JPH02258024A - Isotope separation and concentration using laser - Google Patents

Isotope separation and concentration using laser

Info

Publication number
JPH02258024A
JPH02258024A JP7893089A JP7893089A JPH02258024A JP H02258024 A JPH02258024 A JP H02258024A JP 7893089 A JP7893089 A JP 7893089A JP 7893089 A JP7893089 A JP 7893089A JP H02258024 A JPH02258024 A JP H02258024A
Authority
JP
Japan
Prior art keywords
raw material
carbon
material gas
laser
isotope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7893089A
Other languages
Japanese (ja)
Inventor
Takumi Kono
巧 河野
Koichi Chiba
光一 千葉
Tomosumi Murata
村田 友住
Yuji Fujioka
裕二 藤岡
Naoya Hamada
直也 浜田
Takashi Otsubo
孝至 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7893089A priority Critical patent/JPH02258024A/en
Publication of JPH02258024A publication Critical patent/JPH02258024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To elevate separation and concentration speed of carbon 13 isotope and increase production yield by irradiating a raw material gas in a reaction region with laser while applying an electric field and/or a magnetic field to dissociate the raw material gas. CONSTITUTION:A raw material gas is dissociated by laser light irradiation while an electric field and/or a magnetic field is applied to the gas to dissociate the raw material gas and to separate and concentrate an isotope based on an isotope shift of photoadsorptive properties of the raw material gas. As the raw material gas, especially in the case of carbon, a fluorocarbon represented by CXF2 and CHXF2 (wherein X represents F, Cl, Br, or I) is used. Photon adsorption efficiency is improved by applying an electric field and/or a magnetic field to the raw material gas and dissociation reaction is thus activated and separation and concentration speed of carbon 13 as well as quantum yield are improved remarkably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザを用いた同位体の分離・濃縮法に関し
、詳しくは赤外多光子解離を利用したレーザ同位体分離
による同位体の分離・濃縮法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for separating and concentrating isotopes using a laser, and more specifically, isotope separation by laser isotope separation using infrared multiphoton dissociation.・Regarding concentration method.

〔従来の技術〕[Conventional technology]

天然に存在する元素は質量数の異なる同位体が混合して
おり、例えば炭素では、質量数12と13の同位体から
なり、前者が98.9%、後者が1.1%を占め、酸素
では、質量数16.17と18の同位体からなり、前よ
り99.8%、0゜04%、0.2%を占め、窒素では
、質量数14と15の同位体からなり、前者が99.6
%、後者が0.4%を占める。これらの同位体の中で炭
素13同位体、酸素17同位体、窒素15同位体等は、
NMR−MHIの標識化合物等の原料として国内外の医
学、生理学の研究者からの需要がとみに高まり、価格の
低下と供給の安定化が強く要請され始めている。従来実
用化されているこれらの同位体の分離方法は、はとんど
蒸留法によるものであり、炭素13同位体の分離・濃縮
法について述べれば、−酸化炭素(CO)の低温蒸留に
基づいているが、COが有毒ガスであり、冷媒の液体窒
素を大量に使用しなければならず、また装置が大型化す
る等の欠点を有し、さらに製造コストも高いものとなっ
ている。
Naturally occurring elements are a mixture of isotopes with different mass numbers. For example, carbon consists of isotopes with mass numbers 12 and 13, with the former accounting for 98.9% and the latter 1.1%, while oxygen In the case of nitrogen, it consists of isotopes with mass numbers 16.17 and 18, which account for 99.8%, 0°04%, and 0.2% compared to the previous one, and in nitrogen, it consists of isotopes with mass numbers 14 and 15, with the former being 99.6
%, the latter accounting for 0.4%. Among these isotopes, carbon-13 isotope, oxygen-17 isotope, nitrogen-15 isotope, etc.
The demand for it as a raw material for NMR-MHI labeling compounds, etc. from medical and physiological researchers in Japan and abroad is increasing rapidly, and there are strong demands for lower prices and stabilization of supply. Conventional methods of separating these isotopes that have been put to practical use are mostly based on distillation methods, and the method for separating and concentrating carbon-13 isotopes is based on low-temperature distillation of carbon oxide (CO). However, CO is a toxic gas, a large amount of liquid nitrogen as a refrigerant must be used, and the apparatus has disadvantages such as an increase in size, and the manufacturing cost is also high.

これに対してレーザを用いて、安全かつ小規模で安価に
炭素、酸素、窒素、硫黄、シリコン等の同位体が分離・
濃縮できれば、その意義は大きく、そのためこれまでに
も種々の提案がなされている(例えば、特開昭60−1
32629号公報や米国特許第4436709号)、こ
れまでに知られているレーザを用いた炭素13同位体の
分離・濃縮法では、CXFs 、CHXFt  (Xは
F、CI。
In contrast, isotopes such as carbon, oxygen, nitrogen, sulfur, and silicon can be safely, small-scale, and inexpensively separated using lasers.
It would be of great significance if it could be enriched, and various proposals have been made for this purpose (for example, Japanese Patent Laid-Open No. 60-1
32629 and U.S. Pat. No. 4,436,709), conventional methods of separating and concentrating carbon-13 isotopes using lasers include CXFs and CHXFt (X is F, CI).

BrあるいはIのいずれかである)等のフルオロカーボ
ンガスのみ、あるいはこれらのフルオロカーボンガスに
ハロゲンガスを添加したものを原料として、炭酸ガスレ
ーザ光を照射し、光吸収特性の同位体シフトを用いて、
炭素13同位体を含むフルオロカーボンの赤外多光子解
離を選択的に起こすものであった。すなわち、原料ガス
としてCXF3を用いた場合の赤外多光子解離では、解
離物として、炭素13同位体が濃縮されたCF3が生成
され、原料ガスとしてCHX F !を用いた場合では
炭素13同位体が濃縮されたCF、と、HXが生成され
る。これらのCF、やCF tはきわめて、不安定なラ
ジカルやカルベンであり、最終生成物として反応器外に
取り出すためには、二量体化やハロゲン化して、化学的
に安定でかつ原料とは異なる分子に変換して取り出すも
のであった。
Using only fluorocarbon gas (such as Br or I) or halogen gas added to these fluorocarbon gases as a raw material, irradiation with carbon dioxide laser light and using the isotope shift of the light absorption characteristics,
This method selectively causes infrared multiphoton dissociation of fluorocarbons containing carbon-13 isotopes. That is, in infrared multiphoton dissociation when CXF3 is used as a raw material gas, CF3 enriched with carbon-13 isotopes is produced as a dissociated product, and CHX F! When this is used, CF enriched in carbon-13 isotopes and HX are produced. These CF and CF t are extremely unstable radicals and carbenes, and in order to be taken out of the reactor as a final product, they must be dimerized or halogenated to make them chemically stable and different from the raw materials. It was converted into a different molecule and extracted.

すなわち、解離物がCF、の場合には、C,F。That is, when the dissociated product is CF, C, F.

やCF3Y(Yは、原料ガスのXとは異なるハロゲン元
素をあられす)の形にして、解離物がCF2の場合には
、cz FaやCFt YZ (ここでYとZは、原料
ガスのXとは異なるハロゲン元素をあられす)の形にし
て反応器外に取り出すものであった。
or CF3Y (Y is a halogen element different from X in the source gas), and when the dissociated product is CF2, it can be converted into The halogen element, which is different from the reactor, was taken out of the reactor in the form of a hailstone.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の方法では、原料ガスへの赤外多光
子の吸収が効率よくおこらないために、結果として赤外
多光子解離反応が活発にならず、炭素13同位体の分離
・濃縮速度や量子収率が低下するという欠点があった。
However, in the conventional method, the absorption of infrared multiphotons into the raw material gas does not occur efficiently, and as a result, the infrared multiphoton dissociation reaction does not become active, and the separation/concentration rate of carbon-13 isotopes and quantum There was a drawback that the yield decreased.

本発明は、レーザを用いた同位体の分離・濃縮法におい
て、レーザ光の吸収の効率をよくし、同位体の分離・濃
縮速度や量子収率を大幅に向上する方法を提供すること
を目的とするものである。
The present invention aims to provide a method for isotope separation and concentration using a laser, which improves the efficiency of laser light absorption and significantly improves isotope separation and concentration speed and quantum yield. That is.

同位体の分離・濃縮速度を向上させることは、生産性の
向上を意味し、多量の同位体の生産を可能とするもので
ある。量子収率が改善されることは、高価なレーザ光の
有効利用を意味し、安価に同位体分離・濃縮をおこなう
ことを可能にするものである。
Improving the isotope separation/concentration rate means improving productivity, which makes it possible to produce a large amount of isotopes. Improving the quantum yield means that expensive laser light can be used effectively, making it possible to perform isotope separation and concentration at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、従来のレーザ同位体分離による同位体の分離
・濃縮法につき、鋭意、実験、検討を行った結果、従来
の方法では、原料ガス分子の振動エネルギー準位間のエ
ネルギー幅が徐々に狭くなってくる非調和項の効果で、
赤外多光子吸収が効率よくおこらないために、同位体の
分離・?l縮速度や量子収率が低下することを見いだし
、さらに分子の振動エネルギー準位は、電場や磁場をか
けることで変化するという知見をもとに完成されたもの
である。すなわち、本発明では、レーザ光を原料ガスに
照射し、原料ガスの光吸収特性の同位体シフトを利用し
て、原料ガスを解離させ、同位体を分離・濃縮する方法
において、反応領域の原料ガスに電場または磁場のいず
れかあるいは両方を印加しつつ、レーザ光の照射を行う
ものである。
The present invention has been developed as a result of intensive experiments and studies on isotope separation and concentration methods using conventional laser isotope separation. Due to the effect of the anharmonic term becoming narrower,
Because infrared multiphoton absorption does not occur efficiently, isotope separation/? It was completed based on the discovery that the contraction rate and quantum yield decrease, and the knowledge that the vibrational energy level of molecules changes when an electric or magnetic field is applied. That is, in the present invention, in a method of irradiating a source gas with a laser beam and utilizing an isotopic shift in the light absorption characteristics of the source gas to dissociate the source gas and separate and concentrate isotopes, the source gas in the reaction region is Laser light irradiation is performed while applying either an electric field or a magnetic field, or both, to the gas.

〔作用〕[Effect]

一般に、レーザを用いた同位体の分離・tIi縮法にお
いては、弗素を含む分子、特に炭素の場合にはCXF3
 、CHXFt  (XはF、、CI、BrあるいはI
のいずれかである)で示されるフルオロカーボンガスが
原料ガスとして用いられることが多いが、これは天然に
は弗素は同位体が存在せず、100%弗素19であるた
めに同位体効果が鮮明にでるためであり、特にハロゲン
(X)や水素(H)を含んだフルオロカーボンを用いる
のは、これらの原子は容易にフルオロカーボン分子から
脱離して、XやHXといった解離物を生成するためであ
る。
Generally, in the isotope separation/tIi reduction method using a laser, molecules containing fluorine, especially carbon, CXF3
, CHXFt (X is F, , CI, Br or I
Fluorocarbon gas, which is one of the above), is often used as a raw material gas, but this is because there is no isotope of fluorine in nature, and it is 100% fluorine-19, so the isotope effect is clearly visible. In particular, fluorocarbons containing halogen (X) and hydrogen (H) are used because these atoms easily detach from fluorocarbon molecules to produce dissociated products such as X and HX.

従来法と、本発明法を用いた場合の作用について炭素を
例にとって説明する。従来法について、原料ガスとして
、CHCIFgを用いた場合を例にして、説明する。原
料のCHCI F、ガスに、炭酸ガスレーザ等の非常に
強い赤外パルス光を照射すると、赤外多光子吸収で解離
を起こし、解離物としてCF2とHCIが生じる。ただ
し、分解を誘起するには、さらに強い光が必要であり、
レーザ光をレンズで集光して照射する必要がある。
The effects of the conventional method and the method of the present invention will be explained using carbon as an example. The conventional method will be explained using an example in which CHCIFg is used as the raw material gas. When the raw material CHCI F and gas are irradiated with extremely strong infrared pulsed light from a carbon dioxide laser, dissociation occurs due to infrared multiphoton absorption, and CF2 and HCI are produced as dissociated products. However, more intense light is required to induce decomposition;
It is necessary to focus the laser light with a lens and irradiate it.

レーザ光の波長を1030〜105105O’付近に、
またそのフルーレンズを3〜IOJ/cm”に設定する
と、解離物cFs中に炭素13が分離・濃縮され、解離
物cFs同士が二組化反応をおこして炭素13が30%
以上に濃縮されたCzF4が最終生成物として得られる
The wavelength of the laser beam is set to around 1030 to 105105O',
In addition, when the full lens is set to 3 to IOJ/cm'', carbon-13 is separated and concentrated in the dissociated cFs, and the dissociated cFs undergo a two-parting reaction, resulting in 30% carbon-13.
CzF4 concentrated above is obtained as the final product.

CHCI  Ft  +n h ν→cFg  +HC
I   (1)CFz  +CFz  =C*  Fa
反応(1)はCHCIFtが炭酸ガスレーザの赤外多光
子を吸収して、解離する過程を表す、前述の如き照射条
件では、炭素13同位体を含むCHCI F を分子が
選択的に解離し、炭素13tM度の高いCF zカルベ
ンが生成する。このCFZカルベンは反応(2)によっ
て、二量体化しC1F4が生成する。このCtF4には
炭素13が濃縮されている0反応(1)で炭素13の選
択的な解離が起こるメカニズムについては、以下で説明
するように炭素13同位体の選択的な赤外多光子吸収に
よると考えられている。
CHCI Ft +n h ν→cFg +HC
I (1)CFz +CFz =C*Fa
Reaction (1) represents the process in which CHCIFt absorbs infrared multiphotons from the carbon dioxide laser and dissociates. Under the irradiation conditions described above, the molecule selectively dissociates CHCIF containing the carbon-13 isotope, and carbon CF z carbene with a high degree of 13 tM is produced. This CFZ carbene is dimerized by reaction (2) to produce C1F4. CtF4 is enriched with carbon-13. The mechanism by which carbon-13 is selectively dissociated in reaction (1) is due to selective infrared multiphoton absorption of carbon-13 isotopes, as explained below. It is believed that.

分子は量子力、学によれば、その分子構造に応じて、第
3図に示すように離散的な振動エネルギー準位を有する
ことが知られている。図において、分子の振動エネルギ
ー準位間のエネルギー幅は、低いエネルギー準位のとこ
ろでは一定である。従って、その振動エネルギー準位間
のエネルギー差に応じた、波長の光のみが吸収される。
According to quantum mechanics, molecules are known to have discrete vibrational energy levels, as shown in FIG. 3, depending on their molecular structure. In the figure, the energy width between the vibrational energy levels of the molecule is constant at lower energy levels. Therefore, only light with a wavelength corresponding to the energy difference between the vibrational energy levels is absorbed.

すなわち、E=hν (ここで、Eは振動エネルギー準
位間の差、hはブランク常数、νは光の振動数を示す)
を満たす振動数の光のみが吸収される。一方、炭素13
からなるCHCI F、と炭素12からなるC HCI
 F tでは、同位体効果によって、その振動エネルギ
ー準位が異なり、結果的に振動エネルギー準位間のエネ
ルギー幅が異なることが知られており、非常に波長域の
せまい単色性にすぐれたレーザ光を用いると、炭素13
からなるCHCIF、には吸収されるが、炭素12から
なるCHCIFZには吸収されないような光の照射が可
能となる。1つの光子を吸収しただけでは、分子は単に
励起状態に昇位されるだけであるが、多数の光子を吸収
するとやがて、分子は解離する。これ力(いわゆる赤外
多光子解離による、同位体分離・濃縮の原理である。
That is, E=hν (where E is the difference between vibrational energy levels, h is a blank constant, and ν is the frequency of light)
Only light with a frequency that satisfies this is absorbed. On the other hand, carbon-13
CHCI F consisting of carbon-12, and CHCI F consisting of carbon-12
It is known that Ft has different vibrational energy levels due to isotopic effects, and as a result, the energy width between the vibrational energy levels differs, resulting in laser light with an extremely narrow wavelength range and excellent monochromaticity. using carbon-13
It becomes possible to irradiate light that is absorbed by CHCIF, which is made of carbon-12, but not absorbed by CHCIFZ, which is made of carbon-12. Absorbing just one photon simply promotes the molecule to an excited state, but absorbing many photons eventually causes the molecule to dissociate. This force (so-called infrared multiphoton dissociation) is the principle of isotope separation and concentration.

しかしながら、分子の振動エネルギー準位をさらに詳細
に考察すれば、以下で示す非調和項の効果を無視できな
いことが知られている。すなわち、第4図に示すように
、分子の振動エネルギー準位間のエネルギー幅は、低い
エネルギー準位のところでは一定であるが、高エネルギ
ー準位側では、通常そのエネルギー幅が小さくなってい
くことが非調和項の効果として知られている。そのため
、従来の方法では、最初の吸収、励起は効率よく起こる
が、高エネルギー準位側では、E=hν(ここで、Eは
振動エネルギー準位間の差、hはブランク常数、νは光
の振動数を示す)を満たさなくなり、光子の吸収が効率
よく行われないという欠点があった。
However, if we consider the vibrational energy levels of molecules in more detail, it is known that the effect of the anharmonic term shown below cannot be ignored. In other words, as shown in Figure 4, the energy width between the vibrational energy levels of a molecule is constant at low energy levels, but it usually becomes smaller at higher energy levels. This is known as the effect of anharmonic term. Therefore, in the conventional method, initial absorption and excitation occur efficiently, but on the high energy level side, E = hν (where E is the difference between vibrational energy levels, h is a blank constant, and ν is the optical The problem is that photon absorption does not occur efficiently.

本発明は、反応領域の原料ガスに電場や磁場を印加する
ことで、光子の吸収を効率よくし、上記の解離反応(1
)を活発に起こして、炭素13の分離・濃縮速度や量子
収率を大幅に向上するものである。
The present invention efficiently absorbs photons by applying an electric field or magnetic field to the raw material gas in the reaction region, and the above dissociation reaction (1)
), which greatly improves the separation/concentration rate and quantum yield of carbon-13.

すなわち、5tark効果やZ e e m a n 
n効果と呼ばれる現象で説明されているように、原料ガ
スに非常に強い電場や磁場が、印加されると、元の原料
ガスの振動エネルギー準位が***を起こして、複数のエ
ネルギー準位に分かれる現象を用いるものである。本発
明ではこれを用い、元のエネルギー準位を強制的に変化
させて、照射するレーザ光の波長に相当するエネルギー
の準位を強制的につくることによって、解離に至るまで
の多光子吸収を非常に効率よく起こすものである。
In other words, the 5tark effect and Z e e m a n
As explained by a phenomenon called the n effect, when a very strong electric or magnetic field is applied to a raw material gas, the vibrational energy level of the original raw material gas is split into multiple energy levels. It uses the phenomenon of separation. In the present invention, this is used to forcibly change the original energy level and forcibly create an energy level corresponding to the wavelength of the irradiated laser beam, thereby suppressing multiphoton absorption leading to dissociation. It is very efficient.

原料ガスとして、CHCIF、を用い、370V / 
c mの電場を印加した場合を例にして説明すると、第
1表に示すように電場を印加しない時と比べて、非常に
吸収度が増加して、光子の吸収が効率よ(行われている
ことがわかる。
Using CHCIF as the raw material gas, 370V/
Taking as an example the case where an electric field of cm m is applied, as shown in Table 1, compared to when no electric field is applied, the absorbance increases significantly, and the absorption of photons becomes more efficient. I know that there is.

第1表 条件  光源   炭酸ガスパルスレーザ9P(22)
1045.02/cm  、7J原料ガス CHCIF
、  圧力5Torrこの方法では、同位体分離・濃縮
反応をきわめて、効率よく行うことができ、生産性が向
上し、生産コストの低減が可能となる。
Table 1 Conditions Light source Carbon dioxide pulse laser 9P (22)
1045.02/cm, 7J raw material gas CHCIF
, Pressure: 5 Torr In this method, isotope separation and concentration reactions can be carried out extremely efficiently, productivity can be improved, and production costs can be reduced.

以上、対象元素が炭素で、原料ガスとしてCHCIF、
を用いて電場を印加した場合について説明したが、対象
元素が酸素、シリコン、窒素、ウラン等の場合でも全く
同様である。
In the above, the target element is carbon, and the raw material gas is CHCIF,
Although the explanation has been given on the case where an electric field is applied using , the same applies even when the target element is oxygen, silicon, nitrogen, uranium, etc.

対象元素が炭素の場合では原料ガスとしてCHBrFt
、CHIFz、CFz Br= 、CFz Br、CF
z I等のフルオロカーボンガスを用いても、全く同様
のことが起こる。また電場の代わりに磁場、あるいは電
場と磁場の両方を印加しても、全く同様のことがおこる
When the target element is carbon, CHBrFt is used as the raw material gas.
, CHIFz, CFz Br= , CFz Br, CF
Exactly the same thing happens when using a fluorocarbon gas such as z I. The same thing happens when a magnetic field is applied instead of an electric field, or when both an electric field and a magnetic field are applied.

以下の実施例でさらに詳細に説明する。This will be explained in further detail in the following examples.

〔実施例〕〔Example〕

実施例1 第1図に本発明のレーザ法同位体分離に用いたレーザ照
射・反応装置の模式図を示す0図においてレーザ発振器
1は回折格子を組み込んだTEA型パルスCo寞レーザ
であり、出力されたレーザビームは両面に減反射コーテ
ィングがほどこされた長焦点の集光レンズ2  (Na
C1,r=2m)で集光され、原料ガスの存在する反応
器3(長さ2.7m、石英ガラス製)に入射する。炭酸
ガスレーザの発振ラインは9P (22)(1045゜
02em−’)に設定し、レーザ出力は7J/パルスで
ある。電場は、銅製の平行平板電橋4を用い、反応器の
外部に設置し電極間の距離を3cmにして、1400V
を印加した。
Example 1 FIG. 1 shows a schematic diagram of a laser irradiation/reaction device used for laser isotope separation of the present invention. In FIG. The laser beam is passed through a long focal length condensing lens 2 (Na
C1, r=2 m), and enters the reactor 3 (2.7 m long, made of quartz glass) where the raw material gas is present. The oscillation line of the carbon dioxide laser was set to 9P (22) (1045°02em-'), and the laser output was 7 J/pulse. The electric field was set to 1400 V using a copper parallel plate electric bridge 4 installed outside the reactor with a distance of 3 cm between the electrodes.
was applied.

原料ガスとしてはCHCI F、を100To r「用
いた。この結果、炭素13が34%に濃縮されたC z
 F aが8X10−’mol/パルスノ効率で得られ
た。また比較のための電場を印加しない実験をおこなっ
た結果、炭素13が29%に濃縮されたCzFaが5 
X 10−’mo I/パルスの効率で得られた。レー
ザ光1パルス当たりの炭素13同位体が向上することは
、量子収率の向上を示すが、同時に、レーザ発振の1秒
当たりの発振数はほぼ一定であることから、生産性が向
上していることが判る。
As the raw material gas, CHCIF was used at 100 Torr.As a result, CZ with carbon-13 concentrated to 34%
F a was obtained with an efficiency of 8×10 −′ mol/pulse. Additionally, as a result of an experiment without applying an electric field for comparison, it was found that CzFa with 29% carbon-13 concentration was
An efficiency of X 10-'mo I/pulse was obtained. An increase in the amount of carbon-13 isotope per pulse of laser light indicates an improvement in quantum yield, but at the same time, since the number of laser oscillations per second is almost constant, productivity is improved. I know that there is.

実施例2 第2図に本発明のレーザ法同位体分離に用いたレーザ照
射、反応装置の模式図を示す0図においてレーザ発振器
lは回折格子を組み込んだTEA型パルスco!レーザ
であり、出力されたレーザビームは両面に減反射コーテ
ィングがほどこされた長焦点の集光レンズ2 (Nac
 1.[=2m)で集光され、原料ガスの存在する反応
器3(長さ2.7m、石英ガラス製)に入射する。炭酸
ガスレーザの発振ラインは9P(28)(1039゜3
7cm−1)(22)に設定し、レーザ出力は8J/パ
ルスである。電磁石を反応器の外部に設置して原料ガス
に均一な磁場を印加した。磁橿間4の距離を3cmにし
て、14kgaussを印加した。
Example 2 Figure 2 shows a schematic diagram of the laser irradiation and reaction apparatus used in the laser method of isotope separation of the present invention. In Figure 0, the laser oscillator l is a TEA-type pulsed CO! The output laser beam is passed through a long focal length condensing lens 2 (Nac
1. [=2 m), and enters the reactor 3 (2.7 m long, made of quartz glass) where the raw material gas is present. The oscillation line of the carbon dioxide laser is 9P (28) (1039°3
7 cm-1) (22), and the laser output is 8 J/pulse. An electromagnet was installed outside the reactor to apply a uniform magnetic field to the raw material gas. The distance between the magnetic rods 4 was set to 3 cm, and 14 kgauss was applied.

原料ガスとしてはCF s B rを60Torrもち
いた。この結果、炭素13同位体が34%に濃縮された
CzFhが3X10−’mol/パ/L/ス(7)効率
で得られた。また比較のために、原料ガスを同量用いて
、磁場を印加しないで実験をおこなった。この結果、炭
素13同位体が32%に濃縮されたCz Fbを4X1
0−’mol/パルスの効率で得られた。
As the raw material gas, CFsBr was used at 60 Torr. As a result, CzFh with carbon-13 isotope enriched to 34% was obtained with an efficiency of 3×10 −'mol/per/L/s(7). For comparison, an experiment was conducted using the same amount of raw material gas and without applying a magnetic field. As a result, Cz Fb enriched to 32% carbon-13 isotope was 4X1
It was obtained with an efficiency of 0-'mol/pulse.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レーザを用いた同位体の分離・濃縮法
において、その濃縮速度や量子収率が大幅に改善され、
生産性が著しく向上し、低コストで同位体を分離・濃縮
することが可能となる。
According to the present invention, in an isotope separation and concentration method using a laser, the concentration rate and quantum yield are significantly improved,
Productivity is significantly improved and it becomes possible to separate and concentrate isotopes at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明で用いた同位体分離装置の
模式図、第3図は分子の離散的な振動エネルギー準位を
示す図、第4図は分子の振動エネルギー準位の非調和項
の効果を示す図である。 1・・・レーザ発振器、2・・・集光レンズ、3・・・
反応器、4・・・電極、5・・・磁極。
Figures 1 and 2 are schematic diagrams of the isotope separation apparatus used in the present invention, Figure 3 is a diagram showing the discrete vibrational energy levels of molecules, and Figure 4 is a diagram showing the vibrational energy levels of molecules. It is a figure showing the effect of an anharmonic term. 1... Laser oscillator, 2... Condensing lens, 3...
Reactor, 4...electrode, 5...magnetic pole.

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ光を原料ガスに照射し、原料ガスの光吸収
特性の同位体シフトを利用して、原料ガスを解離させ、
同位体を分離・濃縮する方法において、反応領域の原料
ガスに電場または磁場のいずれかあるいは両方を印加し
つつ、レーザ光を照射することを特徴とするレーザを用
いた同位体の分離・濃縮法。
(1) Irradiating the source gas with laser light and utilizing the isotope shift of the light absorption characteristics of the source gas to dissociate the source gas,
A method for separating and concentrating isotopes using a laser, which is characterized in that the source gas in a reaction region is irradiated with laser light while applying either an electric field or a magnetic field, or both. .
(2)分離・濃縮する同位体が、炭素13である請求項
1記載のレーザを用いた同位体の分離・濃縮法。
(2) The method for isotope separation and concentration using a laser according to claim 1, wherein the isotope to be separated and concentrated is carbon-13.
JP7893089A 1989-03-30 1989-03-30 Isotope separation and concentration using laser Pending JPH02258024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7893089A JPH02258024A (en) 1989-03-30 1989-03-30 Isotope separation and concentration using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7893089A JPH02258024A (en) 1989-03-30 1989-03-30 Isotope separation and concentration using laser

Publications (1)

Publication Number Publication Date
JPH02258024A true JPH02258024A (en) 1990-10-18

Family

ID=13675590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7893089A Pending JPH02258024A (en) 1989-03-30 1989-03-30 Isotope separation and concentration using laser

Country Status (1)

Country Link
JP (1) JPH02258024A (en)

Similar Documents

Publication Publication Date Title
Karlov Laser-induced chemical reactions
GB1595216A (en) Isotope separation
JPH0230291B2 (en)
Podolske et al. Rate of the resonant energy-transfer reaction between molecular oxygen (1. DELTA. g) and perhydroxyl (HOO)
US4220510A (en) Method for separating isotopes in the liquid phase at cryogenic temperature
JPH02258024A (en) Isotope separation and concentration using laser
US4257860A (en) Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound
US4120767A (en) Photochemical method for carbon isotopic enrichment
US4213836A (en) Laser-induced separation of hydrogen isotopes in the liquid phase
US4193855A (en) Isotope separation by multiphoton dissociation of methylamine with an infrared laser
RU2144421C1 (en) Method of producing highly enriched isotope 13c
US4003809A (en) Isotope separation process
US4171251A (en) Laser photochemical separation of hydrogen isotopes
JPH02258022A (en) Separation and concentration of carbon 13 isotope using laser
JP2804815B2 (en) Method for enriching carbon 13
JPH05317653A (en) Method for separating and condensing isotope by using laser
JP3360165B2 (en) An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance
US4202741A (en) Enrichment of nitrogen isotopes by induced isomerization of isocyanides
JPS60132629A (en) Concentration of carbon 13 by laser
JP4953274B2 (en) Isotope separation method using molecular rotation period difference
Ambartsumyan et al. Isotopically selective dissociation of CCl4 molecules by highpower NH3 laser radiation
US4554060A (en) Photolytic separation of isotopes in cryogenic solution
US6653587B1 (en) Laser isotope separation method employing isotopically selective collisional relaxation
Letokhov I Laser Selective Photophysics and Photochemistry
JP2721022B2 (en) Method for enriching carbon 13