JPH02259702A - Polarization diffraction element - Google Patents

Polarization diffraction element

Info

Publication number
JPH02259702A
JPH02259702A JP1081707A JP8170789A JPH02259702A JP H02259702 A JPH02259702 A JP H02259702A JP 1081707 A JP1081707 A JP 1081707A JP 8170789 A JP8170789 A JP 8170789A JP H02259702 A JPH02259702 A JP H02259702A
Authority
JP
Japan
Prior art keywords
diffraction
light
grating
polarization
order diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1081707A
Other languages
Japanese (ja)
Inventor
Yoshio Yoshida
吉田 圭男
Takahiro Miyake
隆浩 三宅
Yasuo Nakada
泰男 中田
Yukio Kurata
幸夫 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1081707A priority Critical patent/JPH02259702A/en
Priority to US07/500,292 priority patent/US5085496A/en
Priority to CA002013538A priority patent/CA2013538C/en
Priority to DE69033972T priority patent/DE69033972T2/en
Priority to EP97111248A priority patent/EP0803868B1/en
Priority to DE69032301T priority patent/DE69032301T2/en
Priority to EP90303482A priority patent/EP0390610B1/en
Priority to KR1019900004358A priority patent/KR0144569B1/en
Publication of JPH02259702A publication Critical patent/JPH02259702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To separate incident light to two parallel luminous fluxes of different polarization components by providing two diffraction gratings which have the grating intervals equal to each other and are so formed as to have the mutual grating directions coincident with each other respectively on the different faces of a flat plate substrate. CONSTITUTION:The diffraction gratings 3, 4 are formed with rectangular projecting parts 6... within the equal grating intervals D and are so provided as to allow nearly 100% transmission of the P polarization component of the incident light 5 and to allow nearly 100% diffraction of the S polarization component. The P polarization component of the incident light 5 on the polarization diffraction element 1 at an incident angle thetai1 is transmitted to 0 order diffracted light 5a through the diffraction gratings 3, 4 and S polarization component is diffracted as 1st order diffracted light 5b by the diffraction grating 3 and is further diffracted by the diffraction grating 4. These light rays are respectively emitted from the element 1. Since the gratings 3, 4 are formed at the grating interval D equal to each other, the 0 order diffracted light 5a and the 1st order diffracted light 5b are emitted in parallel from the element 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ピツクアップなどに用いられる回折素子に
係り、詳しくは、入射光を異なる偏光成分の光束に分離
する偏光回折素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a diffraction element used for optical pickup, etc., and specifically relates to a polarization diffraction element that separates incident light into light beams of different polarization components. .

〔従来の技術〕[Conventional technology]

従来より、格子間隔が光の波長程度に形成された回折格
子は、偏光特性を有することが知られている(に、Yo
komori、”Dielectric surfac
e−reliefgratings with hig
h diffraction efficiency。
It has been known that a diffraction grating with a grating interval approximately equal to the wavelength of light has polarization properties (Yo et al.
komori, “Dielectric surfac
e-relief gratings with hig
h diffraction efficiency.

Applyed 0ptics Vol、23.No、
14.pp2303.1984)。
Applied Optics Vol, 23. No,
14. pp2303.1984).

第5図に示すように、偏光回折素子21は、ガラスなど
の透明な基板22の一方の面に、格子間隔が入射光の所
定の波長程度に形成されて偏光特性を有する回折格子2
3が、二光束干渉法などの方法により形成されている。
As shown in FIG. 5, the polarization diffraction element 21 includes a diffraction grating 2 having polarization characteristics, which is formed on one surface of a transparent substrate 22 such as glass, with a grating interval approximately equal to a predetermined wavelength of incident light.
3 is formed by a method such as two-beam interferometry.

回折格子23は、例えば、フォトレジストからなり、そ
の厚さおよび格子間隔がそれぞれ2μm、0.5μmに
設定されている。また、回折格子23は、P偏光成分を
ほぼ100%透過させるとともに、S偏光成分をほぼ1
00%回折させるように作製されている。
The diffraction grating 23 is made of, for example, photoresist, and its thickness and grating interval are set to 2 μm and 0.5 μm, respectively. Moreover, the diffraction grating 23 transmits almost 100% of the P polarized light component, and transmits approximately 100% of the S polarized light component.
It is made to cause 00% diffraction.

このような偏光回折素子21に、例えば波長が0.8μ
mの入射光24をブラッグ角で入射させると、入射光2
4のうちP偏光成分がO次回折光24aとして回折格子
23を透過し、1次回折光24bとして回折されること
はほとんどない。一方、入射光24のうちS偏光成分が
1次回折光24bとして回折格子23により回折され、
0次回折光24aとして透過することはほとんどない。
For example, the polarization diffraction element 21 has a wavelength of 0.8μ.
When the incident light 24 of m is incident at the Bragg angle, the incident light 2
The P-polarized light component among the four polarized light components is transmitted through the diffraction grating 23 as O-order diffracted light 24a, and is hardly diffracted as first-order diffracted light 24b. On the other hand, the S-polarized component of the incident light 24 is diffracted by the diffraction grating 23 as first-order diffracted light 24b,
It is almost never transmitted as the 0th order diffracted light 24a.

また、このようにして分離された0次回折光24aおよ
び1次回折光24bの偏光成分を検出するには、それぞ
れを集光レンズ25・26を介して光検出器27・28
に集光させて行う。
In addition, in order to detect the polarization components of the 0th-order diffracted light 24a and the 1st-order diffracted light 24b separated in this way, they are passed through condensing lenses 25 and 26 to photodetectors 27 and 28, respectively.
This is done by focusing the light on the

上記のように回折格子23は、異なる偏光の光を分離す
る特性を有するので、光磁気記録再生装置における光ピ
ツクアップの偏光ビームスプリッタとして利用すること
ができる。偏光ビームスプリンタに偏光回折素子21を
用いれば、部品点数を少なくして光ピツクアップの小型
・軽量化を図ることができる。
As described above, the diffraction grating 23 has the characteristic of separating light of different polarization, and therefore can be used as a polarizing beam splitter for optical pickup in a magneto-optical recording/reproducing device. If the polarization diffraction element 21 is used in a polarization beam splinter, the number of parts can be reduced and the optical pickup can be made smaller and lighter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来の偏光回折素子21では、回折格子
23による回折光の回折角は入射光24の波長に依存す
るので、例えば光源にレーザダイオードを用いた場合、
レーザダイオードから出射される光の波長が周囲の温度
変化により変化して上記回折角が変化してしまう。
However, in the conventional polarization diffraction element 21, the diffraction angle of the diffracted light by the diffraction grating 23 depends on the wavelength of the incident light 24. For example, when a laser diode is used as the light source,
The wavelength of the light emitted from the laser diode changes due to changes in the surrounding temperature, and the above-mentioned diffraction angle changes.

例えば、入射光24の波長が所定の波長であるとき、1
次回折光24bは所定の回折角で回折され、集光レンズ
26により光検出器28に正しく集光される。このとき
、周囲温度が低下してそのときの入射光24の波長が上
記所定の波長より小さくなると、回折角もそれに伴って
小さくなり、回折格子23により回折された1次回折光
24bは、図中の二点鎖線に示すように所定の光路から
大きく外れて進む。このため、1次回折光24bが光検
出器28の所定の位置に集光されなくなり、S偏光成分
の検出が行えなくなるという不都合が生じる。
For example, when the wavelength of the incident light 24 is a predetermined wavelength, 1
The next diffraction light 24b is diffracted at a predetermined diffraction angle, and is correctly focused on the photodetector 28 by the condenser lens 26. At this time, when the ambient temperature decreases and the wavelength of the incident light 24 becomes smaller than the predetermined wavelength, the diffraction angle also becomes smaller accordingly, and the first-order diffracted light 24b diffracted by the diffraction grating 23 is As shown by the two-dot chain line, the light beam travels far away from the predetermined optical path. For this reason, the first-order diffracted light 24b is no longer focused on a predetermined position of the photodetector 28, resulting in the inconvenience that the S-polarized light component cannot be detected.

上記のように、偏光回折素子21は、回折格子23の格
子間隔が波長程度に設けられているので、入射光24の
波長がわずかに変化しただけで回折角が大きく変化し、
1次回折光24bの光路を移動させることになる。そこ
で、光検出器2日の受光部を大きくして、光路の外れた
1次回折光24bを受光させることが考えられるが、偏
光回折素子21を光検出器28とともに光ピツクアップ
に組み込む場合、光ピツクアップも大型になるので、光
ピツクアップの小型・軽量化を図るうえでマイナス要因
となる。また、光検出器28を大きくしても、光検出器
28には1次回折光24bの集光点が入射光24の波長
の変化によって一定の位置に形成されなくなり、S偏光
成分の検出精度が低下するという問題点も生じる。
As mentioned above, in the polarization diffraction element 21, since the grating spacing of the diffraction grating 23 is set to about the wavelength, a slight change in the wavelength of the incident light 24 causes a large change in the diffraction angle.
The optical path of the first-order diffracted light 24b is moved. Therefore, it is conceivable to increase the size of the light receiving part of the photodetector 2 to receive the first-order diffracted light 24b that is out of the optical path. This also increases the size of the optical pickup, which is a negative factor when trying to make the optical pickup smaller and lighter. Furthermore, even if the photodetector 28 is made larger, the focal point of the first-order diffracted light 24b will no longer be formed at a fixed position on the photodetector 28 due to changes in the wavelength of the incident light 24, and the detection accuracy of the S-polarized light component will decrease. There also arises the problem of a decrease in the power.

さらに、1次回折光24bを回折する回折角が100″
前後となるので、1次回折光24bと0次回折光24a
とが大きく離れて進むこととなるため、光検出器27・
28を互いに離間した位置に設けなければならない。こ
のため、光ピツクアップが大型になり、上記の場合と同
様光ピツクアップの小型・軽量化を図ることが困難とな
っていた。
Furthermore, the diffraction angle for diffracting the first-order diffracted light 24b is 100″
Since they are before and after, the 1st-order diffracted light 24b and the 0th-order diffracted light 24a
The photodetector 27 and
28 must be provided at positions spaced apart from each other. As a result, the optical pickup becomes large, making it difficult to reduce the size and weight of the optical pickup as in the case described above.

ところで、回折格子23は、P偏光成分をほぼ100%
透過させ、S偏光成分をほぼ100%回折させるように
作製されるが、実際には、入射光24が1つの回折格子
23のみに入射する場合、P偏光成分がO次回折光24
aとして透過する際の回折効率η。9、およびS偏光成
分が1次回折光24bとして回折される際の回折効率η
1.はともに0.99程度である。このため、回折格子
23を透過したO次回折光24aには、0.01程度の
回折効率η。、で回折格子23を透過したS偏光成分が
わずかに含まれる。また、回折格子23により回折され
た1次回折光24bには、0.01程度の回折効率η、
pで回折格子23により回折されたP偏光成分がわずか
に含まれる。
By the way, the diffraction grating 23 absorbs almost 100% of the P polarized light component.
However, in reality, when the incident light 24 enters only one diffraction grating 23, the P polarized light component becomes the O-order diffracted light 24.
Diffraction efficiency η when transmitted as a. 9, and the diffraction efficiency η when the S-polarized component is diffracted as the first-order diffracted light 24b.
1. are both about 0.99. Therefore, the O-order diffracted light 24a transmitted through the diffraction grating 23 has a diffraction efficiency η of about 0.01. , a slight amount of the S-polarized light component transmitted through the diffraction grating 23 is included. Furthermore, the first-order diffracted light 24b diffracted by the diffraction grating 23 has a diffraction efficiency η of about 0.01,
A small amount of the P-polarized light component diffracted by the diffraction grating 23 at p is included.

このように、1つの回折格子23に入射光24を分離さ
せた場合、所望の偏光成分におけるそれ以外の偏光成分
の割合、すなわち偏光度は、0次回折光24aにおいて
回折効率η6pに対する回折効率η。、の比で表され、
1次回折光24bにおいて回折効率η、に対する回折効
率η19の比で表される。これに従って、0次回折光お
よび1次回折光における偏光度を求めると、ともに約0
.01となりP偏光成分とS偏光成分との分離度が実用
できる程度に十分満足しうるものであるとはいえない。
In this way, when the incident light 24 is separated into one diffraction grating 23, the ratio of the other polarized light components in the desired polarized light component, that is, the degree of polarization, is the diffraction efficiency η with respect to the diffraction efficiency η6p in the 0th-order diffracted light 24a. , expressed as the ratio of
In the first-order diffracted light 24b, it is expressed as the ratio of the diffraction efficiency η19 to the diffraction efficiency η. According to this, the degree of polarization of the 0th-order diffracted light and the 1st-order diffracted light is found to be approximately 0.
.. 01, and it cannot be said that the degree of separation between the P-polarized light component and the S-polarized light component is sufficiently satisfactory for practical use.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る偏光回折素子は、上記課題を解決するため
に、入射光の所定の波長程度の幅を有する格子間隔で形
成された第1の回折格子と第2の回折格子とが、それぞ
れ平板状の基板における異なる面に設けられており、上
記第1の回折格子と第2の回折格子とは、互いに等しい
格子間隔を有し、かつ、互いの格子方向が一致するよう
に形成されていることを特徴としている。
In order to solve the above problems, the polarization diffraction element according to the present invention has a first diffraction grating and a second diffraction grating formed with a grating interval having a width approximately equal to a predetermined wavelength of incident light. The first diffraction grating and the second diffraction grating are provided on different surfaces of a shaped substrate, and the first diffraction grating and the second diffraction grating are formed so that they have equal grating intervals and their grating directions match. It is characterized by

〔作 用〕[For production]

上記の構成により、偏光回折素子に所定の波長の入射光
が入射すると、この入射光のうち第1の回折格子を透過
したO次回折光は、さらに第2の回折格子も透過する一
一方、上記入射光のうち第1の回折格子により回折され
た1次回折光は、第2の回折格子に入射し、ここでさら
に回折される。入射光は、このようにして異なる偏光成
分の光束に分離される。
With the above configuration, when incident light of a predetermined wavelength enters the polarization diffraction element, the O-order diffracted light that has passed through the first diffraction grating is further transmitted through the second diffraction grating, while Of the incident light, the first-order diffracted light that is diffracted by the first diffraction grating enters the second diffraction grating, where it is further diffracted. The incident light is thus separated into beams of different polarization components.

一般に、回折光の回折角は、回折格子の格子間隔と入射
光の波長とによって決まるので、第1の回折格子の格子
間隔と第2の回折格子の格子間隔とを互いに等しくすれ
ば、第1の回折格子による回折角と第2の回折格子によ
る回折角とが等しくなる。それゆえ、第1の回折格子に
より回折された1次回折光が、第2の回折格子に入射し
回折されると、0次回折光と平行になって偏光回折素子
から出射される。
Generally, the diffraction angle of diffracted light is determined by the grating spacing of the diffraction grating and the wavelength of the incident light. Therefore, if the grating spacing of the first diffraction grating and the grating spacing of the second diffraction grating are made equal to each other, The diffraction angle by the second diffraction grating becomes equal to the diffraction angle by the second diffraction grating. Therefore, when the first-order diffracted light diffracted by the first diffraction grating enters the second diffraction grating and is diffracted, it is emitted from the polarization diffraction element in parallel with the zero-order diffraction light.

ここで、例えば、入射光の波長が短くなると、第1の回
折格子および第2の回折格子による1次回折光の回折角
がともに小さ(なる。しかしながら、それぞれの回折格
子は、格子間隔が互いに等しく設けられているので、所
定の波長の入射光を入射させた場合と同様、上記回折角
が互いに等しくなり、1次回折光はやはり0次回折光と
平行に出射される。また、1次回折光は、上記回折角が
小さくなることにより、所定の光路から外れて基板内を
進むが、基板は薄く設けられているので、上記光路の外
れはごくわずかなものとなり、1次回折光が偏光回折素
子から出射する位置もわずかにずれるだけである。それ
ゆえ、このような偏光回折素子を光ピツクアップに組み
込む場合、1次回折光を集光レンズ等の光学系を介して
光検出器に集光させることにより、入射光の波長が変化
しても光検出器の所定の位置で1次回折光を検出するこ
とができる。
Here, for example, as the wavelength of the incident light becomes shorter, the diffraction angles of the first-order diffraction light by the first diffraction grating and the second diffraction grating become smaller. However, the grating intervals of each diffraction grating are equal to each other. Since the diffraction angles are equal to each other and the first-order diffraction light is emitted in parallel with the zero-order diffraction light, the first-order diffraction light is As the diffraction angle becomes smaller, it deviates from the predetermined optical path and travels inside the substrate, but since the substrate is thin, the deviation from the optical path is minimal, and the first-order diffracted light is emitted from the polarization diffraction element. Therefore, when incorporating such a polarization diffraction element into an optical pickup, the first-order diffracted light is focused on a photodetector via an optical system such as a condensing lens. Even if the wavelength of the incident light changes, the first-order diffracted light can be detected at a predetermined position of the photodetector.

また、偏光回折素子により分離された0次回折光と1次
回折光とが平行に進むので、これらの偏光成分を検出す
る場合、検出のための光検出器を近接して設けて、光検
出器を設けるスペースを小さくすることができる。それ
ゆえ、偏光回折素子を光ピツクアップに組み込む場合、
光ピツクアップの小型・軽量化を容易に図ることができ
る。
In addition, since the 0th-order diffracted light and the 1st-order diffracted light separated by the polarization diffraction element travel in parallel, when detecting these polarized light components, a photodetector for detection must be installed close to the photodetector. The space required can be reduced. Therefore, when incorporating a polarization diffraction element into an optical pickup,
Optical pickups can be easily made smaller and lighter.

さらkこ、入射光を2つの回折格子を通過させることに
より、O次回折光および1次回折光における偏光度を小
さくして偏光成分の分離度を高め、偏光検出の精度を向
上させることができる。
Furthermore, by passing the incident light through two diffraction gratings, it is possible to reduce the degree of polarization of the O-order diffracted light and the first-order diffraction light, increase the degree of separation of polarized light components, and improve the accuracy of polarization detection.

〔実施例1〕 本発明の一実施例を第1図ないし第3図に基づいて説明
すれば、以下の通りである。
[Embodiment 1] An embodiment of the present invention will be described below based on FIGS. 1 to 3.

第1図に示すように、偏光回折素子1は、ガラス等から
なる透明、かつ、平板状の基板2の両面にそれぞれ回折
格子3・4が設けられている。回折格子3・4は、格子
間隔が入射光50波長程度に設定されるとともに、いず
れも格子方向が図中の紙面と直交する方向と一致してい
る。また、回折格子3・4は、例えば、基板2をエツチ
ングを施すことにより、レリーフ型回折格子として作製
される。
As shown in FIG. 1, the polarization diffraction element 1 includes diffraction gratings 3 and 4 provided on both sides of a transparent, flat substrate 2 made of glass or the like. The grating spacing of the diffraction gratings 3 and 4 is set to about 50 wavelengths of incident light, and the grating directions of both gratings coincide with the direction perpendicular to the plane of the drawing. Further, the diffraction gratings 3 and 4 are manufactured as relief type diffraction gratings by etching the substrate 2, for example.

第2図に示すように、回折格子3・4は、等しい格子間
隔り内に矩形状の凸部6・・・が形成されている。上記
回折格子3・4は、入射光5のうち、その電界が第1図
の紙面と平行に振動するP偏光成分をほぼ100%透過
させるとともに、入射光5のうち、その電界が第1図の
紙面と直交する方向に振動するS偏光成分をほぼ100
%回折させるように設けられている。このため、例えば
、第1図の入射光5の波長を0.8μmとし、基板2の
屈折率nを1.5とした場合、格子間隔りが約0.5μ
m、格子の深さもが約1μm、および格子間隔りに対す
る凸部6の幅り、の比、すなわちデューティD、/Dが
0.5に設定されている。
As shown in FIG. 2, the diffraction gratings 3 and 4 have rectangular convex portions 6 formed within equal grating intervals. The diffraction gratings 3 and 4 transmit almost 100% of the P-polarized component of the incident light 5 whose electric field vibrates parallel to the plane of the paper in FIG. The S-polarized light component vibrating in the direction perpendicular to the plane of the paper is approximately 100
% diffraction. Therefore, for example, if the wavelength of the incident light 5 in FIG. 1 is 0.8 μm and the refractive index n of the substrate 2 is 1.5, the lattice spacing is approximately 0.5 μm.
m, the depth of the grating is also about 1 μm, and the ratio of the width of the convex portion 6 to the grating interval, that is, the duty D, /D is set to 0.5.

上記の構成において、入射光5が偏光回折素子1に入射
角θ1.で入射すると、P偏光成分は、0次回指光5a
として回折格子3・4を透過し、偏光回折素子1から出
射する。一方、入射光5のS偏光成分は、1次回折光5
bとして回折格子3により回折角θ1で回折され、さら
に回折格子4により回折角θ2で回折されて偏光回折素
子1から出射する。
In the above configuration, the incident light 5 enters the polarization diffraction element 1 at an incident angle θ1. , the P polarized light component becomes the 0th order light 5a
The light passes through the diffraction gratings 3 and 4 as a beam and exits from the polarization diffraction element 1. On the other hand, the S-polarized component of the incident light 5 is the first-order diffracted light 5
As b, the light is diffracted by the diffraction grating 3 at a diffraction angle θ1, further diffracted by the diffraction grating 4 at a diffraction angle θ2, and output from the polarization diffraction element 1.

このとき、上記回折角θ1 ・θ2は、回折格子3・4
の格子間隔りと入射光5の波長により決まるので、回折
格子3・4が互いに等しい格子間隔りで形成されている
場合、回折角θ1 ・θ2も等しくなり、0次回指光5
aおよび1次回折光5bが偏光回折素子1から平行に出
射する。また、入射光の波長をλとしたときの、入射光
5の入射角θi1を θt+=sin −’ (λ/2D) なる式を満たす、いわゆるブラッグ角に設定しておけば
、上記入射角θifを回折格子3により回折された1次
回折光5bが回折格子4に入射する入射角θizと等し
くすることができ、回折格子3・4の特性をそろえやす
くなる。
At this time, the above diffraction angles θ1 and θ2 are the diffraction gratings 3 and 4.
Since it is determined by the grating spacing of
a and the first-order diffraction light 5b are emitted from the polarization diffraction element 1 in parallel. Furthermore, if the incident angle θi1 of the incident light 5 is set to the so-called Bragg angle that satisfies the formula θt+=sin −' (λ/2D), where the wavelength of the incident light is λ, then the above incident angle θif can be made equal to the incident angle θiz at which the first-order diffracted light 5b diffracted by the diffraction grating 3 enters the diffraction grating 4, making it easier to match the characteristics of the diffraction gratings 3 and 4.

次に、上記のように分離された0次回指光5aおよび1
次回折光5bの検出について説明する。
Next, the 0th order light beams 5a and 1 separated as described above are
Detection of the next diffracted light 5b will be explained.

第3図に示すように、0次回指光5aの光路上には、偏
光回折素子1から所定の距離をおいて集光レンズ7が設
けられるとともに、所定の集光位置に光検出器8が設け
られている。一方、1次回折光5bの光路上には、偏光
回折素子1から所定の距離をおいて集光レンズ9が設け
られるとともに、所定の集光位置に光検出器10が設け
られている。光検出器8・10は、それぞれパッケージ
11・12内に配されている。
As shown in FIG. 3, a condenser lens 7 is provided on the optical path of the 0th-order index light 5a at a predetermined distance from the polarization diffraction element 1, and a photodetector 8 is provided at a predetermined condensing position. It is provided. On the other hand, a condenser lens 9 is provided on the optical path of the first-order diffracted light 5b at a predetermined distance from the polarization diffraction element 1, and a photodetector 10 is provided at a predetermined condensing position. The photodetectors 8 and 10 are arranged in packages 11 and 12, respectively.

このような構成において、なんらかの原因で入射光5の
波長が所定の波長より短くなると、回折角θ、・θ2が
ともに小さくなり回折角θ。
In such a configuration, if the wavelength of the incident light 5 becomes shorter than a predetermined wavelength for some reason, both the diffraction angles θ and .theta.2 become smaller and the diffraction angle θ becomes smaller.

θ2′となる。このため、回折格子3により回折された
1次回折光5bは、図中二点鎖線で示すように所定の光
路から外れて進み、回折格子4に入射する位置もずれる
ことになる。しかしながら、基板2は薄く設けられてい
るので、上記光路の外れはごくわずかなものとなり、1
次回折光5bが偏光回折素子1から出射する位置もわず
かにずれるだけである。また、前記のように、回折格子
3・4の格子間隔は互いに等しいので、回折角θ。
θ2'. Therefore, the first-order diffracted light 5b diffracted by the diffraction grating 3 travels away from the predetermined optical path as shown by the two-dot chain line in the figure, and the position where it enters the diffraction grating 4 is also shifted. However, since the substrate 2 is thin, the deviation of the optical path is very small, and 1
The position where the next diffraction light 5b exits from the polarization diffraction element 1 is also slightly shifted. Furthermore, as described above, since the grating intervals of the diffraction gratings 3 and 4 are equal to each other, the diffraction angle θ.

・θ2′も同様に等しくなり、1次回折光5bは0次回
指光5aと平行に偏光回折素子1から出射される。それ
ゆえ、入射光5の波長が小さ(なっても、偏光回折素子
1における1次回折光5bの出射位置に大きくずれが生
じることなく、1次回折光5bを集光レンズ9により光
検出器10の所定の位置に集光させることができる。
- θ2' is also made equal, and the first-order diffracted light 5b is emitted from the polarization diffraction element 1 in parallel with the zero-order index light 5a. Therefore, even if the wavelength of the incident light 5 is small (even if the wavelength of the incident light 5 becomes small), the output position of the first-order diffracted light 5b in the polarization diffraction element 1 does not shift significantly, and the first-order diffracted light 5b is directed to the photodetector 10 by the condenser lens 9. The light can be focused at a predetermined position.

さらに、回折格子3・4による偏光度について説明する
Furthermore, the degree of polarization by the diffraction gratings 3 and 4 will be explained.

第1図に示すように、入射光5が回折格子3を透過した
O次回指光5aは、実際には、回折効率η。2で透過し
たP偏光成分以外に、回折効率η。。
As shown in FIG. 1, the O-order pointing light 5a of the incident light 5 transmitted through the diffraction grating 3 actually has a diffraction efficiency η. In addition to the P-polarized component transmitted by 2, the diffraction efficiency η. .

で透過したS偏光成分がわずかに含まれている。It contains a small amount of the S-polarized light component that was transmitted through the camera.

このときの偏光度は、回折効率η。2・η0.をそれぞ
れ0.99および0.01とすると、約0.01となる
The degree of polarization at this time is the diffraction efficiency η. 2・η0. Assuming that they are 0.99 and 0.01, respectively, it becomes approximately 0.01.

そして、回折格子3と同じ回折効率η。2・η。5を有
する回折格子4に上記0次回指光5aが入射すると、回
折効率η。、・η。3がそれぞれ二乗され、P偏光成分
が回折効率η。p′で透過し、S偏光成分が回折効率η
。S′で透過する。そこで、上記と同様に0次回指光5
aの偏光度を求めると約0゜0001となり、例えば、
回折格子3のみを透過した場合に比べ1/100の値と
なる。
The diffraction efficiency η is the same as that of the diffraction grating 3. 2・η. When the zero-order light 5a is incident on the diffraction grating 4 having a diffraction efficiency of η. ,・η. 3 are each squared, and the P polarization component is the diffraction efficiency η. p′, and the S polarized component has a diffraction efficiency η
. Transmits at S'. Therefore, as above, the 0th order instruction 5
The polarization degree of a is approximately 0°0001, for example,
The value is 1/100 compared to the case where only the diffraction grating 3 is transmitted.

一方、入射光5は、P偏光成分の回折効率ηIpおよび
S偏光成分の回折効率η、5で回折格子3により1次回
折光5bとして回折される。そして、この1次回折光5
bは回折格子4に入射し、P偏光成分が回折効率ηtp
tで回折され、S偏光成分が回折効率η、3′で回折さ
れる。従って、回折効率η、p・η、をそれぞれ0.0
1および0.99とすると、1次回折光5bの偏光度は
回折格子3で約0.01となり、回折格子4で約0. 
OOO1となる、これは、0次回指光5aに含まれるS
偏光成分がほとんどないと考えてよいほど小さくなり、
1次回折光5bに含まれるP偏光成分も同様に小さくな
ることを意味している。
On the other hand, the incident light 5 is diffracted by the diffraction grating 3 as first-order diffracted light 5b with a diffraction efficiency ηIp of the P-polarized light component and a diffraction efficiency η,5 of the S-polarized light component. And this first-order diffracted light 5
b is incident on the diffraction grating 4, and the P polarized light component has a diffraction efficiency ηtp
t, and the S-polarized component is diffracted with a diffraction efficiency η,3'. Therefore, the diffraction efficiency η and p・η are each 0.0.
1 and 0.99, the degree of polarization of the first-order diffracted light 5b is approximately 0.01 at the diffraction grating 3, and approximately 0.01 at the diffraction grating 4.
OOO1, which is S included in the 0th order instruction 5a
It is so small that it can be considered that there is almost no polarization component,
This means that the P-polarized light component included in the first-order diffracted light 5b also becomes smaller.

従って、上記のように、入射光5を回折格子3・4に通
過させることにより、入射光5におけるP偏光成分とS
偏光成分との分離度を実用に十分満足しうる程度に高く
することができる。
Therefore, as described above, by passing the incident light 5 through the diffraction gratings 3 and 4, the P polarization component and the S
The degree of separation from polarized light components can be made high enough to be practically satisfactory.

〔実施例2〕 続いて、本発明の他の実施例を第4図に基づいて説明す
る。なお、前記実施例1と同様の機能を有する部材には
、同一の番号を付記しその説明を省略する。
[Embodiment 2] Next, another embodiment of the present invention will be described based on FIG. 4. It should be noted that members having the same functions as those in the first embodiment will be denoted by the same numbers and their explanations will be omitted.

第4図に示すように、0次回指光5aおよび1次回折光
5bをともに集光する集光レンズ13が、それぞれの回
折光の光路上に設けられるとともに、集光レンズ13に
よる所定の集光位置に光検出器8・10が同一のパッケ
ージ14内に配されている。
As shown in FIG. 4, a condenser lens 13 for condensing both the 0th-order index light 5a and the 1st-order diffracted light 5b is provided on the optical path of each diffracted light, and a predetermined condensing lens 13 is provided on the optical path of each diffracted light. The photodetectors 8 and 10 are placed in the same package 14 at the same location.

このような構成では、O次回指光5aおよび1次回折光
5bを1つの集光レンズ13により、両部光成分のほぼ
中間位置に集光させて、光検出器8・10を同一のパッ
ケージ14内の基板部に並べて配置したり、St等の単
一の半導体基板上に形成するなどして近接して配置する
ことができる。
In such a configuration, the O-order light 5a and the 1st-order diffracted light 5b are condensed by one condenser lens 13 to a position approximately midway between the two light components, and the photodetectors 8 and 10 are housed in the same package 14. They can be arranged side by side on the inner substrate part, or formed on a single semiconductor substrate such as St, and arranged close to each other.

なお、本実施例および前記実施例1の偏光回折素子1で
は、回折格子3・4を基板2の両面に工°ツチングによ
り形成しているが、これ以外に、例えばフォトレジスト
などで形成してもよいのは勿論である。また回折格子3
・4の格子の形状も1、第2図に示すような矩形に限定
されるものではない。
In the polarization diffraction element 1 of this example and the above-mentioned example 1, the diffraction gratings 3 and 4 are formed on both sides of the substrate 2 by etching, but in addition to this, they may be formed of, for example, photoresist. Of course, it is also good. Also, the diffraction grating 3
- The shape of the lattice 4 is not limited to the rectangular shape shown in FIGS. 1 and 2.

〔発明の効果〕〔Effect of the invention〕

本発明に係る偏光回折素子は、以上のように、入射光の
所定の波長程度の幅を有する格子間隔で形成された第1
の回折格子と第2の回折格子とが、それぞれ平板状の基
板における異なる面に設けられており、上記第1の回折
格子と第2の回折格子とは、互いに等しい格子間隔を有
し、かつ、互いの格子方向が一致するように形成されて
いる構成である。
As described above, the polarization diffraction element according to the present invention has a first grating formed with a grating interval having a width approximately equal to a predetermined wavelength of incident light.
a diffraction grating and a second diffraction grating are provided on different surfaces of a flat substrate, and the first diffraction grating and the second diffraction grating have equal lattice spacing, and , the lattice directions are formed to match each other.

これによれば、入射光は、第1の回折格子および第2の
回折格子により異なる偏光成分の光束として分離されて
、偏光回折素子から常に平行に出射される。それゆえ、
入射光の波長が変化しても上記偏光成分の光束間の平行
関係を保つことができる。
According to this, the incident light is separated into light beams of different polarization components by the first diffraction grating and the second diffraction grating, and is always emitted in parallel from the polarization diffraction element. therefore,
Even if the wavelength of the incident light changes, the parallel relationship between the light beams of the polarized light components can be maintained.

従って、偏光回折素子を光ピツクアップに組み込む場合
、異なる偏光成分を検出する光検出器を近接した位置に
設けることにより、光ピツクアップの小型化を図ること
ができる。また、集光レンズ等の光学系を介して、それ
ぞれの偏光成分を光検出器の所定の位置に導くことによ
り、偏光成分の検出精度を向上させることができるとい
う効果を奏する。
Therefore, when a polarization diffraction element is incorporated into an optical pickup, the optical pickup can be made smaller by providing photodetectors for detecting different polarization components in close positions. Further, by guiding each polarized light component to a predetermined position of the photodetector via an optical system such as a condensing lens, it is possible to improve the detection accuracy of the polarized light component.

【図面の簡単な説明】 第1図ないし第3図は本発明の一実施例を示すものであ
って、第1図は偏光回折素子の構成および偏光回折素子
による入射光の回折の状態を示す縦断面図、第2図は回
折格子の構成を示す第1図の部分拡大図、第3図は偏光
回折素子により分離された偏光成分を検出する構成を示
す縦断面図、第4図は本発明の他の実施例を示すもので
あって、偏光回折素子により分離された偏光成分を検出
する構成を示す縦断面図である。 第5図は従来例の偏光回折素子の構成および偏光回折素
子による入射光の回折の状態を示す縦断面図である。 2は基板、3・4は回折格子である。 特許出願人     シャープ 株式会社纂 図 罵 図 某 ! フ1
[Brief Description of the Drawings] Figures 1 to 3 show an embodiment of the present invention, and Figure 1 shows the configuration of a polarization diffraction element and the state of diffraction of incident light by the polarization diffraction element. 2 is a partially enlarged view of FIG. 1 showing the configuration of the diffraction grating, FIG. 3 is a vertical sectional view showing the configuration for detecting polarized light components separated by a polarization diffraction element, and FIG. 4 is a partial enlarged view of FIG. FIG. 7 is a vertical cross-sectional view showing another embodiment of the invention and showing a configuration for detecting polarized light components separated by a polarization diffraction element. FIG. 5 is a vertical cross-sectional view showing the configuration of a conventional polarization diffraction element and the state of diffraction of incident light by the polarization diffraction element. 2 is a substrate, and 3 and 4 are diffraction gratings. Patent Applicant: SHARP Co., Ltd. F1

Claims (1)

【特許請求の範囲】[Claims] 1、入射光の所定の波長程度の幅を有する格子間隔で形
成された第1の回折格子と第2の回折格子とが、それぞ
れ平板状の基板における異なる面に設けられており、上
記第1の回折格子と第2の回折格子とは、互いに等しい
格子間隔を有し、かつ、互いの格子方向が一致するよう
に形成されていることを特徴とする偏光回折素子。
1. A first diffraction grating and a second diffraction grating formed with a grating interval having a width approximately equal to a predetermined wavelength of incident light are provided on different surfaces of a flat substrate, and A polarization diffraction element characterized in that the diffraction grating and the second diffraction grating have equal grating intervals and are formed so that their grating directions coincide with each other.
JP1081707A 1989-03-31 1989-03-31 Polarization diffraction element Pending JPH02259702A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1081707A JPH02259702A (en) 1989-03-31 1989-03-31 Polarization diffraction element
US07/500,292 US5085496A (en) 1989-03-31 1990-03-28 Optical element and optical pickup device comprising it
CA002013538A CA2013538C (en) 1989-03-31 1990-03-30 Optical element and optical pickup device comprising it
DE69033972T DE69033972T2 (en) 1989-03-31 1990-03-30 Optical component and optical playback device provided with it.
EP97111248A EP0803868B1 (en) 1989-03-31 1990-03-30 Optical element and optical pickup device comprising the same
DE69032301T DE69032301T2 (en) 1989-03-31 1990-03-30 Optical element and optical scanning device containing the same
EP90303482A EP0390610B1 (en) 1989-03-31 1990-03-30 Optical element and optical pickup device comprising the same
KR1019900004358A KR0144569B1 (en) 1989-03-31 1990-03-30 Optical elements and optical pick-up device comprising it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081707A JPH02259702A (en) 1989-03-31 1989-03-31 Polarization diffraction element

Publications (1)

Publication Number Publication Date
JPH02259702A true JPH02259702A (en) 1990-10-22

Family

ID=13753856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081707A Pending JPH02259702A (en) 1989-03-31 1989-03-31 Polarization diffraction element

Country Status (1)

Country Link
JP (1) JPH02259702A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462757A2 (en) * 1990-06-13 1991-12-27 Sharp Kabushiki Kaisha Polarization diffraction element and polarization detector employing the same
JPH04257801A (en) * 1991-02-13 1992-09-14 Sharp Corp Manufacture of polarized light diffraction element
JPH05216386A (en) * 1991-10-11 1993-08-27 Internatl Business Mach Corp <Ibm> Hologram system
JPH06222706A (en) * 1992-12-17 1994-08-12 Internatl Business Mach Corp <Ibm> Hologram system and its manufacture
US5473470A (en) * 1992-09-28 1995-12-05 Sharp Kabushiki Kaisha Polarization detector
JP2008233216A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Beam-splitting element
JP2008233226A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Beam-splitting element
WO2010127347A3 (en) * 2009-05-01 2011-02-17 Toyota Motor Engineering And Manufacturing North America, Inc. Grating structure for splitting light

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155508A (en) * 1981-02-23 1982-09-25 Xerox Corp Polaroid beam splitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155508A (en) * 1981-02-23 1982-09-25 Xerox Corp Polaroid beam splitter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462757A2 (en) * 1990-06-13 1991-12-27 Sharp Kabushiki Kaisha Polarization diffraction element and polarization detector employing the same
US5257131A (en) * 1990-06-13 1993-10-26 Sharp Kabushiki Kaisha Polarization diffraction element and polarization detector employing the same
JPH04257801A (en) * 1991-02-13 1992-09-14 Sharp Corp Manufacture of polarized light diffraction element
JPH05216386A (en) * 1991-10-11 1993-08-27 Internatl Business Mach Corp <Ibm> Hologram system
US5473470A (en) * 1992-09-28 1995-12-05 Sharp Kabushiki Kaisha Polarization detector
JPH06222706A (en) * 1992-12-17 1994-08-12 Internatl Business Mach Corp <Ibm> Hologram system and its manufacture
JP2008233216A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Beam-splitting element
JP2008233226A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Beam-splitting element
WO2010127347A3 (en) * 2009-05-01 2011-02-17 Toyota Motor Engineering And Manufacturing North America, Inc. Grating structure for splitting light
US8264773B2 (en) 2009-05-01 2012-09-11 Toyota Motor Engineering And Manufacturing North America, Inc. Grating structure for splitting light

Similar Documents

Publication Publication Date Title
KR0144569B1 (en) Optical elements and optical pick-up device comprising it
JPH02259702A (en) Polarization diffraction element
KR960012782B1 (en) Polarization diffraction element and polarization detector employing the same
JPH07130022A (en) Optical head device and optical element
US6556532B2 (en) Optical pickup device
JPH11306581A (en) Broadband polarized light separating element and optical head using this broadband polarized light separating element
US5473470A (en) Polarization detector
JP4725756B2 (en) Directional diffraction grating
JP2004253111A (en) Optical pickup device
JPH02178604A (en) Cross diffraction grating and polarized wave rotation detecting device using same
JP2613962B2 (en) Polarization detector
JPH09145922A (en) Optical element for diffraction and optical pickup device using the same
JPH06250008A (en) Grating prism
JPH05250751A (en) Optical integrated circuit, optical pickup, and optical information processor
JPH087099B2 (en) Polarization detector
JPH0944893A (en) Optical pickup
JPH069089B2 (en) Light head
JP2002319178A (en) Optical device
JP2594264B2 (en) Optical pickup
WO2000058960A1 (en) Optical pickup
JP3085148B2 (en) Optical pickup
JPH0650820A (en) Detecting device for polarized light
JPH11353728A (en) Magneto-optical head
JPH05120754A (en) Optical pickup
JPH0963141A (en) Optical pickup