JPH02260416A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02260416A
JPH02260416A JP7842289A JP7842289A JPH02260416A JP H02260416 A JPH02260416 A JP H02260416A JP 7842289 A JP7842289 A JP 7842289A JP 7842289 A JP7842289 A JP 7842289A JP H02260416 A JPH02260416 A JP H02260416A
Authority
JP
Japan
Prior art keywords
semiconductor
laser
crystal layer
wafer
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7842289A
Other languages
Japanese (ja)
Inventor
Masahiro Sasaki
正洋 佐々木
Yasuto Kawahisa
川久 慶人
Masao Mashita
真下 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7842289A priority Critical patent/JPH02260416A/en
Publication of JPH02260416A publication Critical patent/JPH02260416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a manufacturing method, of a semiconductor device, which can be automated and which can comply with an integration operation by a method wherein a semiconductor crystal layer is formed selectively by a vapor growth method in which raw-material gases are supplied alternately. CONSTITUTION:A silicon oxide film (SiO2 film) 12 is formed on the whole sur face of an n-type GaAs (100) wafer 11 by using a vapor deposition method; then, the silicon oxide film 12 is removed selectively by using a reactive ion etching method; a groove whose depth reaches the substrate 11 and whose wall faces are all perpendicular to the wafer and are flat is formed. Then, a semiconductor crystal layer 13 having a laser structure is laminated in the groove part by using a vapor growth method in which raw-material gases are supplied alternately; lastly, the water is immersed in a solution of ammonium fluoride; the silicon oxide film 12 which has been formed at the beginning is removed; an electrode is formed. Since a cleavage process is not used in this manner, a manufacturing process can be automated and a semiconductor laser can be integrated in an arbitrary direction on the wafer.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体装置の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a semiconductor device.

(従来の技Wi) 例えば、半導体レーザ装置を製造する場合、ウェハに所
望の構造の半導体結晶層を形成した後、該ウェハをへき
開により分割し、その際にレーザ共振器端面を形成する
のが一般的である。しかし、へき開工程は自動化しKく
い工程である。また、へき開工程を用いて、同一チップ
上に複数の半導体レーザを自由に集積することができな
いという問題がある。そこで、へき開工程に代わる端面
形成法が必要とされている。
(Conventional Technique Wi) For example, when manufacturing a semiconductor laser device, after forming a semiconductor crystal layer with a desired structure on a wafer, the wafer is divided by cleavage, and laser resonator end faces are formed at that time. Common. However, the cleavage process is automated and is a K-peel process. Another problem is that a plurality of semiconductor lasers cannot be freely integrated on the same chip using a cleavage process. Therefore, there is a need for an end face forming method that can replace the cleavage process.

レーザ共振器端面の形成工程においては、少なくとも高
さ数μmのウェハに垂直で平坦表面を形成する必要があ
る。通常のエツチング法を用いてこのような形状を形成
することは大変困難である。
In the process of forming the laser resonator end face, it is necessary to form a flat surface perpendicular to the wafer with a height of at least several μm. It is very difficult to form such a shape using normal etching methods.

そこで、電子、イオン、光等のビームを用いてこのよう
な面を形成する試みが行われている。この中で特にイオ
ンを用いた端面形成の研究が進んでいる。基板を除去す
る性質を持つガスを含んだガスでプラズマを形成し、そ
こで生じた反応性イオンを、プラズマと基板の間に生じ
る電場或は外部から与えた電場によって加速し、マスク
を施した基板に衝突させ、垂直な面を形成するというも
のでおる。このように加速されたイオンが基板に衝突す
るため、端面部の基板の結晶は著しく照射損傷を受けた
。そのため半導体レーザのしきい値、寿命等の特性を劣
化させるという問題があった。
Therefore, attempts are being made to form such surfaces using beams of electrons, ions, light, etc. Among these, research on end face formation using ions is particularly progressing. A plasma is formed with a gas containing a gas that has the property of removing the substrate, and the reactive ions generated there are accelerated by an electric field generated between the plasma and the substrate or by an electric field applied from the outside. The idea is to collide with the object to form a perpendicular surface. Since the ions accelerated in this manner collide with the substrate, the crystals of the substrate at the end face were significantly damaged by radiation. Therefore, there is a problem in that characteristics such as the threshold value and lifetime of the semiconductor laser are deteriorated.

電子サイクロトロン共鳴を用い、イオンのエネルギーを
下げる工夫もされているが、良好な端面形状を維持しな
がら照射損傷をなくすことがでなかった。また、電子線
或は光を用いたエツチング法も研究されてはいるが、研
究は始まったばかりですぐには実用にならない。
Efforts have been made to lower the ion energy using electron cyclotron resonance, but it has not been possible to eliminate irradiation damage while maintaining a good end face shape. Etching methods using electron beams or light are also being researched, but the research has just begun and will not be put to practical use any time soon.

以上で述べた照射損傷をなくすために、ビームプロセス
を用いてレーザとなる半導体結晶層を直接加工するので
はなく次のような方法を考案することができる。すなわ
ち、先ず1ビームプロセス等を用いて予め形成した薄膜
或は基板自身を加工し、−組の対向する壁面が平坦で平
行なレーザ端面形状の型を形成しておく。そして、そこ
にレーザとなる半導体結晶層を埋め込んだ後、初めに形
成した型のうち不要な部分を除去して端面を形成すると
いう方法が考えられる。この場合、所定の部分に、均一
の膜厚で隙間なく半導体結晶層を埋め込む必要がある。
In order to eliminate the radiation damage described above, the following method can be devised instead of directly processing the semiconductor crystal layer that will become the laser using a beam process. That is, first, a pre-formed thin film or the substrate itself is processed using a one-beam process or the like to form a mold having a shape of a laser end face with flat and parallel opposing wall surfaces. A conceivable method is to embed a semiconductor crystal layer that will become a laser therein, and then remove unnecessary portions of the initially formed mold to form an end face. In this case, it is necessary to embed the semiconductor crystal layer in a predetermined portion with a uniform thickness and without gaps.

しかしながら・従来の結晶成長法では成長した領域の端
部で成長速度が著しく増大したり、成長の起こらない部
分が生じたりして、均一な埋め込み成長を行うことがで
きず、所望のレーザ構造を形成することができなかった
However, with conventional crystal growth methods, the growth rate increases significantly at the edges of the grown region, and there are areas where no growth occurs, making it impossible to perform uniform buried growth, and it is difficult to achieve the desired laser structure. could not be formed.

(発明が解決しようとする課題) 以上のように、へき開工程を用いずに十分な特性を持つ
半導体レーザを製造することができなかった。このへき
開工程は自動化することは難しく、また、今後必要とな
る光レーザの集積化に対応できないという問題があった
(Problems to be Solved by the Invention) As described above, it has not been possible to manufacture a semiconductor laser with sufficient characteristics without using a cleavage process. This cleavage process is difficult to automate, and there is also the problem that it cannot cope with the integration of optical lasers that will be required in the future.

この発明は、上記の問題を除去し、自動化が可能で集積
化に対応できる半導体装置の製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates the above problems, can be automated, and is compatible with integration.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は、原料ガスを交互に供給する気相成長法によ
って半導体結晶層を選択的に形成する半導体装置の製造
方法を提供するものである。
(Means for Solving the Problems) The present invention provides a method for manufacturing a semiconductor device in which a semiconductor crystal layer is selectively formed by a vapor phase growth method in which source gases are alternately supplied.

(作用) 原料ガスを交互に供給した気相成長法においては、1回
の原料ガスの交互供給で1原子層だけをエピタキシャル
成長させることが可能である。
(Function) In the vapor phase growth method in which raw material gases are alternately supplied, it is possible to epitaxially grow only one atomic layer with one alternate supply of raw material gases.

この方法を用いると、パターンの形状に関係なく原子層
の単位で膜厚を制御することができる。この時、ウェハ
面内で膜厚は原子層の精度で均一になる。
Using this method, the film thickness can be controlled in units of atomic layers regardless of the shape of the pattern. At this time, the film thickness becomes uniform within the wafer surface with atomic layer precision.

よって、この発明によれば、−組の対向する壁面が平坦
で平行なレーザ端面形状の型を形成しておき、そこに原
子層の単位で膜厚を制御した成長法を用いてレーザとな
る半導体結晶層を埋め込むことにより、へき開工程を用
いずとも、良好な端面を有する半導体レーザを製造する
ことができる。
Therefore, according to the present invention, a mold having a laser end face shape in which the opposing wall surfaces of the set are flat and parallel is formed, and a laser is formed using a growth method that controls the film thickness in units of atomic layers. By embedding the semiconductor crystal layer, a semiconductor laser having a good end face can be manufactured without using a cleavage process.

従って、半導体レーザの特性を低下させずに、工程を総
て自動化することが可能になる。さらに、ウェハのまま
で製造した素子の試験を行うことが可能となる。また、
半導体レーザの集積化も容易になる。
Therefore, it becomes possible to automate all processes without degrading the characteristics of the semiconductor laser. Furthermore, it becomes possible to test devices manufactured using wafers as they are. Also,
It also becomes easier to integrate semiconductor lasers.

(実施例) 第1の発明の第1の実施例を図面に従って説明する。(Example) A first embodiment of the first invention will be described with reference to the drawings.

第1図は、この発明を用いて、ウェハ内に多数のGaA
lAs半導体レーザを製造したときの工程の概略を示し
たものである。
FIG. 1 shows that using the present invention, a large number of GaAs are present in a wafer.
This figure shows an outline of the process for manufacturing an lAs semiconductor laser.

まず、第1図(a)に示すごとく、n型GaAs(10
0)ウェハ11全・面に、気相堆積法を用いて5μmの
膜厚の酸化珪素膜(S i O,膜)12を形成した。
First, as shown in Figure 1(a), n-type GaAs (10
0) A silicon oxide film (S i O, film) 12 having a thickness of 5 μm was formed on the entire surface of the wafer 11 using a vapor deposition method.

次に、第1図(b)に示すごとく、反応性イオンエツチ
ング法を用いて、酸化珪素膜を選択的に除去し、横10
μm1縦300μmで基板に達する深さを有し、すべて
の壁面がウェハに垂直で平坦な溝部を形成した。溝部の
方向は一定でなく、ウェハ上でさまざまな方向になるよ
うにした。
Next, as shown in FIG. 1(b), the silicon oxide film was selectively removed using a reactive ion etching method, and the lateral 10
A flat trench was formed with a depth of 300 μm per μm and a depth that reached the substrate, with all walls perpendicular to the wafer. The directions of the grooves are not constant, but are arranged in various directions on the wafer.

次に、第1図(C)に示すごとく、前記溝部分に、原料
ガスを交互に供給した気相成長法によりレーザ構造を有
する半導体結晶層13を積層させた。
Next, as shown in FIG. 1C, a semiconductor crystal layer 13 having a laser structure was laminated in the groove portion by a vapor phase growth method in which raw material gas was alternately supplied.

最後に、第1図(d)に示すごとく、ウェハをふっ化ア
ンモニウム溶液につけて初めに形成した酸化珪素膜を除
去し、電極を形成して半導体レーザ装置を完成させた。
Finally, as shown in FIG. 1(d), the wafer was soaked in an ammonium fluoride solution to remove the initially formed silicon oxide film, and electrodes were formed to complete the semiconductor laser device.

以下で、原料ガスを交互に供給した気相成長法によシ、
前記溝部に半導体結晶層を形成した工程について詳しく
述べる。
In the following, a vapor phase growth method in which raw material gases are alternately supplied is used.
The process of forming the semiconductor crystal layer in the groove will be described in detail.

第2図は上記工程で使用した有機金属気相成長(MOC
VD)装置を示す概略図である。図中の31は、上部に
筒状体32が一体的に付設された石英製の成長容器であ
る。この容器31内には、駆動軸33により上下動する
サセプタ34が配置されている。前記成長容器31の筒
状体32の側壁には、各々ガス導入管35.36が連結
されている。
Figure 2 shows the metal organic chemical vapor deposition (MOC) used in the above process.
FIG. 2 is a schematic diagram showing a VD) device. Reference numeral 31 in the figure is a quartz growth container to which a cylindrical body 32 is integrally attached. A susceptor 34 is disposed within the container 31 and is moved up and down by a drive shaft 33. Gas introduction pipes 35 and 36 are connected to the side walls of the cylindrical body 32 of the growth container 31, respectively.

尚、前記筒状体32に連結された上部側のガス導入管3
5からは水素や不活性ガスが供給され、該筒状体32上
部に配置した後述する光導入窓内面への膜成長が防止さ
れるようになっている。前記成長容器31の下部側壁に
は排気部材37が連結されている。前記成長容器31の
周囲には、高周波加熱コイル38が巻装されている。前
記筒状体32の上部には、光導入窓39が配置されてい
る。
Note that the gas introduction pipe 3 on the upper side connected to the cylindrical body 32
Hydrogen and inert gas are supplied from 5 to prevent film growth on the inner surface of a light introduction window, which will be described later, and which is arranged above the cylindrical body 32. An exhaust member 37 is connected to a lower side wall of the growth container 31 . A high frequency heating coil 38 is wound around the growth container 31. A light introduction window 39 is arranged at the top of the cylindrical body 32 .

また、図中の40はKrFエキシマレーザ光41を出射
するエキシマレーザであり、その光路上にはレーザ光4
1を前記光導入窓39を通して前記容器31内に照射す
るための反射ミラー42が配置されている。
Further, 40 in the figure is an excimer laser that emits KrF excimer laser light 41, and the laser light 4 is on the optical path.
A reflecting mirror 42 is arranged to irradiate the inside of the container 31 with 1 through the light introduction window 39.

次に、前述したMOCVD装置を用いて、前記ウェハ溝
部に半導体結晶層を形成した方法を説明する。
Next, a method of forming a semiconductor crystal layer in the wafer groove using the MOCVD apparatus described above will be described.

先ず、サセプタ34上に溝を形成した前記ウェハ43を
保持させた後、排気部材37を作動して成長容器31内
の圧力を49Torrに保持し、容器31内にガス導入
管35から水素を151m。
First, after holding the wafer 43 with grooves formed on the susceptor 34, the exhaust member 37 is activated to maintain the pressure inside the growth container 31 at 49 Torr, and 151 m of hydrogen is supplied into the container 31 from the gas introduction pipe 35. .

ガス導入管36からアルシンを509 s e cm供
給すると共に、高周波フィル38によシウエハ43の温
度を700’Cに加熱して20分間のアニールを行った
Arsine was supplied at 509 sec cm from the gas introduction pipe 36, and the wafer 43 was heated to 700'C by the high frequency filter 38 to perform annealing for 20 minutes.

次いで、ウェハ43の温度を500°Cに保持し、ガス
導入管35から水素を1am、ガス導入管36から原料
ガス及び水素を後述する一定シーケンスで成長容器31
内に導入し、エキシマレーザ40から波長248r1m
のエキシマレーザ光41を反射ミラー42、光導入窓3
9を通してウェハ43に対して垂直に照射して半導体結
晶層を形成した。
Next, the temperature of the wafer 43 is maintained at 500° C., hydrogen is supplied at 1 am from the gas introduction pipe 35, and source gas and hydrogen are supplied from the gas introduction pipe 36 to the growth container 31 in a certain sequence described later.
The wavelength is 248r1m from the excimer laser 40.
A mirror 42 reflects the excimer laser beam 41, and a light introduction window 3
9 was irradiated perpendicularly to the wafer 43 to form a semiconductor crystal layer.

ガス導入管36からの原料ガスの導入シーケンスは、■
族原料ガスの0.5秒間の導入(過程l)、水素の0.
5秒間の導入(過程2)、v族原料ガスの0.5秒間の
導入(過程3)、水素の0.5秒の導入(過程4)を1
サイクルとして繰り返すものである。この時、導入ガス
の流量の合計が常に2.751mに、成長容器31の圧
力が40Torrになるように水素の流量および排気部
材37の排気速度を調整した。また、レーザ光41は過
程1において20 m J /Cm”の強度で80パル
ス/秒で照射した。
The sequence of introducing the raw material gas from the gas introduction pipe 36 is as follows:
Introducing group raw material gas for 0.5 seconds (step 1), introducing hydrogen for 0.5 seconds.
Introduction of 5 seconds (process 2), introduction of group V source gas for 0.5 seconds (process 3), and introduction of hydrogen for 0.5 seconds (process 4).
It repeats as a cycle. At this time, the flow rate of hydrogen and the exhaust speed of the exhaust member 37 were adjusted so that the total flow rate of the introduced gases was always 2.751 m and the pressure in the growth container 31 was 40 Torr. Further, in process 1, the laser beam 41 was irradiated with an intensity of 20 m J /Cm'' and a rate of 80 pulses/second.

レーザ構造の半導体結晶層13の形成のための原料ガス
の導入シーケンスは以下のように行った。
The sequence of introducing raw material gas for forming the semiconductor crystal layer 13 having a laser structure was performed as follows.

先ず、過程Iにおいてトリエチルガリンム(TEG)を
IXIQ’mol/サイクルで導入し一過程3において
アルシン及びジシランをそれぞれ1XIQ4mol/サ
イクル、1xlo’mol/サイクルで導入する前記サ
イクルを3000回繰り返して膜厚0.84μmのn型
GaA sバラフッ層を形成し九〇次に、過程Iにおい
てTBG及びトリメチルアルミニウム(1M人)をそれ
ぞれtxt&mol/サイクル、2XIQ”mol/サ
イクルで導入し1過程3においてアルシン及びシランを
それぞれl×lrPmO1/サイクル、1 x I Q
’m o l / v イクルで導入する前記サイクル
を4500回繰シ返して膜厚1,26μmのn型A I
 G a A sクラッド層を形成した。次いで、過程
lにおいてTEGをt x [f”m o l /サイ
クル、で導入し、過程3においてアルシンをlxlpm
ol/サイクルで導入する前記サイクルを4000回繰
シ返して膜厚0.102μmのGaAs活性層を形成し
た。次いで、過程1においてTEG及びTMA、ジエチ
ル亜鉛(DBZ)ヲソレソれ1X1ff’mol/サイ
クル、2XIO’mO1/サイクル、1x lff’m
o 1/’サイクルで導入し、過程3においてアルシン
をI X I Pno 1/サイクルで導入する前記サ
イクルを4500回繰り返して膜厚1.26μmのp型
AlGaAsクラ。
First, in step I, triethylgallinm (TEG) is introduced at IXIQ'mol/cycle, and in step 3, arsine and disilane are introduced at 1XIQ4mol/cycle and 1xlo'mol/cycle, respectively.The above cycle is repeated 3000 times to determine the film thickness. A 0.84 μm n-type GaAs silicon fluoride layer was formed, and then, in step I, TBG and trimethylaluminum (1M) were introduced at txt & mol/cycle and 2XIQ” mol/cycle, respectively, and in step 1, arsine and silane were introduced. respectively l×lrPmO1/cycle, 1×IQ
The above-mentioned cycle of introducing the film at 1.26 μm in thickness was repeated 4500 times to form an n-type AI with a film thickness of 1.26 μm.
A GaAs cladding layer was formed. Then, in step 1, TEG was introduced at t x [f”m o l /cycle, and in step 3, arsine was introduced at lxlpm
The above-mentioned cycle of introduction at 1/1 cycle was repeated 4000 times to form a GaAs active layer with a thickness of 0.102 μm. Then, in step 1, TEG and TMA, diethylzinc (DBZ) were dissolved 1X 1ff'mol/cycle, 2XIO'mO1/cycle, 1x lff'm
o 1/' cycle, and in step 3, arsine was introduced at IXI Pno 1/cycle. The above cycle was repeated 4500 times to form a p-type AlGaAs film with a film thickness of 1.26 μm.

ド層を形成した。最後に、過程1においてTEGおよび
DEZをそれぞれtxl(T’mol/サイクル、Ix
irrnol/サイクルで導入し、過程3においてアル
シンをl X I Om o 1 /サイクルで導入す
る前記サイクルを2000回繰り返して膜厚0.56μ
mのp型GaAsコンタクト層を形成した0 半導体レーザ構造を形成したウェハの一部分の断面を走
査電子顕微鏡で観察し、良好な端面を持った所望の構造
が形成されていることを確認した。
A layer was formed. Finally, in step 1, TEG and DEZ were each txl (T'mol/cycle, Ix
The above cycle of introducing irrnol/cycle and introducing arsine at l×I Om o 1/cycle in step 3 was repeated 2000 times to obtain a film thickness of 0.56μ.
A cross-section of a part of the wafer on which the 0 2 semiconductor laser structure was formed was observed with a scanning electron microscope, and it was confirmed that the desired structure with a good end facet was formed.

このウェハに1電極をつけ、レーザ発振試験を行った。One electrode was attached to this wafer and a laser oscillation test was conducted.

全てのレーザが直流で発振し、そのしきい値電流は30
mAから50mAに分布した。これは、へき開工程を用
いて製造した半導体レーザ装置と同程度である。また、
レーザの特性はレーザの方向に対して依存していなかっ
たことから、基板の結晶方位に対し任意の方向に半導体
レーザ装置を作成できることが確認できた。
All lasers oscillate with direct current, and their threshold current is 30
It was distributed from mA to 50mA. This is comparable to a semiconductor laser device manufactured using a cleavage process. Also,
Since the characteristics of the laser did not depend on the direction of the laser, it was confirmed that a semiconductor laser device could be fabricated in any direction with respect to the crystal orientation of the substrate.

これまで述べてきた製造方法においては、レーザの端面
形状の型を形成するため酸化珪素膜を用いたが、窒化珪
素膜を用いてもほぼ同様の結果が得られた。
In the manufacturing method described so far, a silicon oxide film was used to form a mold having the shape of the end face of the laser, but almost the same results were obtained using a silicon nitride film.

次に、予めGaAs結晶層を形成しておき、そこにレー
ザの端面形状の型を形成した本発明の第2の実施例につ
いて第3図を用いて述べる。
Next, a second embodiment of the present invention will be described with reference to FIG. 3, in which a GaAs crystal layer is formed in advance and a mold having the end face shape of the laser is formed thereon.

先ず、第3図(a)に示すごとく、n型A10.3Ga
O,7人s (100)基板51全面に、前述oMOc
VD装置を用いて5層mの膜厚のGaAs結晶層52を
形成した。但し、原料ガスとして用いたTEG、アルシ
ンは同時に継続的に供給し、レーザ光も成長中継続的に
照射した。TEG、アルシンの供給量はそれぞれ2×1
01mol/分、2×10mol/分とした。次に、第
3図(b)に示すごとく、前述した実施例と同様に、反
応性イオンエツチング法を用いて、該() a A s
膜52を選択的に除去し、横ioμm1縦300μmで
基板に達する深さの、端面がウェハに垂直で平坦な溝部
を形成した。前述した実施例と同様に溝部の方向は一定
でなく、ウェハ上でさまざまの方向になるようにした。
First, as shown in FIG. 3(a), an n-type A10.3Ga
O, 7 peoples (100) The aforementioned oMOc is placed on the entire surface of the substrate 51.
A GaAs crystal layer 52 having a thickness of 5 m was formed using a VD apparatus. However, TEG and arsine used as raw material gases were continuously supplied at the same time, and laser light was also continuously irradiated during the growth. The supply amount of TEG and arsine is 2×1 each.
01 mol/min, 2×10 mol/min. Next, as shown in FIG. 3(b), the () a A s
The film 52 was selectively removed to form a flat trench measuring io μm in width and 300 μm in length, with a depth that reached the substrate, and whose end face was perpendicular to the wafer. Similar to the above-described embodiment, the direction of the grooves is not constant, but is arranged in various directions on the wafer.

次に、第3図(C)に示すごとく、前記溝部分K、前述
のMOCVD装置を用いて、前述の実施例と同じ条件で
アニールを行った後、前述の実施例とほぼ同様のシーケ
ンスで原料ガスを交互に供給し、レーザ構造を有する半
導体結晶層53を積層させた。ただし、バッフ7層及び
活性層、コンタクト層を形成する際、過程1において、
前述した実施例で示したガスに加えてTMAを5X I
 QmO1/サイクルで導入した。
Next, as shown in FIG. 3(C), the groove portion K is annealed using the MOCVD apparatus described above under the same conditions as in the previous embodiment, and then in a sequence substantially similar to that in the previous embodiment. Raw material gases were alternately supplied to stack semiconductor crystal layers 53 having a laser structure. However, when forming the buffer 7 layer, active layer, and contact layer, in process 1,
In addition to the gases shown in the previous examples, TMA was added to 5X I
It was introduced at QmO1/cycle.

レーザとなる半導体結晶層53を形成した後、第3図(
d)に示すごとく、A I GaAs  を除去しない
が選択的にG a A、 aのみを除去するアンモニア
、過酸化水素混合溶液を用いて型の目的で形成したGa
As結晶層52を除去し、最後に、電極(図示せず)を
形成して半導体レーザを完成させた。
After forming the semiconductor crystal layer 53 that will become a laser, as shown in FIG.
As shown in d), Ga formed for the purpose of molding using an ammonia and hydrogen peroxide mixed solution that does not remove A I GaAs but selectively removes Ga A, a.
The As crystal layer 52 was removed, and finally, electrodes (not shown) were formed to complete the semiconductor laser.

本実施例においても、前実施例と同様(レーザ発振試験
を行った。全てのレーザが直流で発振し、そのしきい値
電流は25mAから35mAに分布した。これは、前述
した実施例よシ改善されている。また、レーザの特性は
レーザ端面が(110)面に近いレーザのしきい値電流
が低いという傾向がみられた。
In this example, as in the previous example, a laser oscillation test was conducted. All lasers oscillated with direct current, and the threshold current was distributed from 25 mA to 35 mA. Furthermore, regarding the laser characteristics, there was a tendency that the threshold current of the laser whose end facet was close to the (110) plane was low.

以上の実施例において基板上に酸化珪素或は窒化珪素或
はG a A s結晶層を用いてレーザ端面構造の型を
形成したが、本発明においては、これらに限る必要はな
く、他の絶縁体、半導体、或は金属を用いてレーザ端面
構造の型を形成し手もよい。
In the above embodiments, the mold of the laser end face structure was formed using silicon oxide, silicon nitride, or GaAs crystal layer on the substrate, but the present invention is not limited to these, and other insulating materials may be used. It is also possible to form a mold for the laser end face structure using a semiconductor, a semiconductor, or a metal.

また、以上の実施例において、半導体レーザ装置となる
半導体結晶層を形成した後、レーザ端面構造の型を形成
するために用いた部材を除去したが、本発明においてこ
れは本質的なことではない。
Further, in the above embodiments, after forming the semiconductor crystal layer that becomes the semiconductor laser device, the member used to form the mold of the laser end face structure was removed, but this is not essential to the present invention. .

すなわち、前記部材の一部或は全部を除去せずに残し、
レーザ端面の保護、或はレーザ出射光の伝達等の目的に
用いても良い。
That is, some or all of the members are left without being removed,
It may also be used for purposes such as protecting the laser end face or transmitting laser emitted light.

次に第2の発明の実施例について説明する。上記第1の
発明は、Sin、膜を壁面として、平担な半導体膜を形
成したが、第2の発明は下地の材料の違いにより選択的
に半導体膜を形成するものである。以下、第4図を参照
して説明する。先ず第4図(a)に示すごとく、表面に
選択的に8i0.膜61が埋め込まれたn型G a A
 s基板60を用意する。
Next, an embodiment of the second invention will be described. In the first invention, a flat semiconductor film is formed using a Sin film as a wall surface, but in the second invention, a semiconductor film is selectively formed depending on the underlying material. This will be explained below with reference to FIG. First, as shown in FIG. 4(a), 8i0. n-type Ga A with embedded film 61
An s-substrate 60 is prepared.

このn型G a A s基板60の表面は平担になって
いる。
The surface of this n-type GaAs substrate 60 is flat.

次に、このn型GaAs基板60表面に1第1の発明と
同様に原料ガスを交互に供給し、第4図(b)に示すよ
うなレーザ構造を有する半導体結晶層62を積層する。
Next, raw material gases are alternately supplied to the surface of this n-type GaAs substrate 60 in the same manner as in the first invention, and a semiconductor crystal layer 62 having a laser structure as shown in FIG. 4(b) is laminated.

半導体結晶層62の形成方法は、第1図で示した半導体
結晶層13の形成方法と同様に行えば良い。
The method for forming the semiconductor crystal layer 62 may be performed in the same manner as the method for forming the semiconductor crystal layer 13 shown in FIG.

このように、Sin、膜、SiN膜、S t3 N4膜
等が選択的に埋め込まれた半導体基板上に、I族及び■
族の原料ガスを交互に供給して気相成長することにより
、選択的に且つ平担に半導体膜を形成することができる
In this way, group I and
A semiconductor film can be selectively and evenly formed by vapor phase growth by alternately supplying raw material gases of the group.

以上で述べた実施例においては、成長速度を増加させる
ために、半導体結晶層を形成する時にK r Fエキシ
マレーザ光を照射したが、これは本発明において本質的
なことではない。アルゴンイオンレーザ等の他の波長の
光を照射しても実験から成長速度の増加が確認されてお
り、他の波長の光を照射してもよい。また、光を照射し
なくても原料を交互に供給することで単原子層の膜厚制
御が実現できるので、光を照射せずに半導体結晶層を形
成しても良い。
In the embodiments described above, K r F excimer laser light was irradiated when forming the semiconductor crystal layer in order to increase the growth rate, but this is not essential to the present invention. It has been experimentally confirmed that the growth rate increases when irradiated with light of other wavelengths such as an argon ion laser, and light of other wavelengths may also be irradiated. Furthermore, since the film thickness of a monoatomic layer can be controlled by alternately supplying raw materials without irradiating light, a semiconductor crystal layer may be formed without irradiating light.

また、実施例において、Ga元素の原料ガスとしてトリ
エチルガリウムを用いたが、トリエチルガリウム、トリ
イソブチルガリウムを用いても単原子層の膜厚制御が実
現できることを確認しているので、これらの原料ガスを
用いても良い。
In addition, in the examples, triethylgallium was used as the raw material gas for the Ga element, but it has been confirmed that monoatomic layer thickness control can also be achieved using triethylgallium or triisobutylgallium. You may also use

また、実施例では・、G a A I A s のダブ
ルへテロ半導体レーザの製造方法について述べたが、本
発明はこれに限るものではない。InkSInAsの成
長においても原料を交互供給した気相成長法により、単
原子層の膜厚制御が可能なことが確認されている。これ
から、本発明はI n P s I n A sあるい
はInGaAIP、InGaAsP等ノ他ノ混晶材料の
半導体装置の製造にもそのまま適用することができる。
In addition, in the embodiment, a method for manufacturing a GaAIAs double hetero semiconductor laser has been described, but the present invention is not limited to this. It has been confirmed that in the growth of InkSInAs, it is possible to control the thickness of a monoatomic layer by a vapor phase growth method in which raw materials are alternately supplied. Therefore, the present invention can be directly applied to the manufacture of semiconductor devices made of other mixed crystal materials such as InPs InAs, InGaAIP, InGaAsP, etc.

その他、本発明の要旨を逸脱しない範囲で種々変形して
実施することができる。
In addition, various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述した様に、本発明によれば、原料ガスを交互供
給した気相成長法を用いるととKよって、へき開工程を
用いずに、へき開工程を用いて製造したものと同程度の
特性の半導体レーザ装置を製造することができた。へき
開工程を用いないため、製造の自動化が可能になった。
As detailed above, according to the present invention, by using a vapor phase growth method in which raw material gases are alternately supplied, the properties are comparable to those produced using a cleavage process without using a cleavage process. We were able to manufacture a semiconductor laser device. Since no cleavage process is used, automation of manufacturing is possible.

また、ウェハのままで素子の試験を行うことができるの
で、不μ素子に対して無駄な工程を行う必要がない。
Furthermore, since the device can be tested on the wafer, there is no need to perform unnecessary steps on the non-μ device.

従って、本発明を用いることにより、半導体レーザの製
造コストを下げることができる。また、ウェハ上に半導
体レーザを任意の方向に集積することが可能となるだめ
、光集積回路の設計に対する制約が大幅に少なくなる。
Therefore, by using the present invention, the manufacturing cost of semiconductor lasers can be reduced. Furthermore, since semiconductor lasers can be integrated on a wafer in any direction, restrictions on the design of optical integrated circuits are significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図は第1の発明を実施した半導体レーザの
製造工程を示す断面図であり、第2図は、半導体結晶層
を形成する工程において使用したMOCVD装置を示す
概略図、第4図は第2の発明の実施例を示す断面図であ
る。 11−GaAm基板、 12・・・酸化珪素膜、 3・・・レーザ構造を積層した半導体結晶層、l・・・
成長容器、 4・・・サセプタ、 5.36・・・ガス導入管、 3・・・ウェハ、 0・・・エキシマレーザ1 1−・AlGaAs基板、 2・・・GaAs結゛晶層、 3・・・レーザ構造を積層した半導体結晶層。 代理人 弁理士 則 近 憲 佑 同  松山光之 第 図 五−−3−ロー 第 霞 第 図
1 and 3 are cross-sectional views showing the manufacturing process of a semiconductor laser embodying the first invention, and FIG. 2 is a schematic view showing an MOCVD apparatus used in the process of forming a semiconductor crystal layer. FIG. 4 is a sectional view showing an embodiment of the second invention. 11-GaAm substrate, 12... silicon oxide film, 3... semiconductor crystal layer laminated with laser structure, l...
Growth container, 4... Susceptor, 5.36... Gas introduction tube, 3... Wafer, 0... Excimer laser 1 1-. AlGaAs substrate, 2... GaAs crystal layer, 3. ...Semiconductor crystal layers with laminated laser structures. Agent Patent Attorney Noriyuki Ken Yudo Mitsuyuki Matsuyama Figure 5--3-Law Figure Kasumi

Claims (2)

【特許請求の範囲】[Claims] (1)表面に異なる材料からなる壁面を有する半導体基
板上に、前記壁面に接する半導体結晶層を形成する際に
、原料ガスを交互に供給する気相成長により前記半導体
結晶層を形成することを特徴とする半導体装置の製造方
法。
(1) When forming a semiconductor crystal layer in contact with the wall surface on a semiconductor substrate having a wall surface made of different materials on the surface, the semiconductor crystal layer is formed by vapor phase growth in which source gases are alternately supplied. A method for manufacturing a featured semiconductor device.
(2)表面に材料の異なる膜が選択的に埋め込まれた半
導体基板上に、原料ガスを交互に供給する気相成長によ
り選択的に半導体結晶層を形成することを特徴とする半
導体装置の製造方法。
(2) Manufacture of a semiconductor device characterized in that a semiconductor crystal layer is selectively formed on a semiconductor substrate in which films of different materials are selectively embedded on the surface thereof by vapor phase growth in which raw material gases are alternately supplied. Method.
JP7842289A 1989-03-31 1989-03-31 Manufacture of semiconductor device Pending JPH02260416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7842289A JPH02260416A (en) 1989-03-31 1989-03-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7842289A JPH02260416A (en) 1989-03-31 1989-03-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02260416A true JPH02260416A (en) 1990-10-23

Family

ID=13661611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7842289A Pending JPH02260416A (en) 1989-03-31 1989-03-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02260416A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247637A (en) * 1991-02-04 1992-09-03 Nichia Chem Ind Ltd Method of measuring surface condition of semiconductor crystal film
EP0903792A2 (en) * 1997-09-19 1999-03-24 Siemens Aktiengesellschaft Method of manufacturing a plurality of semiconductor bodies
DE19838810B4 (en) * 1998-08-26 2006-02-09 Osram Opto Semiconductors Gmbh Method for producing a plurality of Ga (In, Al) N light-emitting diode chips

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247637A (en) * 1991-02-04 1992-09-03 Nichia Chem Ind Ltd Method of measuring surface condition of semiconductor crystal film
EP0903792A2 (en) * 1997-09-19 1999-03-24 Siemens Aktiengesellschaft Method of manufacturing a plurality of semiconductor bodies
EP0903792B1 (en) * 1997-09-19 2010-11-03 OSRAM Opto Semiconductors GmbH Method of manufacturing a plurality of semiconductor lasers
DE19838810B4 (en) * 1998-08-26 2006-02-09 Osram Opto Semiconductors Gmbh Method for producing a plurality of Ga (In, Al) N light-emitting diode chips

Similar Documents

Publication Publication Date Title
US6358316B1 (en) Method for producing semiconductor device, method for producing semiconductor laser device, and method for producing quantum wire structure
CN101454875B (en) Semiconductor on insulator structure made using radiation annealing
US4994140A (en) Method capable of forming a fine pattern without crystal defects
JPH06316491A (en) Production of diamond semiconductor
CN105027261A (en) Apparatus and methods for photo-excitation processes
US6864112B1 (en) Method of production of a patterned semiconductor layer
JPH02260416A (en) Manufacture of semiconductor device
JP4537549B2 (en) Method for manufacturing compound semiconductor device
KR20200005464A (en) Quantum well passivation structure for laser facets
JP4678691B2 (en) Group III nitride semiconductor processing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor laser device manufacturing method
JP5056272B2 (en) Gallium nitride based semiconductor surface light emitting device and method for fabricating gallium nitride based semiconductor surface light emitting device
JPH08203862A (en) Method for etching nitride compound semiconductor
CN110061416B (en) Non-absorption window of semiconductor laser, preparation method thereof and semiconductor laser
JPH0897193A (en) Manufacture of semiconductor element
JP3931777B2 (en) Nitride compound semiconductor etching method and semiconductor light emitting device manufacturing method
US7033852B2 (en) Method and device for passivation of the resonator end faces of semiconductor lasers based on III-V semiconductor material
KR100234005B1 (en) Method of manufacturing semiconductor laser
JP2711475B2 (en) Selective epitaxial growth method
JP2717163B2 (en) Method for forming structure of compound semiconductor
JP2717165B2 (en) Method for forming structure of compound semiconductor
JP3905629B2 (en) Method of manufacturing group III nitride semiconductor laser diode
JP2682896B2 (en) Method for manufacturing semiconductor laser device
JP2898320B2 (en) Method for manufacturing semiconductor device
JPH03120885A (en) Manufacture of semiconductor laser
KR100386596B1 (en) fabrication method in semiconductor laser device