JPH02257570A - Manufacture of electrode for fuel cell - Google Patents

Manufacture of electrode for fuel cell

Info

Publication number
JPH02257570A
JPH02257570A JP1080328A JP8032889A JPH02257570A JP H02257570 A JPH02257570 A JP H02257570A JP 1080328 A JP1080328 A JP 1080328A JP 8032889 A JP8032889 A JP 8032889A JP H02257570 A JPH02257570 A JP H02257570A
Authority
JP
Japan
Prior art keywords
alloy powder
electrode
sheet
fuel cell
tape casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1080328A
Other languages
Japanese (ja)
Inventor
Noboru Taniguchi
昇 谷口
Kazuhito Hado
一仁 羽藤
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1080328A priority Critical patent/JPH02257570A/en
Publication of JPH02257570A publication Critical patent/JPH02257570A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To efficiently and inexpensively manufacture an electrode for a fuel cell efficiently performing impregnation of salt and gas diffusion by making alloy powder having different grain diameters integral and multilayered by a tape casing method. CONSTITUTION:Alloy powder is made a slurry, this is made sheet-like by a tape casting method, while alloy powder having different grain diameters from the aforesaid alloy powders is similarly made sheet-shaped, at least more than two layers of sheet-shaped layers are piled up for being integrated. In this way, variety is made to be produced in a microconstruction on the electrolyte side and on the gas supply side. Alloy powder desirably contains at least Ni while the grain diameter of alloy powder shall include at least one kind of about 1mum, 2 to 3mum, about 10mum, 20 to 30mum, 50 to 80mum, about 100mum, 150 to 200mum, 200 to 350mum. Further, the thickness of the sheet layer obtained by a single tape casting method shall be 0.01 to 3.0mm.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃料電池用電極の製造法、特に溶融炭酸塩型
燃料電池の燃料極の製造法に主として利用される製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing electrodes for fuel cells, particularly to a method mainly used for manufacturing fuel electrodes for molten carbonate fuel cells.

従来の技術 従来の燃料電池の電極は、合金粉末をプレス成形して、
その後800℃〜1200℃の高温で焼結させることで
得ていた。最近では、工程の簡略化、コストダウン、あ
るいは高品質化を自損した抄紙法ならびにテープキャス
ティング法が、プレス成形法にとって代わり一般的にな
ってきている。
Conventional technology Conventional fuel cell electrodes are made by press-molding alloy powder.
After that, it was obtained by sintering at a high temperature of 800°C to 1200°C. Recently, paper making methods and tape casting methods, which simplify processes, reduce costs, and improve quality, have become commonplace in place of press molding methods.

さらには、テープキャスティング法などで得られたテー
プ状電極を、高温焼結させないで、電池にそのまま組み
込み、電池のたち上げと共に焼結させる方法も検討され
ている。また、ドクターブレード法などにより電解質と
電極を一体化製造し、製造プロセスの効率化を図る動き
もある。
Furthermore, a method is also being considered in which a tape-shaped electrode obtained by a tape casting method or the like is directly incorporated into a battery without being sintered at a high temperature, and then sintered when the battery is assembled. There is also a movement to make the manufacturing process more efficient by manufacturing the electrolyte and electrode in an integrated manner using methods such as the doctor blade method.

しかしながら、このようにして得られた電極の性能は、
十分とはいえず、現在材料面そして製法面の両面から性
能向上を図るアプローチがなされている。  燃料極材
料として、従来Nlを主体に各種添加剤が加えられたも
の、例えば旧−Or、旧−AIなどが用いられてきたが
、最近では、水素吸蔵合金、あるいは水素に活性な合金
を用いることが試みられている。これは主に性能向上化
よりむしろ長寿命化をねらって、電極の過焼結防止を意
図したものである。また製法面では、金属粒子にセラミ
ックスをコーティング、あるいはセラミックスに金属を
コーティングすることにより過焼結防止を試みている。
However, the performance of the electrode obtained in this way is
This cannot be said to be sufficient, and approaches are currently being taken to improve performance from both the material and manufacturing aspects. Conventionally, Nl-based materials with various additives added, such as old-Or and old-AI, have been used as fuel electrode materials, but recently hydrogen-absorbing alloys or hydrogen-active alloys have been used. That is what is being attempted. This is mainly intended to prevent over-sintering of the electrode, with the aim of extending the service life rather than improving performance. In terms of manufacturing methods, attempts have been made to prevent oversintering by coating metal particles with ceramics or coating ceramics with metal.

発明が解決しようとする課題 電極のうちでも特に燃料極においては、多数の発明がな
されているにもかかわらず、性能向上化については、い
ま一つ改善されていない。従来の電極作製法では、電解
質に接する側とガスが供給される側の微細構造を制御す
ることが困難であり、電極の両側の微細構造はほぼ等し
かった。そのため電極中含浸する塩と、拡散するガスと
の反応点、いわゆる三相帯領域が制約され、電池におい
て大電流を負荷することは困難であった。例えば、細孔
径の大きな電極では、ガスはスムーズに拡散するが、塩
の含浸は起こりにくい。逆に、細孔径の小さなものでは
、塩の含浸は進むがガスは拡散しにくい。
Problems to be Solved by the Invention Among the electrodes, particularly in the fuel electrode, although many inventions have been made, no improvements have been made in terms of performance improvement. In conventional electrode manufacturing methods, it is difficult to control the microstructure on the side in contact with the electrolyte and the side to which gas is supplied, and the microstructures on both sides of the electrode are almost equal. Therefore, the reaction points between the salt impregnated in the electrode and the diffusing gas, the so-called three-phase band region, are restricted, making it difficult to load a large current in the battery. For example, an electrode with a large pore size allows gas to diffuse smoothly, but salt impregnation is less likely to occur. Conversely, if the pore size is small, salt impregnation progresses, but gas does not diffuse easily.

本発明は、上記課題に鑑み、塩の含浸とガスの拡散を効
率よく行う燃料電池用電極を製造するに際し、効率的か
つ低コストでこれを実現するものである。
In view of the above-mentioned problems, the present invention is intended to achieve this efficiently and at low cost when manufacturing a fuel cell electrode that efficiently impregnates salt and diffuses gas.

課題を解決するための手段 本発明は、上記課題を解決するため、合金粉末をバイン
ダーおよび溶媒と共にスラリー化し、これをテープキャ
スティング法によってシート状にした上に、先の合金粉
末と粒径を異にする合金粉末を前記と同様にしてシート
状にし、少なくとも2層以上のシート層を重ね合わせ一
体化することを特徴とするものである。そしてこれによ
り電解質側とガス供給側の微細構造に変化をもたせ、よ
り効率的かつ低コストな燃料電池用電極の製造法を提案
するものである。本発明において、合金粉末に少なくと
もNiを含むことが望まれ、又合金粉末の粒径が、約1
μm12〜3μm1 約10μm120〜30μm15
0〜80μm1約1ooμm1150um 〜200μ
m1200μm 〜350μmのうち少なくとも一種含
まれていることが好適である。さらに好ましくは、一度
のテープキャスティング法により得たシート層の厚さが
、0.01mm〜3.0mmであることを特徴する。
Means for Solving the Problems In order to solve the above problems, the present invention slurries an alloy powder together with a binder and a solvent, forms it into a sheet by tape casting, and then forms a sheet with a different particle size from the previous alloy powder. The present invention is characterized in that the alloy powder is formed into a sheet in the same manner as described above, and at least two or more sheet layers are stacked and integrated. Through this, the microstructures on the electrolyte side and the gas supply side are changed, thereby proposing a more efficient and low-cost manufacturing method for fuel cell electrodes. In the present invention, it is desirable that the alloy powder contains at least Ni, and the particle size of the alloy powder is about 1
μm12~3μm1 Approximately 10μm120~30μm15
0~80μm1 about 1ooμm1150um~200μ
It is preferable that at least one of m1200 μm to 350 μm is included. More preferably, the thickness of the sheet layer obtained by one tape casting method is 0.01 mm to 3.0 mm.

作   用 粒度の異なった合金粉末多周電極を、テープキャスティ
ング法を用いた一体化製造法により作製することは、高
性能な電極を大量かつ安価に製造でき、燃料電池組立の
際の効率化、低コスト化に寄与する。
Fabricating multicircular electrodes of alloy powders with different working particle sizes by an integrated manufacturing method using tape casting allows high-performance electrodes to be manufactured in large quantities at low cost, and improves efficiency during fuel cell assembly. Contributes to cost reduction.

実施例 本発明の詳細な説明する。先ず本発明方法により得られ
た燃料電池用電極を第1図に示す。小さなボアを持つ1
多孔質の第1テープ層1はテープキャスティング法によ
りテープ状に作製され、その第1テープ層1上には、こ
れより大きなボアを持つNi多孔質の第2テープ層2が
作製されている。
EXAMPLE The present invention will be described in detail. First, a fuel cell electrode obtained by the method of the present invention is shown in FIG. 1 with a small bore
A porous first tape layer 1 is made into a tape shape by a tape casting method, and a Ni porous second tape layer 2 having a larger bore is formed on the first tape layer 1.

3は燃料ガス、4は塩、5は電解質を示す。3 represents fuel gas, 4 represents salt, and 5 represents electrolyte.

本実施例では、まず粒径約1μm程度の有機酸塩分解ニ
ッケル粉末に、過焼結を防止する目的でアルミナ微粉末
を5vt%添加したものを、有機バインダー 溶媒と共
にボールミル混合しスラリー化した。これをテープキャ
スティング法によりシート化し第1テープ層1とした。
In this example, first, organic acid salt decomposed nickel powder with a particle size of about 1 μm, to which 5 vt% alumina fine powder was added for the purpose of preventing oversintering, was mixed with an organic binder and a solvent in a ball mill to form a slurry. This was formed into a sheet by a tape casting method to form the first tape layer 1.

つぎに、粒径的10μm程度のニッケル粉末に、アルミ
ナ微粉末を5wt%添加したものを、上記と同様にして
スラリー化し、第1テープ層1の上にテープキャスティ
ング法によりシート化し第2テープ層2を形成した。
Next, 5 wt% of fine alumina powder was added to nickel powder with a particle size of about 10 μm, and this was made into a slurry in the same manner as above, and formed into a sheet by tape casting on the first tape layer 1, and the second tape layer was formed into a slurry. 2 was formed.

また、テープ層の厚さをドクターブレードを用いて制御
し、第1テープ居1のシートの厚さを0゜5 m rr
h  第2テープ層2の厚さを0.4mmに調整した。
In addition, the thickness of the tape layer was controlled using a doctor blade, and the thickness of the sheet of the first tape layer 1 was adjusted to 0°5 mrr.
h The thickness of the second tape layer 2 was adjusted to 0.4 mm.

第1テープ層1と第2テープ層2は、完全に密着、一体
化しており、作製上の問題はなく、作業操作性もよかっ
た。
The first tape layer 1 and the second tape layer 2 were completely adhered and integrated, there were no manufacturing problems, and the workability was good.

このようにして製造した電極(実施例A)の性能評価を
、単極測定により行った。比較として、粒径的1μm(
比較例B)、2〜3μm(比較例C)、20〜30μm
(比較例D)、の旧粉末を夫々上記と同様にして、厚さ
0.9mmのシートを作製し電極とした。単極測定は、
N2:C02=4:1の混合ガスを流量58. 3cc
/mで電極に拡散させ、650°Cにおける負荷電流に
対する分極(過電圧)を調べた。電解質として目AlO
2に60wt%の共晶塩(Ll/に:62/38COs
 )を含浸させたものを用い、これに参照極を設置した
。さらに、電池に組み込み放電試験を行った。前記の電
極を燃料極とし、酸素極側に10多孔質電極、電解質に
はLIAlOaに60vt%の共晶塩(Ll/に:G2
/38CO3)を含浸させたものを用い、燃料ガス(h
/C02:4/1) 80cc/m、酸化剤ガス(Ai
r/CO2ニア/3) 200cc/mで供給し、系の
温度を650℃に保った。
Performance evaluation of the electrode thus produced (Example A) was performed by monopolar measurement. For comparison, a particle size of 1 μm (
Comparative Example B), 2-3 μm (Comparative Example C), 20-30 μm
(Comparative Example D), a sheet with a thickness of 0.9 mm was prepared in the same manner as above and used as an electrode. Unipolar measurements are
Mixed gas of N2:C02=4:1 at a flow rate of 58. 3cc
/m to the electrode, and the polarization (overvoltage) with respect to the load current at 650°C was investigated. Eye AlO as electrolyte
2 to 60 wt% eutectic salt (Ll/to: 62/38COs
) was used, and a reference electrode was installed on this. Furthermore, a discharge test was conducted by incorporating the battery into a battery. The above electrode was used as a fuel electrode, a 10 porous electrode was placed on the oxygen electrode side, and 60 vt% eutectic salt (Ll/to: G2) was used as an electrolyte.
/38CO3) impregnated with fuel gas (h
/C02:4/1) 80cc/m, oxidizing gas (Ai
r/CO2 near/3) was supplied at a rate of 200 cc/m, and the system temperature was maintained at 650°C.

単極測定の結果を第2図に示す。本発明による電極(実
施例A)の分極は、負荷電流100 mA/cm2で、
4011vと粒径の異なった他の電極より優れた性能を
示すことを確認した。また、100時間後の電池放電試
験においては、100 mA/cm2で0゜905vで
あり、 150 mA/cm2で0. 820Vであり
、従来の電極(粒径2〜3μmのN1粉末をテープキャ
スティング法により得たもの)を用いたちの(比較例C
)が100 mA/cm2で0.880mV。
The results of the monopolar measurements are shown in Figure 2. The polarization of the electrode according to the invention (Example A) was at a load current of 100 mA/cm2,
It was confirmed that 4011v showed superior performance compared to other electrodes with different particle sizes. In addition, in the battery discharge test after 100 hours, it was 0.905V at 100 mA/cm2, and 0.905V at 150 mA/cm2. Comparative Example C
) is 0.880 mV at 100 mA/cm2.

150 mA/cI112で0.800mVであること
と比較すると、これより優れた性能を示し、本実施例に
よる2層一体化電極が正常に機能し、かつ塩の含浸とガ
スの拡散がバランスよく行われより高い性能を有するこ
とを確認した。
When compared with 0.800 mV at 150 mA/cI112, it shows better performance, and the two-layer integrated electrode according to this example functions normally, and salt impregnation and gas diffusion are performed in a well-balanced manner. We confirmed that it has higher performance than ours.

本実施例で明らかなように、粒度の異なった合金粉末多
層電極を、テープキャスティング法を用いた一体化製造
法で作製することにより、従来の単一粒度よりなる電極
より、0.OIV以上の性能向上が確認された。さらに
、本発明により電極を大量かつ安価に製造でき、燃料電
池組立の際に高効率で、低コストな製造を可能にしてい
る。
As is clear from this example, by fabricating multilayer electrodes of alloy powders with different grain sizes using an integrated manufacturing method using tape casting, the electrodes have a 0.0-. Performance improvement over OIV was confirmed. Further, according to the present invention, electrodes can be manufactured in large quantities at low cost, making it possible to manufacture fuel cells with high efficiency and at low cost.

以上、本実施例は特に溶融炭酸塩型燃料電池の場合につ
いて述べているが、その他の燃料電池、例えばリン酸型
燃料電池、アルカリ型燃料?!!池、固体電解質型燃料
電池に本発明方法を用いてももちろんよい。又本実施例
は原料粉末としてNl粉末を用いた例を示したが、その
他の金属、あるいは合金の粉末でもよく、もちろん異種
の合金の組合せによる一体化であってもよい。また、金
属あるいは合金の形状は、どのようなものでもよく、粉
末にする粉砕法や製法も如何なる方法をとってもよい。
In the above example, the case of a molten carbonate fuel cell is particularly described, but other fuel cells, such as a phosphoric acid fuel cell or an alkaline fuel cell, may be used. ! ! Of course, the method of the present invention may also be applied to fuel cells and solid oxide fuel cells. Further, although this embodiment shows an example in which Nl powder is used as the raw material powder, powders of other metals or alloys may be used, and of course, it is also possible to integrate different types of alloys by combining them. Further, the shape of the metal or alloy may be any shape, and any pulverization method or manufacturing method may be used to turn it into powder.

さらに、上記に示したものは、2層に重ねた例をあげて
いるが、テープキャスティング法により重ねる回数は3
層以上であってもよい。
Furthermore, although the above example shows two layers, the tape casting method allows for three layers.
There may be more than one layer.

なお、上記実施例では、燃料極の製法について示してい
るが、本発明は燃料電池用電極の製造法に関するもので
あるので、空気極の製造法にこの方法を用いてもよい。
In addition, although the above-mentioned example shows a method for manufacturing a fuel electrode, since the present invention relates to a method for manufacturing an electrode for a fuel cell, this method may be used for manufacturing an air electrode.

発明の効果 本発明の製造法では、粒径の異なる合金粉末をテープキ
ャスティング法で一体化、多層化シているので、高性能
な燃料用電極を大量にしかも容易に作製することができ
る。同時に本発明方法で得られた燃料用電極は以降のス
タック積層工程などでの作業性向上、製造工程の効率化
に寄与する。
Effects of the Invention In the manufacturing method of the present invention, alloy powders with different particle sizes are integrated and multilayered by tape casting, so that high-performance fuel electrodes can be produced in large quantities and easily. At the same time, the fuel electrode obtained by the method of the present invention contributes to improved workability in the subsequent stack lamination process and the efficiency of the manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造法により得られた電極の一実施例
の断面図、第2図は本実施例及び比較例、の電極の単極
測定結果を示すグラフである。 190.第1テープ層、200.第2テープ層。
FIG. 1 is a cross-sectional view of an example of an electrode obtained by the manufacturing method of the present invention, and FIG. 2 is a graph showing the results of unipolar measurements of the electrodes of this example and a comparative example. 190. first tape layer, 200. Second tape layer.

Claims (5)

【特許請求の範囲】[Claims] (1)合金粉末をバインダーおよび溶媒と共にスラリー
化し、これをテープキャスティング法によってシート状
にした上に、先の合金粉末と粒径を異にする合金粉末を
前記と同様にしてシート状にし、少なくとも2層以上の
シート層を重ね合わせ一体化することを特徴とする燃料
電池用電極の製造法。
(1) The alloy powder is slurried together with a binder and a solvent, this is made into a sheet by tape casting, and an alloy powder having a different particle size from the previous alloy powder is made into a sheet in the same manner as above, and at least A method for producing an electrode for a fuel cell, characterized by stacking and integrating two or more sheet layers.
(2)合金粉末が、少なくともNiを含む合金または金
属であることを特徴とする請求項1記載の燃料電池用電
極の製造法。
(2) The method for manufacturing a fuel cell electrode according to claim 1, wherein the alloy powder is an alloy or metal containing at least Ni.
(3)合金粉末の粒径が、約1μm、2〜3μm、約1
0μm、20〜30μm、50〜80μm、約100μ
m、150μm〜200μm、200μm〜350μm
のうち少なくとも一種含まれていることを特徴とする請
求項1記載の燃料電池用電極の製造法。
(3) The particle size of the alloy powder is approximately 1 μm, 2 to 3 μm, approximately 1 μm.
0μm, 20-30μm, 50-80μm, about 100μm
m, 150 μm to 200 μm, 200 μm to 350 μm
2. The method for producing a fuel cell electrode according to claim 1, wherein at least one of the following is contained.
(4)一度のテープキャスティングにより得たシート層
の厚さが、0.01mm〜3.0mmであることを特徴
とする請求項1記載の燃料電池用電極の製造法。
(4) The method for producing an electrode for a fuel cell according to claim 1, wherein the thickness of the sheet layer obtained by one tape casting is 0.01 mm to 3.0 mm.
(5)テープキャスティング法により得たシート層を電
池たち上げと同時に内部焼結させることを特徴とする請
求項1記載の燃料電池用電極の製造法。
(5) The method for producing an electrode for a fuel cell according to claim 1, characterized in that the sheet layer obtained by tape casting is internally sintered at the same time as the cell is assembled.
JP1080328A 1989-03-30 1989-03-30 Manufacture of electrode for fuel cell Pending JPH02257570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1080328A JPH02257570A (en) 1989-03-30 1989-03-30 Manufacture of electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080328A JPH02257570A (en) 1989-03-30 1989-03-30 Manufacture of electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPH02257570A true JPH02257570A (en) 1990-10-18

Family

ID=13715191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080328A Pending JPH02257570A (en) 1989-03-30 1989-03-30 Manufacture of electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPH02257570A (en)

Similar Documents

Publication Publication Date Title
US5629103A (en) High-temperature fuel cell with improved solid-electrolyte/electrode interface and method of producing the interface
JP4006020B2 (en) Fabrication of devices containing thin ceramic layers.
JP5072169B2 (en) Improvements in fuel cells and related equipment
US8252478B2 (en) Redox-stable anode
US8535848B2 (en) Structured body for an anode used in fuel cells
JP5208518B2 (en) Method for producing a reversible solid oxide fuel cell
US5110541A (en) Method of manufacturing electrodes of molten carbonate fuel cell
JP2007529852A (en) Anode-supported solid oxide fuel cell using cermet electrolyte
JP2008519404A (en) Electrochemical cell structure and its manufacturing method by controlled powder method
KR20190087628A (en) Anode for solid oxide fuel cells
US9796021B2 (en) Method of fabricating a porous metal substrate structure for a solid oxide fuel cell
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JPH02257570A (en) Manufacture of electrode for fuel cell
JPH02301966A (en) Manufacture of electrode for fuel cell
JP2005085758A (en) High temperature type fuel cell
JPH0652869A (en) Solid electrolyte film of fuel cell and manufacture thereof
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JPS6366858A (en) Electrode for molten carbonate fuel cell
JP4576971B2 (en) Solid oxide fuel cell substrate and method for producing the same
US7195794B2 (en) Method of making an electrolytic cell
JP3091495B2 (en) Method of manufacturing electrode for molten carbonate fuel cell, electrode manufactured by this method, and molten carbonate fuel cell using electrode manufactured by this method
JP2894377B2 (en) Method for manufacturing molten carbonate fuel cell
US20050050991A1 (en) Method for manufacturing Ni-Al alloy anode for fuel cells using nickel powders
JPH11233121A (en) Air electrode material for molten carbonate fuel cell and its manufacture
JPH06290792A (en) Manufacture of electrode for molten carbonate fuel cell