JPH0225777A - Magneto-sensitive element - Google Patents

Magneto-sensitive element

Info

Publication number
JPH0225777A
JPH0225777A JP63175013A JP17501388A JPH0225777A JP H0225777 A JPH0225777 A JP H0225777A JP 63175013 A JP63175013 A JP 63175013A JP 17501388 A JP17501388 A JP 17501388A JP H0225777 A JPH0225777 A JP H0225777A
Authority
JP
Japan
Prior art keywords
magnetic field
insulating film
magneto
voltage
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63175013A
Other languages
Japanese (ja)
Inventor
Masahiro Kitada
北田 正弘
Kazuo Shiiki
椎木 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63175013A priority Critical patent/JPH0225777A/en
Publication of JPH0225777A publication Critical patent/JPH0225777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a magneto-sensitive element to have a threshold in a voltage-magnetic field characteristic by covering a magneto-resistance type material through an insulating film with a superconducting body. CONSTITUTION:A superconducting body 6 is formed on a non-magnetic substrate 4 and an insulating film 8 is stuck on this superconducting body. Next, on the insulating film 8, a magneto-resistance type material 5, which is finely worked to a shape smaller than this insulating film, and an Nb layer 16 to impress a bias magnetic filed to this material 5 are vacuum-deposited. An insulating film 9 is formed on these insulating film 8 magneto-resistance type material 5 and Nb layer 16, and this insulating film 9 and superconducting body 6 are covered with a superconducting body 7. The control of the threshold can be executed by changing the type of the superconducting materials 6 and 7, thickness to be covered and the magnetic characteristic of the magneto-resistance type material 5. Thus, the magneto-sensitive element can be obtained to have the threshold to an external magnetic field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気センシング技術に係り、特にしきい値をも
った磁界センサに好適な感磁素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetic sensing technology, and particularly to a magnetic sensing element suitable for a magnetic field sensor with a threshold value.

〔従来の技術〕[Conventional technology]

従来、強磁性体の磁気抵抗効果を用いた感磁素子につい
て、たとえば差動型素子では特許公報昭53−2564
5号に記載のように、その出力は外部磁界が零から有限
になると直線的に増大していた。すなわち、外部磁界が
有限のある範囲までは出力が零になり、ある外部磁界強
度で出力が出るというしきい値を示すものではなかった
Conventionally, regarding magnetic sensing elements using the magnetoresistive effect of ferromagnetic materials, for example, for differential type elements, Patent Publication No. 53-2564
As described in No. 5, the output increased linearly as the external magnetic field went from zero to a finite value. In other words, the output is zero until the external magnetic field reaches a finite range, and there is no threshold value at which output is produced at a certain external magnetic field strength.

第2図に従来の2端子磁気抵抗素子の電圧−磁界特性を
示す。素子の端子電圧は曲線1で示すように磁界によっ
て負の向きに生ずる。これにバイアス磁界が印加されて
いる場合には、曲線2で示すものとなる。3がバイアス
磁界の大きさである。
FIG. 2 shows the voltage-magnetic field characteristics of a conventional two-terminal magnetoresistive element. The terminal voltage of the element is generated in the negative direction by the magnetic field, as shown by curve 1. When a bias magnetic field is applied to this, the result is as shown by curve 2. 3 is the magnitude of the bias magnetic field.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は外部磁界が零からある有限の範囲で出力
が零で、ある有限の値以上になると出力が発生する、電
圧−磁界特性にしきい値を持たせることは配慮されてい
なかった。
In the above-mentioned conventional technology, the output is zero within a certain finite range from zero to an external magnetic field, and an output is generated when the external magnetic field exceeds a certain finite value, and no consideration was given to providing a threshold value to the voltage-magnetic field characteristics.

本発明の目的は、磁気抵抗材料からなる上記感磁素子の
電圧−磁界特性にしきい値を与えることにある。
An object of the present invention is to provide a threshold value to the voltage-magnetic field characteristics of the magnetically sensitive element made of a magnetoresistive material.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は磁気抵抗効果を示す材料を完全反磁性体であ
る超電導材料で被覆することによって達成される。また
、しきい値の制御は超電導材料の種類、被覆する厚さ、
磁気抵抗材料の磁気特性、などを変えることにより達成
される。
The above object is achieved by coating a material exhibiting a magnetoresistive effect with a superconducting material that is completely diamagnetic. In addition, the threshold value can be controlled by the type of superconducting material, the coating thickness,
This is achieved by changing the magnetic properties of the magnetoresistive material.

〔作用〕[Effect]

磁気抵抗効果を示す材料を超電導材料で被覆することに
より、超電導材料の完全反磁性のため所定の磁界までは
磁気抵抗効果を示す材料には磁界は印加されないため、
感磁素子は電圧−磁界特性にしきい値を有することとな
る。
By coating a material that exhibits a magnetoresistive effect with a superconducting material, a magnetic field will not be applied to the material that exhibits a magnetoresistive effect until a predetermined magnetic field is reached due to the complete diamagnetic nature of the superconducting material.
The magnetic sensing element has a threshold voltage-magnetic field characteristic.

〔実施例〕〔Example〕

以下本発明の実施例を図と共に説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は非磁性基板4上に形成された2端子磁気抵抗素
子を超電導体で被覆した素子の原動部の断面を示す図で
、5が磁気抵抗薄膜、6,7が超電導薄膜、8,9が絶
縁体薄膜である。磁気抵抗素子の駆動部を超電導体で被
覆することにより、第3図で示すような電圧−磁界特性
が得られる。
FIG. 1 is a diagram showing a cross section of the driving part of a two-terminal magnetoresistive element formed on a non-magnetic substrate 4 and coated with a superconductor, in which 5 is a magnetoresistive thin film, 6 and 7 are superconducting thin films, 8, 9 is an insulating thin film. By covering the drive portion of the magnetoresistive element with a superconductor, voltage-magnetic field characteristics as shown in FIG. 3 can be obtained.

すなわち、第2図の曲線1に相当する第1図で示した素
子の電圧−磁界特性は第3図の曲線10で示すごとく磁
界零から磁界H7までは超電導体の完全反磁性のため素
子電圧が零で磁界Htを超えると超電状態が破壊して素
子出力が現われる。磁界H7は上述のしきい値であり、
超電導体薄膜の臨界磁界、厚さ、形状、などによって決
まる値である。素子にバイアス磁界が印加されるように
した素子、あるいは素子の向きで超電導体の臨界磁界が
異なるときは、第3図の曲線11で示すような電圧−磁
界特性となる。しかし、第1図で示した素子で、電圧・
磁界特性が第3図の11で示される素子では、しきい値
Ht以上の向きの逆な磁界をかけても素子出力の符号が
同じであるので、磁界の向きを判別することができない
、したがって、磁界の向きまで電圧−磁界特性より判別
することは不可能である。一方、第3図の曲線11で示
した素子ではHtの違いにより磁界の向きは特定できる
が、しきい値以上の出力が同符号であり、しきい値以上
の出力の符号で入力磁界を識別するのは困難である。
That is, the voltage-magnetic field characteristic of the device shown in FIG. 1, which corresponds to curve 1 in FIG. 2, is as shown by curve 10 in FIG. When is zero and exceeds the magnetic field Ht, the superelectric state is destroyed and an element output appears. The magnetic field H7 is the above-mentioned threshold,
This value is determined by the critical magnetic field, thickness, shape, etc. of the superconductor thin film. When the critical magnetic field of a superconductor differs depending on the element to which a bias magnetic field is applied, or the orientation of the element, the voltage-magnetic field characteristics are as shown by curve 11 in FIG. 3. However, with the element shown in Figure 1, the voltage
In the element whose magnetic field characteristics are indicated by 11 in Fig. 3, the sign of the element output remains the same even if a magnetic field of opposite direction is applied which is equal to or greater than the threshold value Ht, so the direction of the magnetic field cannot be determined. , it is impossible to determine the direction of the magnetic field from the voltage-magnetic field characteristics. On the other hand, in the element shown by curve 11 in Figure 3, the direction of the magnetic field can be identified by the difference in Ht, but the outputs above the threshold have the same sign, and the input magnetic field can be identified by the sign of the output above the threshold. It is difficult to do so.

磁気抵抗素子に3端子を設け、差動駆動した場合は、第
4図の曲線12で示すように、電圧−磁界特性は磁気抵
抗材料の異方性磁界で決まる磁界Hhまで直結的な出力
電圧を発生する。この3端子素子を超電導体で被覆する
と第5図の曲線13で示すような磁界−電圧特性となる
。すなわち、被覆された超電導体の臨界磁界に達した磁
界14で磁気抵抗素子に磁号が印加され、抵抗の増大が
起こる。向きの磁界中に置かれた場合も同様に第5図1
5で示すようなしきい値で抵抗の発生が起こる。しきい
値は用いる超電系体に外部から印加される磁界He、磁
気抵抗素子への通電によって生ずる磁界Hr、強磁性体
からの洩れ磁界Haの和によって決まる。磁気抵抗素子
からの磁界の強さは、素子と超電導体の距離、すなわち
第1図の絶縁体膜8,9の厚さによっても変化する。し
たがって、M縁体[8,9の厚さを変えれば、しきい値
を変えることができる。第5図で示したしきい値磁界1
4.15の値H0は、磁気抵抗素子に流す電流を一方の
向きとした場合、上記Hrが一方の向きに単に印加され
ているので、一方はHt=I(e+Hr+Haで示され
、他方はHt=He−Hr +Heで示される。したが
って、電圧−磁界特性は非対称となり、超電導体に実効
的にしきい値以上に磁界が印加されれば、印加された外
部磁界の向きは明瞭に判断できる。
When a magnetoresistive element is provided with three terminals and driven differentially, the voltage-magnetic field characteristic is an output voltage that is directly connected to the magnetic field Hh determined by the anisotropic magnetic field of the magnetoresistive material, as shown by curve 12 in Figure 4. occurs. When this three-terminal element is coated with a superconductor, a magnetic field-voltage characteristic as shown by curve 13 in FIG. 5 is obtained. That is, the magnetic field 14 that has reached the critical magnetic field of the coated superconductor applies a magnetic signal to the magnetoresistive element, causing an increase in resistance. Similarly, when placed in a magnetic field in the same direction as shown in Figure 5 1.
The generation of resistance occurs at a threshold value as shown at 5. The threshold value is determined by the sum of the magnetic field He externally applied to the superelectric system used, the magnetic field Hr generated by energizing the magnetoresistive element, and the leakage magnetic field Ha from the ferromagnetic material. The strength of the magnetic field from the magnetoresistive element also changes depending on the distance between the element and the superconductor, that is, the thickness of the insulating films 8 and 9 in FIG. Therefore, by changing the thickness of the M edges [8, 9], the threshold value can be changed. Threshold magnetic field 1 shown in Figure 5
The value H0 of 4.15 is determined by the fact that when the current flowing through the magnetoresistive element is set in one direction, the above Hr is simply applied in one direction, so one is expressed as Ht=I(e+Hr+Ha, and the other is expressed as Ht =He-Hr +He Therefore, the voltage-magnetic field characteristics are asymmetrical, and if a magnetic field is effectively applied to the superconductor above the threshold value, the direction of the applied external magnetic field can be clearly determined.

次に第1図に示した感磁素子の製造方法の一例を示す。Next, an example of a method for manufacturing the magnetically sensitive element shown in FIG. 1 will be described.

先ず、ガラス、セラミックス等からなる非磁性基板4上
に超電導体6として Y B a、 Cu307− xをスパッタ法で約3μ
m形成する。次に絶縁膜8としてSiO□膜をスパッタ
法で1μm付着させ、所望とする磁気抵抗効果素子のよ
り大きな形状に微細加工する。絶縁膜8の上に磁気抵抗
材料5としてN1−Fe(パーマロイ)合金を40nm
蒸着し、引き続いてN1−FeffJにバイアス磁界を
印加するためのNb層16を60nm蒸着した。これを
絶縁膜8より小さい形状に微細加工し、この上に絶縁膜
9としてSin。
First, on a non-magnetic substrate 4 made of glass, ceramics, etc., YBa, Cu307-x is sputtered to a thickness of about 3μ as a superconductor 6.
m form. Next, as the insulating film 8, a SiO□ film is deposited to a thickness of 1 μm by sputtering, and finely processed into a larger shape of the desired magnetoresistive element. A 40 nm thick N1-Fe (permalloy) alloy is placed on the insulating film 8 as the magnetoresistive material 5.
Subsequently, a 60 nm Nb layer 16 was deposited to apply a bias magnetic field to N1-FeffJ. This was microfabricated into a shape smaller than the insulating film 8, and then an insulating film 9 was formed using Sin.

を上記と同じ方法で1μm形成する。次に絶縁膜9の上
にY B a@ Cu、 Ot −xをスパッタ法で約
3μm形成し、磁気抵抗素子5を超電導体7で被覆する
is formed to a thickness of 1 μm using the same method as above. Next, YBa@Cu, Ot-x is formed to a thickness of about 3 μm on the insulating film 9 by sputtering, and the magnetoresistive element 5 is covered with the superconductor 7.

爪上のようにして作製した3端子差動型の感磁素子の電
圧−磁界特性の一例を第6図に示した。
FIG. 6 shows an example of the voltage-magnetic field characteristics of a three-terminal differential magnetic sensing element fabricated like a nail.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、外部磁界に対して素子の出力がしきい
値を持つ感磁素子が得られるので、磁界の感知はもちろ
んのこと、磁界制御素子、磁界を信号にした集積回路な
どの新しい機能をもつ素子を提供し、関連する新技術を
創出できる。
According to the present invention, it is possible to obtain a magnetic sensing element whose output has a threshold value with respect to an external magnetic field, so it can be used not only for sensing magnetic fields but also for new applications such as magnetic field control elements and integrated circuits that use magnetic fields as signals. We can provide functional elements and create related new technologies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す感磁素子の新面図、第
2図は従来の2端子磁気抵抗素子の電圧−磁界特性を示
す図、第3図は本発明の一例を示す2端子素子の電圧−
磁界特性を示す図、第4図は従来の3端子差動型素子の
電圧−磁界特性を示す図、第5図は本発明の3端子差動
型素子の電圧−磁界特性を示す図、第6図は本発明の感
磁素子の実施例を示す特性図である。 4・・・絶縁基板、5・・・磁気抵抗膜、6,7・・・
超電導体膜、8,9・・・絶縁体膜。 第 〕 回
FIG. 1 is a new view of a magneto-sensitive element showing an embodiment of the present invention, FIG. 2 is a diagram showing voltage-magnetic field characteristics of a conventional two-terminal magnetoresistive element, and FIG. 3 is an example of the present invention. Voltage of 2-terminal element -
FIG. 4 is a diagram showing the voltage-magnetic field characteristics of a conventional three-terminal differential element; FIG. 5 is a diagram showing the voltage-magnetic field characteristic of the three-terminal differential element of the present invention. FIG. 6 is a characteristic diagram showing an embodiment of the magnetic sensing element of the present invention. 4... Insulating substrate, 5... Magnetoresistive film, 6, 7...
Superconductor film, 8, 9... Insulator film. th time

Claims (1)

【特許請求の範囲】[Claims] 1、通電および電圧検出用端子を備えた磁気抵抗効果材
料を絶縁膜を介して超電導体で被覆したことを特徴とす
る感磁素子。
1. A magneto-sensitive element characterized in that a magnetoresistive material having terminals for conducting current and detecting voltage is coated with a superconductor via an insulating film.
JP63175013A 1988-07-15 1988-07-15 Magneto-sensitive element Pending JPH0225777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175013A JPH0225777A (en) 1988-07-15 1988-07-15 Magneto-sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63175013A JPH0225777A (en) 1988-07-15 1988-07-15 Magneto-sensitive element

Publications (1)

Publication Number Publication Date
JPH0225777A true JPH0225777A (en) 1990-01-29

Family

ID=15988690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175013A Pending JPH0225777A (en) 1988-07-15 1988-07-15 Magneto-sensitive element

Country Status (1)

Country Link
JP (1) JPH0225777A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341118A (en) * 1991-02-08 1994-08-23 International Business Machines Corporation Multilayer magnetic structure wherein the magnitude of the structure magnetoresistance is a function of nonmagnetic layer thickness
KR100750383B1 (en) * 2004-06-23 2007-08-20 정근수 Disc opening and closing device of butterfly valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341118A (en) * 1991-02-08 1994-08-23 International Business Machines Corporation Multilayer magnetic structure wherein the magnitude of the structure magnetoresistance is a function of nonmagnetic layer thickness
KR100750383B1 (en) * 2004-06-23 2007-08-20 정근수 Disc opening and closing device of butterfly valve

Similar Documents

Publication Publication Date Title
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
EP2040089B1 (en) A magnetic tunnel junction (MTJ) based magnetic field angle sensor
US4503394A (en) Magnetoresistive sensor having a closed domain structure and electrode biasing
JP3596600B2 (en) Magnetic sensor and method of manufacturing the same
CA2054580A1 (en) Magnetoresistive sensor based on the spin valve effect
US7064649B2 (en) Magneto-resistive layer arrangement and gradiometer with said layer arrangement
JP2000180207A (en) Magnetism sensor
JP2000180524A (en) Magnetic field sensor
JPH0870149A (en) Magnetoresistance element
JPH0225777A (en) Magneto-sensitive element
JPH0870148A (en) Magnetoresistance element
JP2000298162A (en) Magnetic detecting element, its manufacture, and magnetic detecting device
JP3035836B2 (en) Magnetoresistive element
Hill A comparison of GMR multilayer and spin-valve sensors for vector field sensing
JPH02195284A (en) Magnetic sensor
JPH0563254A (en) Magnetoresistance composite element
JP3282444B2 (en) Magnetoresistive element
JPH0217476A (en) Differential type magnetoresistance effect element
US5945904A (en) Giant magnetoresistors with high sensitivity and reduced hysteresis and thin layers
Ueda et al. AC bias type magnetoresistive sensor
JPS6280572A (en) Magnetic detector
JPH10270775A (en) Magneto-resistance effect element and revolution sensor using the same
Konno et al. Integrated ferromagnetic MR sensors
JPS6211032Y2 (en)
JPH08297814A (en) Magneto-resistance effect element