JPH02257577A - Metal-air secondary cell - Google Patents

Metal-air secondary cell

Info

Publication number
JPH02257577A
JPH02257577A JP1079846A JP7984689A JPH02257577A JP H02257577 A JPH02257577 A JP H02257577A JP 1079846 A JP1079846 A JP 1079846A JP 7984689 A JP7984689 A JP 7984689A JP H02257577 A JPH02257577 A JP H02257577A
Authority
JP
Japan
Prior art keywords
electrode
gas diffusion
metal
oxide catalyst
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1079846A
Other languages
Japanese (ja)
Other versions
JPH0587950B2 (en
Inventor
Noboru Yamazoe
昇 山添
Norio Miura
則雄 三浦
Yoichi Shimizu
陽一 清水
Makoto Kumada
誠 熊田
Toyoki Ichihashi
市橋 豊紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1079846A priority Critical patent/JPH02257577A/en
Publication of JPH02257577A publication Critical patent/JPH02257577A/en
Publication of JPH0587950B2 publication Critical patent/JPH0587950B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8615Bifunctional electrodes for rechargeable cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To perform high-output discharge and high-speed filling by providing a gas diffusion electrode using a perovskite type oxide catalyst having a specific composition as an oxide catalyst. CONSTITUTION:A gas diffusion electrode 10 using a perovskite type oxide catalyst to be expressed by La1-xCaxCoO3 (provided that 0.05<=x<=0.9) is used as an oxide catalyst of a reaction layer 13. The content of an oxide catalyst shall be 10 to 60wt.%. The content of polytetrafluoroethylene in the reaction layer 13 and the gas diffusion layer 12 shall be 10 to 40wt.%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属−空気2次電池に係り、特に高出力放電及
び高速充電が可能な金属−空気2次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a metal-air secondary battery, and particularly to a metal-air secondary battery capable of high-output discharge and high-speed charging.

[従来の技術及び先行技術] アルカリ水溶液中での酸素の電気化学的還元反応は、燃
料電池や金属−空気電池において極めて重要である。
[Prior Art and Prior Art] The electrochemical reduction reaction of oxygen in aqueous alkaline solutions is extremely important in fuel cells and metal-air cells.

本発明者らは、特に金属−空気電池用のガス拡散型酸素
電極、とりわけ酸素還元陰極としてカーボンを主体とし
たテフロン(ポリテトラフルオロエチレン)結着型ガス
拡散型酸素電極、即ちガス拡散型カーボン電極について
、種々検討を重ねてきた。
The present inventors have developed a gas diffusion type oxygen electrode for metal-air batteries, particularly a Teflon (polytetrafluoroethylene) bonded gas diffusion type oxygen electrode mainly composed of carbon as an oxygen reduction cathode, that is, a gas diffusion type oxygen electrode for use in metal-air batteries. Various studies have been conducted regarding electrodes.

第2図は一般的なガス拡散型カーボン電極を示す断面図
である。
FIG. 2 is a sectional view showing a general gas diffusion type carbon electrode.

図示の如く、ガス拡散電極(ガス拡散型カーボン電極)
10は、ガス拡散層12と反応層13との2層とされて
おり、ガス拡散層12は炭素及びテフロンよりなり、反
応層は炭素、テフロン及び酸化物触媒よりなる。このよ
うなガス拡散電極10にはNiメツシュ14等の導電線
がホットプレス等により埋設される。使用に際して、ガ
ス拡散層12は空気、酸素等のガス側に、反応層13は
KOH等のアルカリ水溶液側に設置される。
As shown, gas diffusion electrode (gas diffusion type carbon electrode)
10 has two layers: a gas diffusion layer 12 and a reaction layer 13. The gas diffusion layer 12 is made of carbon and Teflon, and the reaction layer is made of carbon, Teflon, and an oxide catalyst. A conductive wire such as a Ni mesh 14 is buried in such a gas diffusion electrode 10 by hot pressing or the like. In use, the gas diffusion layer 12 is placed on the side of a gas such as air or oxygen, and the reaction layer 13 is placed on the side of an alkaline aqueous solution such as KOH.

木発明者らは、先にこのようなガス拡散型カーボン電極
に用いられる酸化物触媒として、下記組成に代表される
ランタン系ペロブスカイト型酸化物触媒が有効であるこ
とを見出した(「日本化学会誌J1986年No、6第
751〜755頁)。
The inventors have previously discovered that lanthanum-based perovskite-type oxide catalysts represented by the composition below are effective as oxide catalysts used in such gas diffusion type carbon electrodes ("Journal of the Chemical Society of Japan"). J1986 No. 6, pp. 751-755).

L  a   oj S   r  o4 F   e
   as  M  11.4 0 3(M=Mn、 
 Co) そして、電流密度の向上、電極活性の向上、電位の安定
化などの電極性能、作動性能等のより一層の改善を目的
として、炭素及びポリテトラフルオロエチレンを含むガ
ス拡散層と、炭素、ポリテトラフルオロエチレン及び酸
化物触媒を含む反応層とを備えるガス拡散型酸素電極に
おいて、酸化物触媒として下記(I)又は(■りの組成
を有するペロブストカイト型酸化物触媒を用いたガス拡
散型酸素電極を提案し、本出願人より特許出願した(特
願昭63−155662号。以下「先願」という。)。
L a oj S r o4 F e
as M 11.4 0 3 (M=Mn,
Co) For the purpose of further improving electrode performance such as improving current density, improving electrode activity, and stabilizing potential, and operating performance, a gas diffusion layer containing carbon and polytetrafluoroethylene, carbon, In a gas diffusion type oxygen electrode comprising a reaction layer containing polytetrafluoroethylene and an oxide catalyst, gas diffusion using a perovstite type oxide catalyst having the following composition (I) or (■) as the oxide catalyst. proposed a type oxygen electrode, and filed a patent application with the present applicant (Japanese Patent Application No. 155662/1983 (hereinafter referred to as the "prior application")).

Lad−xCaxCoO3 (ただし、0.05≦x≦0.9) Lad−、Ca、  MnO3 (ただし、0.05≦y≦0.9) 上記先願によれば、金属−空気1次電池の酸素還元極(
陰極)として極めて優れた性能を有するガス拡散型酸素
電極が提供される。
Lad-xCaxCoO3 (however, 0.05≦x≦0.9) Lad-, Ca, MnO3 (however, 0.05≦y≦0.9) According to the above prior application, oxygen in a metal-air primary battery Reducing electrode (
A gas diffusion type oxygen electrode having extremely excellent performance as a cathode) is provided.

[発明が解決しようとする課題] ところで、金属−空気1次電池に対して、金属−空気2
次電池は、安価でエネルギー密度の高いことから、工業
的に極めて有用である。
[Problem to be solved by the invention] By the way, in contrast to the metal-air primary battery, the metal-air secondary battery
Secondary batteries are extremely useful industrially because they are inexpensive and have high energy density.

金属−空気電池を2次電池に応用する場合に、空気極を
そのまま充電用対極として共用する方法と空気極とは別
に、充電用対極として第3の電極を設ける方法がある。
When applying a metal-air battery to a secondary battery, there are two methods: using the air electrode as it is as a counter electrode for charging, and providing a third electrode as a counter electrode for charging in addition to the air electrode.

充電時には、電極上で酸素が発生し、電極が陽極酸化を
受は易いために、従来において、多くは後者の方法が取
り入れられていた。しかし、この方法は、電池構造の複
雑化に伴う、エネルギー密度の減少、操作の複雑化等の
問題がある。
Since oxygen is generated on the electrodes during charging and the electrodes are susceptible to anodic oxidation, the latter method has conventionally been adopted in most cases. However, this method has problems such as a decrease in energy density and a complicated operation due to the complexity of the battery structure.

このため、充電用対極として第3の電極を設けることな
く、空気極を充電用電極(酸素発生電極)として共用す
ることが可能な金属−空気2次電池の開発が望まれてい
る。しかして、このような高性能金属−空気2次電池の
実現には、酸素(空気)の電気化学的還元反応における
性能が高いだけでなく、陽極における充電時の酸素発生
に対しても高性能であるといった両機能を備えたガス拡
散電極の開発が必要とされる。
Therefore, it is desired to develop a metal-air secondary battery in which the air electrode can also be used as a charging electrode (oxygen generating electrode) without providing a third electrode as a charging counter electrode. In order to realize such a high-performance metal-air secondary battery, it is necessary not only to have high performance in the electrochemical reduction reaction of oxygen (air), but also to have high performance against oxygen generation during charging at the anode. There is a need to develop a gas diffusion electrode that has both functions.

本発明は上記従来の実情に鑑みてなされたものであり、
高出力放電及び高速充電が可能な金属−空気2次電池を
提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional situation,
An object of the present invention is to provide a metal-air secondary battery capable of high-output discharge and high-speed charging.

[課題を解決するための手段] 本発明の金属−空気2次電池は、空気電極として、炭素
及びポリテトラフルオロエチレンを含むガス拡散層と、
炭素、ポリテトラフルオロエチレン及び酸化物触媒を含
む反応層とを備えるガス拡散電極であって、酸化物触媒
として下記組成を有するペロブスカイト型・酸化物触媒
を用いたガス拡散電極を備えてなることを特徴とする。
[Means for Solving the Problems] The metal-air secondary battery of the present invention includes, as an air electrode, a gas diffusion layer containing carbon and polytetrafluoroethylene;
A gas diffusion electrode comprising a reaction layer containing carbon, polytetrafluoroethylene, and an oxide catalyst, the gas diffusion electrode comprising a perovskite-type oxide catalyst having the following composition as the oxide catalyst. Features.

Lad−X Ca、Coos (ただし、0.05≦x≦0.9) 即ち、本発明者らは、前記先願により提案されたガス拡
散型酸素電極のうち、Lad−CaxCo0z  (た
だし、0.05≦x≦0.9)を酸化物触媒として用い
たガス拡散電極は、酸素還元特性に優れ、従来の電極に
比べて高電流密度が得られる上に、酸素発生電極として
も著しく優れた特性を備え、高速充電が可能であること
を見出し、本発明を完成させた。
Lad-X Ca, Coos (however, 0.05≦x≦0.9) That is, the present inventors found that among the gas diffusion type oxygen electrodes proposed by the previous application, Lad-CaxCo0z (however, 0.05≦x≦0.9) A gas diffusion electrode using 05≦x≦0.9) as an oxide catalyst has excellent oxygen reduction properties and can obtain a higher current density than conventional electrodes, and also has remarkable properties as an oxygen generation electrode. The present invention was completed based on the discovery that high-speed charging is possible.

以下に本発明を図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の金属−空気2次電池の一実施例に係る
亜鉛−空気2次電池1の一部切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view of a zinc-air secondary battery 1 according to an embodiment of the metal-air secondary battery of the present invention.

第1図において、2はセルケース、3は金属極(例えば
、亜鉛板)、4はセパレーター 5は電解液(例えば、
30重量%KOH)、6はリード線、7は集電体(例え
ば、Niメツシュ)、10はガス拡散電極である。
In Fig. 1, 2 is a cell case, 3 is a metal electrode (for example, a zinc plate), 4 is a separator, and 5 is an electrolyte (for example,
30% by weight KOH), 6 is a lead wire, 7 is a current collector (for example, Ni mesh), and 10 is a gas diffusion electrode.

本発明の金属−空気2次電池は、空気電極として、第2
図に示すような反応層の酸化物触媒として、 L a 1−x  Ca 、  Co Os(ただし、
0.05≦x≦0.9) で示されるペロブスカイト型酸化物触媒を用いたガス拡
散電極10を用いること以外は、従来の金属−空気2次
電池と同様の構成を有する。
The metal-air secondary battery of the present invention uses a second air electrode as an air electrode.
As oxide catalysts in the reaction layer as shown in the figure, L a 1-x Ca, CoOs (however,
0.05≦x≦0.9) It has the same structure as a conventional metal-air secondary battery except for using the gas diffusion electrode 10 using a perovskite type oxide catalyst.

以下に、本発明で空気電極として採用されるガス拡散電
極10について説明する。
The gas diffusion electrode 10 employed as an air electrode in the present invention will be described below.

本発明に係るガス拡散電極10に用いられる上記酸化物
触媒のCa置換率は、得られる電池性能に影響を及ぼし
、 0.3≦x≦0.5 であることが好ましい。
The Ca substitution rate of the oxide catalyst used in the gas diffusion electrode 10 according to the present invention affects the resulting battery performance, and is preferably 0.3≦x≦0.5.

ガス拡散電極10の反応層13中の上記酸化物触媒の含
有量は、少な過ぎると十分な触媒効果が得られず、また
所定量を超えて用いてもそれに見合う電極抵抗の改善効
果が得られない上に、過度に多量の酸化物触媒を用いた
場合には電極内部の微細構造に変化が生じ、電極抵抗が
悪化する場合がある。このようなことから、酸化物触媒
の含有量は10〜60重量%、特に20〜30重量%の
範囲とするのが好ましい。
If the content of the oxide catalyst in the reaction layer 13 of the gas diffusion electrode 10 is too small, a sufficient catalytic effect cannot be obtained, and even if it is used in excess of a predetermined amount, a commensurate improvement in electrode resistance cannot be obtained. Moreover, if an excessively large amount of oxide catalyst is used, the fine structure inside the electrode may change, and the electrode resistance may deteriorate. For this reason, the content of the oxide catalyst is preferably in the range of 10 to 60% by weight, particularly 20 to 30% by weight.

反応層13及びガス拡散層12中のポリテトラフルオロ
エチレン(以下rPTFEJと略記する。・)の含有量
は、少な過ぎると電極の結着性が悪くなり、反対に多く
なると電極の抵抗が高くなったり、ガス拡散性が悪くな
る。従りて、PTFE含有量は10〜40重量%、特に
反応層13では20〜3Ofi量%、ガス拡散N12で
は18〜28重量%の範囲とするのが好ましい。
If the content of polytetrafluoroethylene (hereinafter abbreviated as rPTFEJ) in the reaction layer 13 and gas diffusion layer 12 is too small, the binding properties of the electrode will deteriorate, and on the other hand, if it is too large, the resistance of the electrode will increase. or gas diffusion becomes worse. Therefore, the PTFE content is preferably in the range of 10 to 40% by weight, particularly 20 to 3% by weight in the reaction layer 13, and 18 to 28% by weight in the gas diffusion N12.

本発明に係るガス拡散電極10は、ガス拡散層12とし
て炭素及びP T F E、反応層13として炭素、P
TFE及び酸化物触媒を混合した原料粉末を用い、これ
ら2層を例えばNLメツシュと共にホットプレスするな
どの方法により容易に作製することができる。
The gas diffusion electrode 10 according to the present invention includes carbon and P T F E as the gas diffusion layer 12 and carbon and P TFE as the reaction layer 13 .
These two layers can be easily produced by using a raw material powder containing a mixture of TFE and an oxide catalyst, for example, by hot pressing them together with an NL mesh.

なお、各層の原料粉末は、例えば次のようにして調製す
ることができる。
Note that the raw material powder for each layer can be prepared, for example, as follows.

■ ガス拡散層用原料粉末 ブタノール水溶液にカーボンブラックを添加して混合す
る。これにPTFEを分散させた後、濾過、乾燥して微
粉化する(ブタノール分散)。あるいは、混合系として
トライトン水溶液を用いて行なうこともできる。この場
合には、微粉化後、熱処理を施してトライトンを十分に
飛ばすことが必要である。
■ Add carbon black to the butanol aqueous solution of raw material powder for the gas diffusion layer and mix. After dispersing PTFE therein, it is filtered, dried and pulverized (butanol dispersion). Alternatively, a Triton aqueous solution can be used as a mixed system. In this case, after pulverization, it is necessary to perform heat treatment to sufficiently remove the Triton.

■ 反応層用原料粉末 カーボンと酸化物触媒をメノウ乳鉢で十分混合したもの
に、■の方法で得られたカーボンブラック−PTFE混
合粉末を加え、ブタノールを分散剤として液相混合、濾
過、乾燥した後、微粉化する。
■ The raw carbon powder for the reaction layer and the oxide catalyst were thoroughly mixed in an agate mortar, and the carbon black-PTFE mixed powder obtained by the method (■) was added, mixed in a liquid phase using butanol as a dispersant, filtered, and dried. After that, it is pulverized.

本発明に係るガス拡散電極10の厚さについては特に制
限はないが、その厚さは薄いほど電極抵抗が低くなるた
め性能が良くなる傾向にある。厚さがあまり薄くなり過
ぎるとガス漏れ、液漏れが発生するため性能が低下する
こととなる。従って、電極の反応層13、ガス拡散層1
2のそれぞれにおいて、ホットプレスに用いた原料粉末
の量が単位面積当り5〜15mg/crn’程度、特に
反応層13においては約10〜12mg/cゴ、ガス拡
散層12では約9〜Sing/cm’とするのが好まし
い。
There is no particular restriction on the thickness of the gas diffusion electrode 10 according to the present invention, but the thinner the electrode, the lower the electrode resistance and the better the performance tends to be. If the thickness becomes too thin, gas leakage and liquid leakage will occur, resulting in a decrease in performance. Therefore, the reaction layer 13 of the electrode, the gas diffusion layer 1
2, the amount of raw material powder used for hot pressing is about 5 to 15 mg/crn' per unit area, particularly about 10 to 12 mg/crn' in the reaction layer 13, and about 9 to Sing/crn' in the gas diffusion layer 12. It is preferable to set it as cm'.

このようなガス拡散電極10に用いられる酸化物触媒の
製造方法としては、特に制限はないが、後述の[実施例
]の項における製造例1で挙げる酢酸塩分解法(AD法
)又はアモルフ・アスクエン酸前駆体法(ACP法)に
より製造することができる。
There are no particular restrictions on the method for producing the oxide catalyst used in the gas diffusion electrode 10, but the method may be the acetate decomposition method (AD method) or the amorphous asquene method mentioned in Production Example 1 in the Examples section below. It can be produced by an acid precursor method (ACP method).

特に、本発明においては、ACP法により調製したペロ
ブスカイト型酸化物触媒を用いることにより、著しく優
れた電流密度の向上効果が得られる。これは、ACP法
で調製した触媒はその焼成温度がAD法よりも約200
℃低いため、表面積が大きくなっていることから、触媒
活性が高いためと考えられる。
In particular, in the present invention, by using a perovskite-type oxide catalyst prepared by the ACP method, a remarkable effect of improving current density can be obtained. This means that the calcination temperature of the catalyst prepared by the ACP method is approximately 200° higher than that of the AD method.
This is thought to be due to the high catalytic activity due to the large surface area due to the low temperature.

なお、本発明において、金属−空気2次電池の金属極3
としては、亜鉛、鉄等の金属板又は金属粉末を用いるこ
とができる。これらのうち、特に、亜鉛板又は亜鉛粉末
が一般的である。特に、亜鉛粉末を用いた場合には、よ
り高い電流を流せるという効果が奏され、極めて有利で
ある。
In addition, in the present invention, the metal electrode 3 of the metal-air secondary battery
As the material, a metal plate or metal powder such as zinc or iron can be used. Among these, zinc plates or zinc powder are particularly common. In particular, when zinc powder is used, it is extremely advantageous because it allows higher current to flow.

リード線6としては、Au線、Cu線、Afl線等を用
いることができるが、Au線を用いることにより、副反
応が起こり難くなり、高い放電容量を得ることができる
という効果が奏され、極めて有利である。
As the lead wire 6, an Au wire, a Cu wire, an Afl wire, etc. can be used, but by using an Au wire, side reactions are less likely to occur, and a high discharge capacity can be obtained. Extremely advantageous.

集電体7としては、Niメツシュ、カーボン紙、Auメ
ツシュ等を用いることができるが、特に、安価で高電流
密度が得られることがらNiメツシュが好適である。
As the current collector 7, Ni mesh, carbon paper, Au mesh, etc. can be used, but Ni mesh is particularly suitable because it is inexpensive and can provide a high current density.

電解液5としては、通常、30重量%のKOH水溶液が
用いられるが、その他NaOH水溶液、ZnCλ2水溶
液等を用いることもできる。
As the electrolytic solution 5, a 30% by weight KOH aqueous solution is usually used, but other NaOH aqueous solutions, ZnCλ2 aqueous solutions, etc. can also be used.

セパレーター4としては、ジュラガート(ポリプロピレ
ンフィルム)、シリコンファイバー濾紙等を用いること
ができる。
As the separator 4, Duragart (polypropylene film), silicone fiber filter paper, etc. can be used.

[作用] 1、al−XCaXCoo3 (ただし、0.05≦x≦0.9) なる組成を有するベロブストカイト型酸化物触媒は、酸
素の電気化学的還元用電極触媒として非常に有効である
上に、酸素発生に対しても極めて高活性である。このた
め、このベロブストカイト型酸化物触媒を用いたガス拡
散電極は、耐酸化性に優れ、酸素還元のみならず、酸素
発生用電極としても高い電流密度を得ることができる。
[Function] 1. The belobstite-type oxide catalyst having the composition al-XCaXCoo3 (0.05≦x≦0.9) is very effective as an electrode catalyst for electrochemical reduction of oxygen. Furthermore, it has extremely high activity against oxygen generation. Therefore, a gas diffusion electrode using this belobustokite type oxide catalyst has excellent oxidation resistance and can obtain a high current density not only as an oxygen reduction electrode but also as an oxygen generation electrode.

従って、このようなガス拡散電極を用いることにより、
高出力放電及び高速充電が可能な金属−空気2次電池が
提供される。
Therefore, by using such a gas diffusion electrode,
A metal-air secondary battery capable of high-output discharge and high-speed charging is provided.

[実施例] 以下に製造例及び実験例を挙げて本発明をより具体的に
説明する。
[Example] The present invention will be described in more detail below with reference to production examples and experimental examples.

製造例1:触媒の調製 酢酸塩分解(AD)法及びアモルファスクエン酸前駆体
(ACP)法により、ベロブストカイト型酸化物触媒L
 a ajCa 6.4 Co O3を調製した。
Production Example 1: Preparation of Catalyst Belobstite-type oxide catalyst L was prepared by acetate decomposition (AD) method and amorphous citric acid precursor (ACP) method.
a ajCa 6.4 Co O3 was prepared.

■ 酢酸塩分解(AD)法 所定のモル組成の金属酢酸塩を秤量しく調製した酸化物
の金属組成としては、仕込の組成をそのまま用いた。)
、蒸留水を加えてホットプレート上で加熱(約80℃)
し、完全に溶解させた後、混合水溶液とした。これを攪
拌しながら、濃縮、蒸発乾固させ、更に約350’eで
加熱して、酢酸塩を完全に分解させた。分解物は、メノ
ウ乳鉢で粉砕した後に、850℃で10時間焼成してベ
ロブストカイト型酸化物を得た。
(2) Acetate decomposition (AD) method Metal acetate having a predetermined molar composition was weighed and prepared. As the metal composition of the oxide, the composition used as it was was used as it was. )
, add distilled water and heat on a hot plate (approximately 80℃)
After completely dissolving the mixture, a mixed aqueous solution was prepared. This was concentrated and evaporated to dryness with stirring, and further heated at about 350'e to completely decompose the acetate. The decomposed product was crushed in an agate mortar and then calcined at 850° C. for 10 hours to obtain a belobustocite-type oxide.

■ アモルファスクエン酸前駆体(Acp)法所定モル
組成の金属硝酸塩とクエン酸を掻く少量の蒸留水にそれ
ぞれ別々に完全に溶解させ、これらの溶液を混合した後
、ロータリーエバポレーターに移し70℃で脱水した。
■ Amorphous citric acid precursor (Acp) method: Completely dissolve metal nitrate and citric acid of a given molar composition in a small amount of distilled water separately, mix these solutions, and then transfer to a rotary evaporator and dehydrate at 70°C. did.

大部分が脱水したら、真空乾燥器に移し80℃で、5時
間乾燥した。この乾燥した前駆体を少量ルツボに採取し
、約200’eで仮焼した。この後、メノウ乳鉢で粉砕
した後、650tで2時間焼成しベロブストカイト型酸
化物を得た。
Once most of the water had been dehydrated, it was transferred to a vacuum dryer and dried at 80°C for 5 hours. A small amount of this dried precursor was collected in a crucible and calcined at about 200'e. Thereafter, it was crushed in an agate mortar and then fired at 650 tons for 2 hours to obtain a belobustocite type oxide.

製造例2:ガス拡散層用原料粉末の製造界面活性剤(ト
ライトン)分散法及びブタノール分散法により、PTF
E含有率18重量%のガス拡散層用粉末を作製した。
Production Example 2: Production of raw material powder for gas diffusion layer By surfactant (Triton) dispersion method and butanol dispersion method, PTF
A powder for a gas diffusion layer with an E content of 18% by weight was produced.

■ 界面活性剤(トライトン)分散法 カーボンブラック、界面活性剤(トライトン)及び水を
1:1:30(重量比)の割合で混合し、これにPTF
Eディスバージョンを添加し、ミキサーで5分間攪拌し
た。この溶液を凍結、解凍した後に吸引濾過させ、10
0℃で12時間乾燥させた。これをミキサーで攪拌する
ことにより微粉化し、280℃で3時間空気中で熱処理
を行った(これは、トライトンを十分に飛ばすためであ
る。)。得られた粉末をミキサー又はミルによりもう一
度微粉化して、ガス拡散層用粉末を得た。
■ Surfactant (Triton) dispersion method Carbon black, surfactant (Triton) and water are mixed in a ratio of 1:1:30 (weight ratio), and PTF is added to this.
E-disversion was added and stirred with a mixer for 5 minutes. This solution was frozen, thawed, filtered with suction,
It was dried at 0°C for 12 hours. This was pulverized by stirring with a mixer, and heat treated in air at 280° C. for 3 hours (this was to sufficiently blow off Triton). The obtained powder was once again pulverized using a mixer or a mill to obtain a powder for a gas diffusion layer.

■ ブタノール分散法 カーボンブラック、ブタノール及び水を1:1:30(
重量比)の割合で混合し、これに、PTFEディスバー
ジョンを添加し、スターテで60分間攪拌した。この溶
液を吸引濾過させ、120℃で12時間乾燥させた。こ
れをミルで微粉化し、ガス拡散層用粉末を得た。
■ Butanol dispersion method Carbon black, butanol and water are mixed in a ratio of 1:1:30 (
PTFE dispersion was added thereto and stirred for 60 minutes using a starter. The solution was filtered with suction and dried at 120° C. for 12 hours. This was pulverized using a mill to obtain a powder for a gas diffusion layer.

製造例3:反応層用粉末の製造 カーボンと製造例1の■ACP法で得られた酸化物触媒
をメノウ乳鉢にて十分に混合粉砕し、これに上記製造例
2の■の方法により調製したガス拡散層用粉末(PTF
E処理カーボン)を混合し、分散媒としてブタノールを
加えて十分攪拌したのち、濾過、乾燥(120℃、12
時間)した後、ミルで微粉化して、PTFE含有率15
重量%、酸化物触媒含有率25重量%の反応層用粉末を
得た。
Production Example 3: Production of powder for reaction layer Carbon and the oxide catalyst obtained by the ACP method in Production Example 1 were thoroughly mixed and ground in an agate mortar, and the powder was prepared by the method in Production Example 2 above. Powder for gas diffusion layer (PTF
E-treated carbon) was mixed, butanol was added as a dispersion medium and stirred thoroughly, then filtered and dried (120°C, 12°C).
time), it is pulverized in a mill and the PTFE content is 15%.
A reaction layer powder having an oxide catalyst content of 25% by weight was obtained.

製造例4:ホットプレス法によるガス拡散電極の作製 第4図に示すホットプレス用金型30(第4図中の数値
の単位はmm)にアルミホイル(アセトンで脱脂)をの
せ、その上にNiメツシュを挟み込み、製造例2で得ら
れたガス拡散層粉末を30mg充填し、金型Bにより冷
間ブレス(16MPa)する0次に、その上に金型Cを
入れ、製造例3で得られた反応層粉末を25mg充填し
、金型Aを用いて、反応層粉末を指圧程度の圧力で押え
、金型A、Cを取り除き、さらに金型Bを使用して冷間
ブレス(16MPa)L/た。その後、電極表面にアル
ミホイルをのせたのち、約600℃に保った電気炉の中
に投入し、370℃まで昇温し、ホットプレス(64M
Pa : 1〜60秒)した。このあと、金型ごと水冷
し、第2図に示すようなガス拡散電極を得た。
Production example 4: Preparation of gas diffusion electrode by hot press method Place aluminum foil (degreased with acetone) on the hot press mold 30 shown in Fig. 4 (units of numerical values in Fig. 4 are mm), and place aluminum foil (degreased with acetone) on top of it. A Ni mesh was sandwiched, 30 mg of the gas diffusion layer powder obtained in Production Example 2 was filled, and the powder was cold pressed (16 MPa) using mold B.Next, mold C was placed on top of the powder obtained in Production Example 3. Fill 25 mg of the reaction layer powder, press the reaction layer powder with finger pressure using mold A, remove molds A and C, and cold press (16 MPa) using mold B. L/ta. After that, aluminum foil was placed on the electrode surface, and the electrode was placed in an electric furnace kept at about 600℃, heated to 370℃, and hot pressed (64M
Pa: 1 to 60 seconds). Thereafter, the mold was cooled with water to obtain a gas diffusion electrode as shown in FIG.

なお、用いた金型ANCの寸法は次の通りである。The dimensions of the mold ANC used are as follows.

金型A:15mrnφX10mmt 金型B:20mmφX7mmt 金型C:20mmφ(15mmφ)x7mmt得られた
ガス拡散電極10は、第2図に示す如く、Niメツシュ
14を備えるガス拡散層12及び反応層13の2層構造
を有し、ガス拡散層12の厚さは0.2mm、反応層1
3の厚さは0.2mm、全厚さtは0.4mm、長さ1
は15mmである。
Mold A: 15 mrnφ x 10 mmt Mold B: 20 mmφ x 7 mmt Mold C: 20 mmφ (15 mmφ) x 7 mmt As shown in FIG. The gas diffusion layer 12 has a thickness of 0.2 mm, and the reaction layer 1 has a layered structure.
The thickness of 3 is 0.2 mm, the total thickness t is 0.4 mm, and the length 1
is 15 mm.

製造例5:金属−空気2次電池の作製 製造例4で得られたガス拡散電極を陽極として用いて、
第1図に示す亜鉛−空気電池(電池D)を作製した。陰
極活物質である金属極3には亜鉛板、電解液5には30
重量%KO)I、集電体7にはNiメツシュ、リード線
6としてはCu線、セパレーター4としてはシリコンフ
ァイバー濾紙を用いた。
Production Example 5: Preparation of metal-air secondary battery Using the gas diffusion electrode obtained in Production Example 4 as an anode,
A zinc-air battery (Battery D) shown in FIG. 1 was manufactured. A zinc plate is used for the metal electrode 3, which is the cathode active material, and a 30% zinc plate is used for the electrolyte 5.
Weight% KO)I, Ni mesh was used as the current collector 7, Cu wire was used as the lead wire 6, and silicon fiber filter paper was used as the separator 4.

また、陰極活物質、集電体、リード線として、後掲の第
1表に示すものを用いて、同様に電池ANCを作製した
In addition, a battery ANC was similarly produced using the cathode active material, current collector, and lead wire shown in Table 1 below.

製造例6:ガス拡散電極ユニットの作製製造例4で得ら
れた電極を、第3図に示すようにセットして、ガス拡散
電極ユニットを作製した。第3図中、20はガス拡散電
極、21.22はテフロン製のホルダ、23.24は0
リング、25は銅線である。
Production Example 6: Production of Gas Diffusion Electrode Unit The electrodes obtained in Production Example 4 were set as shown in FIG. 3 to produce a gas diffusion electrode unit. In Figure 3, 20 is a gas diffusion electrode, 21.22 is a Teflon holder, and 23.24 is 0
The ring 25 is a copper wire.

実験例1:亜鉛−空気2次電池の放電特性製造例5で得
られた電池りについて、放電特性とその時の電力を調べ
、結果を第S図に示した。
Experimental Example 1: Discharge characteristics of zinc-air secondary battery Regarding the battery obtained in Production Example 5, the discharge characteristics and the electric power at that time were investigated, and the results are shown in Figure S.

なお、以下の実験例において、ガス拡散電極の酸素還元
及び酸素発生試験は、25℃、30重量%KOH溶液中
で、裏面から酸素、空気又はヘリウムガスを流しながら
、ボテンシ日スタットにより行ない、亜鉛−空気電池の
充放電試験は、大気中、室温(15〜b た。
In the following experimental examples, the oxygen reduction and oxygen generation tests of the gas diffusion electrode were performed using a potency diode in a 30% by weight KOH solution at 25°C while flowing oxygen, air, or helium gas from the back side. - The charge/discharge test of the air battery was carried out in the atmosphere at room temperature (15 to 15°C).

第5図より、この亜鉛−空気電池りによれば、電池起電
力1.OV時に約200mA/crrl’もの高電流密
度が得られることが明らかである。この時の電池出力は
、約260mW/crr?であり、従来の電池に比べ、
約5〜15倍の非常に高性能なものである。
From FIG. 5, according to this zinc-air battery, the battery electromotive force is 1. It is clear that current densities as high as about 200 mA/crrl' can be obtained during OV. The battery output at this time is approximately 260mW/crr? , compared to conventional batteries,
The performance is approximately 5 to 15 times higher.

実験例2:各種電池の放電特性 実験例1の結果からも明らかなように、亜鉛板を用いて
高性能電池が得られたが、陽極活物質には亜鉛板よりも
亜鉛粉末を用いる方が高電流を流せるという利点がある
。そこで、製造例5において、亜鉛粉末を用いて作製し
た3つのタイプの電池A、B、Cについて、電池性能を
調べ、亜鉛板を用いた電池りのものと共に第1表に示し
た。
Experimental Example 2: Discharge characteristics of various batteries As is clear from the results of Experimental Example 1, a high-performance battery was obtained using a zinc plate, but it is better to use zinc powder as the anode active material than a zinc plate. It has the advantage of being able to flow high current. Therefore, in Production Example 5, the battery performance of three types of batteries A, B, and C produced using zinc powder was investigated, and the results are shown in Table 1 along with batteries using zinc plates.

第1表より、いずれの場合も、亜鉛粉末を用いると亜鉛
板よりも電流密度が小さくなることがわかる。これは、
粉末系の方は、亜鉛板に比べ集電効果が劣っているため
と思われる。しかし、亜鉛粉末を用いた電池は高電流(
約800mA/c rri’ )が流せるが、亜鉛板で
は300mA/cnfで頭打ちになる。また、リード線
としてAuを用いると放電容量が大きくなることがわか
った。これは、副反応が起こりにくくなるためと思われ
る。また、集電体としてはNiメツシュを用いる方が、
カーボンベーパーよりも電流密度がよく、集電体として
通していることがわかる。亜鉛粉末系では、亜鉛板に比
べて端子電圧はやや低くなるが、Niメツシュ集電体と
Auリード線を用いることにより、放電容量699 m
W −A/g(亜鉛利用率83.3%:放電電流密度1
2mA/ c rn” )ものロングライフ電池が得ら
れることがわかった。
From Table 1, it can be seen that in all cases, when zinc powder is used, the current density is smaller than when a zinc plate is used. this is,
This seems to be because the powder type has a poorer current collecting effect than the zinc plate. However, batteries using zinc powder have high current (
Approximately 800 mA/cnf can flow, but the zinc plate reaches a ceiling at 300 mA/cnf. It was also found that the discharge capacity increases when Au is used as the lead wire. This seems to be because side reactions are less likely to occur. Also, it is better to use Ni mesh as the current collector.
It can be seen that the current density is higher than that of carbon vapor, and it can be passed as a current collector. With the zinc powder system, the terminal voltage is slightly lower than that with the zinc plate, but by using the Ni mesh current collector and Au lead wire, the discharge capacity can be increased to 699 m.
W -A/g (zinc utilization rate 83.3%: discharge current density 1
It was found that a long-life battery of as much as 2 mA/c rn'' could be obtained.

第  1 表 ※ セル電圧1.0■ 実験例3ニガス拡散電極のカソード特性製造例6で得ら
れた、電極触媒としてL a asCa 11.4 C
OO3を用い、空気流通下における最適条件下で作製し
たガス拡散電極ユニット(反応層;テフロン15重量%
、ガス拡散層:テフロン18重量%)を用いて、そのカ
ソード特性を調べ、結果を亜鉛のアノード特性と共に第
6図に示した。
Table 1 * Cell voltage 1.0 ■ Experimental Example 3 Cathode characteristics of nitrogen gas diffusion electrode L a asCa 11.4 C as an electrode catalyst obtained in Production Example 6
A gas diffusion electrode unit (reaction layer; Teflon 15% by weight) manufactured using OO3 under optimal conditions under air circulation.
, gas diffusion layer: Teflon (18% by weight)), the cathode characteristics were investigated, and the results are shown in FIG. 6 together with the anode characteristics of zinc.

第6図より、通常、分極が小さいと言われている亜鉛極
に対しても本発明に係る空気極の特性は遜色がなく、亜
鉛−空気電池として、十分な性能を持つことが明らかで
ある。
From FIG. 6, it is clear that the characteristics of the air electrode according to the present invention are comparable to those of zinc electrodes, which are usually said to have low polarization, and that they have sufficient performance as a zinc-air battery. .

実験例4:ガス拡散電極の酸素発生特性製造例6で得ら
れた、ACP法で作製したL a as Ca 6.4
 Co Osを用いたガス拡散電極ユニットを用いて、
その酸素発生特性を調べ、結果を第7図に示した。
Experimental Example 4: Oxygen generation characteristics of gas diffusion electrode L a as Ca 6.4 produced by ACP method obtained in Production Example 6
Using a gas diffusion electrode unit using CoOs,
The oxygen generation characteristics were investigated and the results are shown in FIG.

第7図より、0.70V(対極Hg/Hg0)の時に約
10100O/crn’もの高電流密度が得られており
、このガス拡散電極は、従来のものに比較して非常に高
性能であることが明らかである。しかも、高電流下にお
いても使用できるため、高速充電が可能であることが推
測される。
From Figure 7, a high current density of about 10100 O/crn' is obtained at 0.70 V (counter electrode Hg/Hg0), and this gas diffusion electrode has extremely high performance compared to conventional ones. That is clear. Moreover, since it can be used even under high current conditions, it is presumed that high-speed charging is possible.

実験例5:ガス拡散電極の酸素還元酸素発生のサイクル
試験 従来の酸素還元、酸素発生のいわゆる「2元機能」を持
った電極は、比較的電流密度が低いところで用いられて
いた。しかし、実験例4に示す如く、本発明に係るガス
拡散電極は、酸素還元においても高電流密度が得られる
だけでなく、酸素発生用電極として用いても比較的高電
流が得られた。そこで、一定電流(200m A / 
c m’ )のもとで1時間ごとに、酸素還元及び酸素
発生を繰り返すサイクル試験を行った。電解液としては
30重量%KOH,参照極(対極)としてはHg/Hg
 Oを用い、25℃において測定した。
Experimental Example 5: Oxygen Reduction Oxygen Generation Cycle Test of Gas Diffusion Electrode Conventional electrodes with so-called "dual functions" of oxygen reduction and oxygen generation have been used where the current density is relatively low. However, as shown in Experimental Example 4, the gas diffusion electrode according to the present invention not only obtained a high current density in oxygen reduction, but also obtained a relatively high current when used as an oxygen generation electrode. Therefore, a constant current (200mA/
A cycle test was carried out in which oxygen reduction and oxygen generation were repeated every hour under the following conditions: cm'). 30 wt% KOH as electrolyte, Hg/Hg as reference electrode (counter electrode)
Measurements were made using O at 25°C.

60サイクルまでの結果を第8図に示す。The results up to 60 cycles are shown in FIG.

第8図より明らかなように、1サイクル目の酸素還元に
おいて、時間の経過と共に酸素還元電位が責になってお
り、電極性能が向上している。また、1サイクル目の酸
素発生においても時間の経通と共に酸素発生電位が卑に
なっており、酸素発生に、おいても電極性能が向上した
。1回目の酸素還元反応後の酸素発生時の電極電位は、
第7図における電位よりも約0.35Vも卑になってお
り電極性能がかなり良くなる。また、この傾向はいずれ
のサイクル反応後においても見られた。約15サイクル
までは酸素還元及び酸素発生の両反応に対する電極性能
はやや低下したが、その後は試験を行なった60サイク
ル目までは安定に作動した。
As is clear from FIG. 8, in the oxygen reduction in the first cycle, the oxygen reduction potential becomes more responsible as time passes, and the electrode performance improves. In addition, even in the first cycle of oxygen generation, the oxygen generation potential became less noble as time progressed, and the electrode performance improved in oxygen generation as well. The electrode potential at the time of oxygen generation after the first oxygen reduction reaction is:
The potential is less noble by about 0.35 V than the potential in FIG. 7, and the electrode performance is considerably improved. Moreover, this tendency was observed after any cycle reaction. The electrode performance for both oxygen reduction and oxygen generation reactions decreased slightly up to about 15 cycles, but after that it operated stably until the 60th cycle when the test was conducted.

従って、La@、aca・、嘔Coosを用いることに
より、高い酸素還元活性及び酸素発生活性、耐酸化性に
優れたガス拡散電極を作製でき、高出力放電及び高速充
電ができる金属−空気2次電池を得ることができること
が明らかである。
Therefore, by using La@, aca, and Coos, a gas diffusion electrode with high oxygen reduction activity, oxygen generation activity, and excellent oxidation resistance can be produced, and a metal-air secondary electrode capable of high-output discharge and high-speed charging can be fabricated. It is clear that batteries can be obtained.

実験例6:亜鉛−空気2次電池の充放電特性製造例5で
作製した電池Cの金属−空気2次電池(亜鉛粉未使用、
集電体:Niメツシュ、リード線=Au線)を用いて、
その放電特性を調べ、結果を第9図に示した。第9図よ
り明らかなように、電流密度100mA/err?にお
いても約1、Ovの電圧が得られ、300 m A /
 c rdにおける電力は200mW−h/Crr?に
達した。
Experimental Example 6: Charge/discharge characteristics of zinc-air secondary battery Metal-air secondary battery of battery C prepared in Production Example 5 (no zinc powder used,
Using current collector: Ni mesh, lead wire = Au wire),
The discharge characteristics were investigated and the results are shown in FIG. As is clear from Figure 9, the current density is 100mA/err? A voltage of approximately 1.0V was obtained at 300 mA/
The power at crd is 200mW-h/Crr? reached.

また、この電池を用い、まず30Ωの抵抗を用いて5時
間定負荷放電(35〜40mA)を全電池容量の約’6
0%までとさせた時の電圧の経時変化を第10図に示す
。第10図より明らかなように、約1.2vの電圧が安
定に得られた。その後、40mAで5時間定電流充電す
るという充放電サイクル試験を行ない、結果を第11図
(a)〜(d)に示した。第11図より明らかなように
、可逆的に放電、充電を繰り返すことが可能であり、2
次電池として作動していることがわかる。
In addition, using this battery, first constant load discharge (35 to 40mA) for 5 hours using a 30Ω resistor was performed to approximately 6'6 of the total battery capacity.
FIG. 10 shows the change in voltage over time when the voltage is reduced to 0%. As is clear from FIG. 10, a voltage of approximately 1.2 V was stably obtained. Thereafter, a charge/discharge cycle test was conducted in which constant current charging was performed at 40 mA for 5 hours, and the results are shown in FIGS. 11(a) to (d). As is clear from Figure 11, it is possible to repeat reversibly discharging and charging, and 2
It can be seen that it is operating as a secondary battery.

[発明の効果] 以上詳述した通り、本発明の金属−空気2次電池によれ
ば、充電用電極(酸素発生電極)として第3の電極を設
ける必要のない、金属−空気2次電池であって、高出力
放電及び高速充電が可能な高特性金属−空気2次電池が
提供される。
[Effects of the Invention] As detailed above, according to the metal-air secondary battery of the present invention, the metal-air secondary battery does not require a third electrode as a charging electrode (oxygen generating electrode). Therefore, a high-performance metal-air secondary battery capable of high-output discharge and high-speed charging is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の金属−空気2次電池の一実施例に係る
亜鉛−空気2次電池を示す一部切欠き斜視図、第2図は
ガス拡散電極の断面図、第3図は製造例6で作製したガ
ス拡散電極ユニットの断面図、第4図は製造例4で用い
た金型を示す正面図、第5図は実験例1の結果を示すグ
ラフ、第6図は実験例3の結果を示すグラフ、第7図は
実験例4の結果を示すグラフ、第8図は実験例5の結果
を示すグラフ、第9図、第10図は実験例6で得られた
放電特性試験の結果を示すグラフ、第11図は実験例6
で得られた充放電特性試験の結果を示すグラフである。 1・・・亜鉛−空気2次電池、2・・・セルケース、3
・・・金属極(亜鉛板)、 4・・・セパレーター5・
・・電解液、       6・・・リード線、10・
・・ガス拡散電極、   12・・・ガス拡散層、13
・・・反応層。 第1図 第2図 代理人  弁理士  重 野  剛 第5図 電流密度(mA/cm2) 第6図 電流密度(A/cm) 第7図 電流密度(A/crr12) 第9図 電流密度(mA/am2) 第10図 第11図(b) 時間(分) 時間(分) 手続補正書 平成1年5月15日 平成1年特許願第79846号 発明の名称 金属−空気2次電池 補正をする者 事件との関係  特許出願人
Fig. 1 is a partially cutaway perspective view showing a zinc-air secondary battery according to an embodiment of the metal-air secondary battery of the present invention, Fig. 2 is a cross-sectional view of a gas diffusion electrode, and Fig. 3 is a manufactured one. A cross-sectional view of the gas diffusion electrode unit manufactured in Example 6, Figure 4 is a front view showing the mold used in Manufacturing Example 4, Figure 5 is a graph showing the results of Experimental Example 1, and Figure 6 is Experimental Example 3. Figure 7 is a graph showing the results of Experimental Example 4, Figure 8 is a graph showing the results of Experimental Example 5, Figures 9 and 10 are discharge characteristic tests obtained in Experimental Example 6. A graph showing the results of , Figure 11 is Experimental Example 6.
2 is a graph showing the results of a charge-discharge characteristic test obtained in FIG. 1... Zinc-air secondary battery, 2... Cell case, 3
...Metal electrode (zinc plate), 4...Separator 5.
... Electrolyte, 6... Lead wire, 10.
...Gas diffusion electrode, 12...Gas diffusion layer, 13
...Reaction layer. Figure 1 Figure 2 Agent Patent Attorney Tsuyoshi Shigeno Figure 5 Current density (mA/cm2) Figure 6 Current density (A/cm) Figure 7 Current density (A/crr12) Figure 9 Current density (mA /am2) Figure 10 Figure 11 (b) Time (minutes) Time (minutes) Procedural amendment May 15, 1999 Patent application No. 79846, 1999 Name of the invention Metal-air secondary battery Make an amendment Relationship with patent case Patent applicant

Claims (1)

【特許請求の範囲】[Claims] (1)空気電極として、炭素及びポリテトラフルオロエ
チレンを含むガス拡散層と、炭素、ポリテトラフルオロ
エチレン及び酸化物触媒を含む反応層とを備えるガス拡
散電極であって、酸化物触媒として下記組成を有するペ
ロブスカイト型酸化物触媒を用いたガス拡散電極を備え
てなることを特徴とする金属−空気2次電池。 La_1_−_xCa_xCoO_3 (ただし、0.05≦x≦0.9)
(1) A gas diffusion electrode comprising, as an air electrode, a gas diffusion layer containing carbon and polytetrafluoroethylene and a reaction layer containing carbon, polytetrafluoroethylene and an oxide catalyst, the oxide catalyst having the following composition: 1. A metal-air secondary battery comprising a gas diffusion electrode using a perovskite oxide catalyst. La_1_−_xCa_xCoO_3 (however, 0.05≦x≦0.9)
JP1079846A 1989-03-30 1989-03-30 Metal-air secondary cell Granted JPH02257577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1079846A JPH02257577A (en) 1989-03-30 1989-03-30 Metal-air secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1079846A JPH02257577A (en) 1989-03-30 1989-03-30 Metal-air secondary cell

Publications (2)

Publication Number Publication Date
JPH02257577A true JPH02257577A (en) 1990-10-18
JPH0587950B2 JPH0587950B2 (en) 1993-12-20

Family

ID=13701566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079846A Granted JPH02257577A (en) 1989-03-30 1989-03-30 Metal-air secondary cell

Country Status (1)

Country Link
JP (1) JPH02257577A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7566388B2 (en) 2002-12-17 2009-07-28 Asahi Kasei Chemicals Corporation Electrode catalyst for oxygen reduction and gas diffusion electrode
JP2011014478A (en) * 2009-07-06 2011-01-20 Nippon Telegr & Teleph Corp <Ntt> Lithium air battery
JP2011108512A (en) * 2009-11-18 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> Lithium air secondary battery and manufacturing method for the same
JP2015046403A (en) * 2014-10-24 2015-03-12 トヨタ自動車株式会社 Air electrode for air batteries, and air battery
WO2015115592A1 (en) * 2014-01-31 2015-08-06 国立大学法人北海道大学 Catalyst for air electrode for metal/air secondary battery, and air electrode
US9236641B2 (en) 2009-03-18 2016-01-12 Showa Denko K.K. Air battery catalyst and air battery using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080083112A (en) * 2005-12-06 2008-09-16 리볼트 테크놀로지 리미티드 Bifunctional air electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7566388B2 (en) 2002-12-17 2009-07-28 Asahi Kasei Chemicals Corporation Electrode catalyst for oxygen reduction and gas diffusion electrode
US9236641B2 (en) 2009-03-18 2016-01-12 Showa Denko K.K. Air battery catalyst and air battery using the same
JP2011014478A (en) * 2009-07-06 2011-01-20 Nippon Telegr & Teleph Corp <Ntt> Lithium air battery
JP2011108512A (en) * 2009-11-18 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> Lithium air secondary battery and manufacturing method for the same
WO2015115592A1 (en) * 2014-01-31 2015-08-06 国立大学法人北海道大学 Catalyst for air electrode for metal/air secondary battery, and air electrode
JPWO2015115592A1 (en) * 2014-01-31 2017-03-23 国立大学法人北海道大学 Zinc-air secondary battery air electrode catalyst, Brown mirror light type transition metal oxide as zinc-air secondary battery air electrode catalyst, zinc-air secondary battery air electrode, zinc-air secondary Secondary battery, electrode catalyst for electrolysis, electrode for electrolysis and electrolysis method
US10693145B2 (en) 2014-01-31 2020-06-23 National University Corporation Hokkaid University Catalyst for air electrode for metal-air secondary battery and air electrode
JP2015046403A (en) * 2014-10-24 2015-03-12 トヨタ自動車株式会社 Air electrode for air batteries, and air battery

Also Published As

Publication number Publication date
JPH0587950B2 (en) 1993-12-20

Similar Documents

Publication Publication Date Title
KR101795845B1 (en) Positive electrode active material for sodium batteries and method for producing same
JP4161382B2 (en) Process for producing two-layer structured particulate composition
JP4568124B2 (en) Air electrode and air secondary battery using the air electrode
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
Shen et al. Co 3 O 4 nanorods–graphene composites as catalysts for rechargeable zinc-air battery
Vanags et al. Membrane-less amphoteric decoupled water electrolysis using WO 3 and Ni (OH) 2 auxiliary electrodes
JPH02257577A (en) Metal-air secondary cell
KR101586403B1 (en) Cathode Catalyst for Metal-Air Battery, Method of Manufacturing the Same, and Metal-Air Battery Comprising the Same
US3808052A (en) Organic electrolyte cell employing molybdenum oxide cathodic electrode
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
Wang et al. Effects of Ca doping on the electrochemical properties of LiNi0. 8Co0. 2O2 cathode material
JP4441678B2 (en) Method for producing orthorhombic lithium manganese composite oxide particulate composition represented by LiMnO 2
US3791896A (en) Bi-functional gas electrode
Mohamad et al. Mechanically alloyed Mg2Ni for metal-hydride–air secondary battery
JPH02288159A (en) Ceramic electrode and fuel cell having same
JP6310413B2 (en) Lithium air secondary battery, method for producing catalyst for air electrode, and method for producing lithium air secondary battery
JPWO2019093441A1 (en) Amorphous transition metal oxides and their uses
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP6688210B2 (en) Separator and lithium-air secondary battery
JPH10255832A (en) Composite air electrode material for solid fuel cell for low temperature operation
KR20160038833A (en) Electrolyte membrane, fuel cell comprising the same, battery module comprising the fuel cell and method for manufacturing the electrolyte membrane
JPH04192261A (en) Fuel electrode and its manufacture for solid electrolyte type fuel cell
JP3451602B2 (en) Non-aqueous electrolyte battery
JP7327798B2 (en) Cathode catalyst for metal-air battery, positive electrode for metal-air battery and metal-air battery
WO2022190322A1 (en) Positive electrode catalyst for metal-air battery, positive electrode for metal-air battery, and metal-air battery