鋼板上を4
 k+w/hrの速度で8往復させて強制的に振動を与
えた後、接合部のネック切れ断線を調べる。
Place the magazine on a cart and roll it over a 4m long striped steel plate.
After forcibly applying vibration by making it reciprocate 8 times at a speed of k+w/hr, check for neck breakage at the joint.

結果かられかるように、本発明に係る実施例はイツトリ
ウム、カルシウム、ゲルマニウムの添加に加えて、銀が
適切に添加されているので振動破断率を大巾に低減させ
得る。比較例6は銀の添加量が少ないため振動破断率を
低減できない。比較例7は銀の添加量が多いためボール
形状が真球状とならず、比較例8.9は実施例2.6に
対比させるもので、銀が添加されていないため靭性特性
に欠け、振動破断率が大きくなる。
As can be seen from the results, in the examples according to the present invention, in addition to the addition of yttrium, calcium, and germanium, silver is appropriately added, so that the vibration rupture rate can be significantly reduced. In Comparative Example 6, the vibration rupture rate could not be reduced because the amount of silver added was small. Comparative Example 7 has a large amount of silver added, so the ball shape is not perfectly spherical, and Comparative Examples 8.9 and 8.9, which are compared to Example 2.6, lack toughness and vibration because no silver is added. The rupture rate increases.

(効 果) 以上説明した如く、本発明に係る金合金細線は、常温の
機械特性、ループ高さ、ボール形状がそれぞれ適切に保
持できて自動高速ボンダーに対応できると共に振動破断
率も大巾に低減でき、ワイヤフ9−も起さないので、薄
型パッケージのボンディング線として実用に供せられる
利点があり、高密化半導体装置の経済面にも寄与する点
が大である。
(Effects) As explained above, the gold alloy thin wire according to the present invention can maintain appropriate mechanical properties, loop height, and ball shape at room temperature, and can be used in automatic high-speed bonders, and has a large vibration rupture rate. Since wire breakage 9- can be reduced and wire breakage does not occur, there is an advantage that it can be used practically as a bonding wire for thin packages, and it also greatly contributes to the economic aspect of high-density semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は半導体素子−ヒの電極とインナーリドとを接合
した本発明に係るボンディング線の振動疲労を受ける拡
大説明図、第2図は第1図における半導体素子上の電極
部の拡大説明図であって、図面の符号は次の通りである
。 (1)・・・・・・アイランド、(2)・・・・・・半
導体素子、(3)・・・・・・接合剤、(4)・・・・
・・半導体素子上の電極、(5)・・・・・・インナー
リード、 (6)・・・・・・ボンディング線、(7)
・・・・・・ボール、(8)・・・・・・再結晶粒部。
FIG. 1 is an enlarged explanatory view of the bonding wire according to the present invention, which connects the electrode and inner lead of the semiconductor element-A, subjected to vibration fatigue, and FIG. 2 is an enlarged explanatory view of the electrode portion on the semiconductor element in FIG. 1. The reference numbers in the drawings are as follows. (1)... Island, (2)... Semiconductor element, (3)... Bonding agent, (4)...
...electrode on semiconductor element, (5) ...inner lead, (6) ...bonding wire, (7)
... Ball, (8) ... Recrystallized grain part.

Claims (1)

【特許請求の範囲】[Claims] 高純度金にイットリウム3〜100重量ppm、カルシ
ウム1〜50重量ppm、ゲルマニウム5〜50重量p
pmをそれぞれ添加し、これら添加元素の総量を9〜1
10重量ppmの範囲とし、更に銀5〜100重量pp
mを添加することを特徴とするボンディング用金合金細
線。
High purity gold with 3 to 100 ppm by weight of yttrium, 1 to 50 ppm by weight of calcium, and 5 to 50 ppm by weight of germanium
pm respectively, and the total amount of these added elements is 9 to 1.
10 ppm by weight, and further 5 to 100 ppm by weight of silver.
A gold alloy thin wire for bonding, characterized by adding m.
JP1082607A 1989-03-31 1989-03-31 Gold alloy fine wire for bonding use Pending JPH02260643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082607A JPH02260643A (en) 1989-03-31 1989-03-31 Gold alloy fine wire for bonding use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082607A JPH02260643A (en) 1989-03-31 1989-03-31 Gold alloy fine wire for bonding use

Publications (1)

Publication Number Publication Date
JPH02260643A true JPH02260643A (en) 1990-10-23

Family

ID=13779164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082607A Pending JPH02260643A (en) 1989-03-31 1989-03-31 Gold alloy fine wire for bonding use

Country Status (1)

Country Link
JP (1) JPH02260643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994024323A1 (en) * 1993-04-22 1994-10-27 Nippon Steel Corporation Gold-alloy bonding wire
US5658664A (en) * 1993-04-08 1997-08-19 Nippon Steel Corporation Thin gold-alloy wire for semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658664A (en) * 1993-04-08 1997-08-19 Nippon Steel Corporation Thin gold-alloy wire for semiconductor device
WO1994024323A1 (en) * 1993-04-22 1994-10-27 Nippon Steel Corporation Gold-alloy bonding wire
CN1038853C (en) * 1993-04-22 1998-06-24 新日本制铁株式会社 Gold-alloy bonding wire
US5989364A (en) * 1993-04-22 1999-11-23 Nippon Steel Corporation Gold-alloy bonding wire

Similar Documents

Publication Publication Date Title
JPS62127438A (en) Bonding wire for semiconductor device
US5989364A (en) Gold-alloy bonding wire
JPH02260643A (en) Gold alloy fine wire for bonding use
JPS63235440A (en) Fine copper wire and its production
JPH03130337A (en) Gold alloy thin wire for bonding
JPH02260644A (en) Gold alloy fine wire for bonding use
JPH1167811A (en) Gold and silver alloy thin wire for semiconductor device
JPH02259033A (en) Gold alloy thin wire for bonding
JPH02259034A (en) Gold alloy thin wire for bonding
JPH07335686A (en) Gold alloy wire for bonding
JPH02219249A (en) Gold alloy thin wire for bonding
JP3811600B2 (en) Semiconductor element gold alloy wire
EP0348018B1 (en) Method of manufacture of a resin encapsulated semiconductor device
JP3235198B2 (en) Bonding wire
JP3535657B2 (en) Gold alloy wire for semiconductor elements
JP2641000B2 (en) Gold alloy fine wire for bonding
JPH02259032A (en) Gold alloy thin wire for bonding
JPH02228437A (en) Gold alloy thin wire for bonding
JPH02205641A (en) Gold alloy thin wire for bonding
JPH05179376A (en) Fine gold alloy wire for bonding
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JPH02219251A (en) Gold alloy thin wire for bonding
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JPH02219250A (en) Gold alloy thin wire for bonding
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices