JPH0225700B2 - - Google Patents

Info

Publication number
JPH0225700B2
JPH0225700B2 JP56186331A JP18633181A JPH0225700B2 JP H0225700 B2 JPH0225700 B2 JP H0225700B2 JP 56186331 A JP56186331 A JP 56186331A JP 18633181 A JP18633181 A JP 18633181A JP H0225700 B2 JPH0225700 B2 JP H0225700B2
Authority
JP
Japan
Prior art keywords
piston
fiber structure
inorganic fiber
molten metal
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56186331A
Other languages
Japanese (ja)
Other versions
JPS5886968A (en
Inventor
Yoshiatsu Nakamura
Kenji Usui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Engine Components Japan Corp
Original Assignee
Izumi Automotive Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16186470&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0225700(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Izumi Automotive Industry Co Ltd filed Critical Izumi Automotive Industry Co Ltd
Priority to JP18633181A priority Critical patent/JPS5886968A/en
Publication of JPS5886968A publication Critical patent/JPS5886968A/en
Publication of JPH0225700B2 publication Critical patent/JPH0225700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • B22D19/0027Cylinders, pistons pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は例えば内燃機関用として使用するのに
最適な繊維強化アルミニウム合金製ピストンの製
造方法に関するものである。 周知の如く内燃機関用のアルミニウム合金製の
ピストンでは、熱的負荷条件の最も厳しいピスト
ン頭部における燃焼室周辺に亀裂を生じ易い。ま
たピストンリング溝中特に第1ピストンリング溝
は運転中ピストンリングによつて激しくたゝかれ
て損傷され易い。更にまたアルミニウム合金はシ
リンダ材である鉄基合金と比較して熱膨張係数が
大きい為に、ピストンのスカート部がシリンダに
摺接して損傷され易い。そこで近時アルミニウム
合金製のピストンにおいて、高強度かつ高弾性の
ガラス繊維やセラミツクス繊維の如き無機質繊維
構成体でピストン頭部、第1ピストンリング溝、
スカート部を補強したものが知られている。この
際無機質繊維構成体は多大の空隙部を有している
から、これをピストン内の上記補強部に強固に複
合させる為には、ピストン製造時にアルミニウム
合金の溶融金属を無機質繊維構成体の空隙部内に
確実に充填させる必要がある。 そこで従来は例えば第1図に示すように、鋳型
1内に無機質繊維構成体2を設置し、次に鋳型1
内にアルミニウム合金の溶融金属3を供給し、こ
の後ピストン内部形状を構成する中子形のパンチ
4を鋳型1内に強制的に挿入して最大約2000Kg/
cm2の高圧力を溶融金属3に負荷させ、これにより
溶融金属3を無機質繊維構成体2の空隙部に充填
させると共に、その高圧力下で溶融金属3を凝固
させる方法を採つていた。 しかしながらこのような高圧凝固鋳造法を利用
して無機質繊維構成体をピストン内に複合させる
方法は次のような欠陥があつた。 (1) 最大約2000Kg/cm2もの高圧力を必要とするか
ら、当然大型で高価なプレス機が必要である。 (2) 高圧力である為に無機質繊維構成体が破壊さ
れ易い。 (3) 高圧力である為に無機質繊維構成体が極度に
圧縮され、その圧縮率にバラツキが生じ易く
て、無機質繊維構成体の空隙部内への溶融金属
の充填性が悪い。 (4) 高圧力である為に無機質繊維構成体の鋳型内
での位置ずれが発生し易い。 (5) (2)〜(4)項の問題点を出来るだけ解消する為に
圧力を制御する必要があり、この圧力制御の煩
らわしがある。 本発明は上述の如き欠陥を是正することが出来
る繊維強化アルミニウム合金製ピストンの製造方
法を提供しようとするものである。 以下本発明による繊維強化アルミニウム合金製
ピストンの製造方法の一実施例を第2図〜第9図
によつて説明する。 先ず第2図は無機質繊維構成体11によるアル
ミニウム合金製ピストン12の補強状況を示した
ものであつて、ピストン頭部13、第1ピストン
リング溝14、スカート部15に無機質繊維構成
体11が夫々環状に複合されてこれらが夫々補強
されている。 次に本発明に適用される無機質繊維構成体11
としては、モリブデン、タングステン、ステンレ
ス等の金属繊維であつても良いが、好ましくはボ
ロン、カーボン、シリコンカーバイド、アルミナ
等のセラミツツクス繊維やガラス繊維等の軽量な
無機質繊維にて構成されるものが良い。またその
無機質繊維の表面はアルミニウム合金の溶融金属
との濡水性を良くする為に銅等の金属を被覆して
おくと良い。 次に第3図〜第5図によつてピストン頭部13
内への無機質繊維構成体11の複合方法を説明す
る。 先ず第3図の如く環状板形に形成された無機質
繊維構成体11を重力鋳造用金型17のキヤビテ
イ18内の所定位置に設置する。即ち例えばピス
トン外径より大ききな外径を有する無機質繊維構
成体11の外周19を金型17のピストン頭部1
3相当部に設けられた環状設置部20に設置す
る。 次に第4図の如くアルミニウム合金の溶融金属
21を注湯口22からキヤビテイ18内に供給す
る。この際金型17の最上部に設けられた押湯溜
23内にまで溶融金属21が充填される一定量を
供給する。 次に第5図の如くこの後直ちに注湯口22を完
全に閉鎖すると共に、窒素ガスやアルゴンガス等
の溶融金属21に対して不活性なガス24により
その溶融金属21の押湯溜23内に充填されてい
る押湯部25に最大約50Kg/cm2の圧力を負荷させ
る。 即ち例えば昇降自在の蓋体26にて金型17の
上部を閉鎖して、注湯口22を押湯溜23の上部
を同時に完全閉鎖する。なおこの際特に押湯溜2
3と蓋体26との間からガス24が漏れないよう
にこれらの間をOリング27にて密封する。そし
てガス供給管28のバルブ29を開放して、ガス
コンプレツサ30等から押湯部25の上面に加圧
ガス24を供給して、最大約50Kg/cm2の低圧力を
その押湯部25に負荷させる。 この結果キヤビテイ18内の溶融金属21全体
が低加圧されて、その溶融金属21の一部が無機
質繊維構成体11の空隙部内に確実に完全充填さ
れる。そしてそのガス圧力は溶融金属21が凝固
するまで(通常約3〜4分間)負荷される。 以上の結果無機質繊維構成体11の空隙部内に
溶融金属21が完全充填された緻密組織を有する
健全な鋳造品が製造される。なお無機質繊維構成
体11の体積含有率は約10〜60%の範囲である
が、体積含有率が低すぎると無機質繊維構成体1
1の特性が生かされず、また大きすぎると溶融金
属21の充填性に不具合が生じるので、通常約20
〜40%の範囲が好ましい。 なお以上の如き鋳造後に、第2図の如くピスト
ン12は切削加工されて、無機質繊維構成体11
の外周19部分がピストン外径に合せて切削さ
れ、またピストン頭部13に燃焼室32が切削さ
れる。 ところで第1ピストンリング溝14及びスカー
ト部15に夫々無機質繊維構成体11を環状に複
合させる場合は、前述したピストン頭部13内へ
の複合時と同時に行われる。 即ち例えば第6図及び第8図に示す如く第1ピ
ストンリング溝14及びスカート部15の大きさ
に見合つた大きたを有し、かつピストン外径より
も大きな外径の夫々の無機質繊維構成体11を金
型17の第1ピストンリング溝14相当部及びス
カート部15相当部に夫々設けられた環状設置部
33,34に夫々設置してキヤビテイ18内に配
置する。後は前述同様の鋳造工程を行つてピスト
ン12を鋳造し、この後第7図及び第9図に示す
如く第1ピストンリング溝14及びスカート部1
5を切削加工する。なお無機質繊維構成体11は
必要に応じて第2図に示された第2及び第3ピス
トンリング溝35,36や他の重要な箇所、例え
ばピストンボス近傍、ピストン頭部内の冷却空洞
近傍部にも複合させることが出来る。 次に本発明により製造されたピストンの実施例
を説明する。 実施例 1 太さが約5μ、長さが約200μ、表面に銅を被覆
したガラス繊維からなり、嵩密度が1.0g/cm3
環状板からなる無方向性の無機質繊維構成体を金
型のキヤビテイ内においてピストン頭部相当位置
に設置し、アルミニウム合金(JIS−AC8A)の
750℃の溶融金属を金型のキヤビテイ内に供給し、
溶融金属がキヤビテイ内に所定量充填された後、
金型の注湯口を閉鎖し、溶融金属の押湯部に20
Kg/cm2の窒素ガスを負荷させて凝固させたもの。 この場合無機質繊維構成体の体積含有率は約30
%であつた。 このようにして無機質繊維構成体にて頭部が強
化されたピストンの頭部の耐熱衝撃性を、高周波
誘導加熱装置によつて約400℃に加熱し、次いで
約50℃に空冷させる熱応力を繰り返し3000回負荷
させて、ピストン頭部の燃焼室周辺における亀裂
の発生状況を調べた結果を次表に示す。
The present invention relates to a method of manufacturing a fiber-reinforced aluminum alloy piston that is most suitable for use, for example, in an internal combustion engine. As is well known, in aluminum alloy pistons for internal combustion engines, cracks are likely to occur around the combustion chamber at the piston head where thermal load conditions are most severe. Further, among the piston ring grooves, particularly the first piston ring groove, the piston ring is severely bent during operation and is easily damaged. Furthermore, since the aluminum alloy has a larger coefficient of thermal expansion than the iron-based alloy that is the cylinder material, the skirt portion of the piston slides against the cylinder and is easily damaged. Therefore, in recent years, in aluminum alloy pistons, the piston head, first piston ring groove,
It is known that the skirt portion is reinforced. At this time, since the inorganic fiber structure has a large number of voids, in order to firmly combine it with the reinforcing section in the piston, molten aluminum alloy metal is applied to the voids of the inorganic fiber structure during piston manufacturing. It is necessary to reliably fill the inside. Therefore, conventionally, for example, as shown in FIG. 1, an inorganic fiber structure 2 is installed in a mold 1, and then
After that, a core-shaped punch 4 that forms the internal shape of the piston is forcibly inserted into the mold 1 to produce a maximum weight of approximately 2000 kg/molten aluminum alloy.
A method was employed in which a high pressure of cm 2 was applied to the molten metal 3, thereby filling the molten metal 3 into the voids of the inorganic fiber structure 2, and at the same time solidifying the molten metal 3 under the high pressure. However, the method of compounding an inorganic fiber structure into a piston using such a high-pressure solidification casting method has the following drawbacks. (1) Since high pressure of up to approximately 2000 kg/cm 2 is required, a large and expensive press is naturally required. (2) Due to the high pressure, the inorganic fiber structure is easily destroyed. (3) Due to the high pressure, the inorganic fiber structure is extremely compressed, and the compression rate tends to vary, making it difficult to fill the voids of the inorganic fiber structure with molten metal. (4) Due to the high pressure, misalignment of the inorganic fiber structure within the mold is likely to occur. (5) In order to eliminate the problems in items (2) to (4) as much as possible, it is necessary to control the pressure, and this pressure control is troublesome. The present invention aims to provide a method for manufacturing a fiber-reinforced aluminum alloy piston that can correct the above-mentioned defects. An embodiment of the method for manufacturing a fiber-reinforced aluminum alloy piston according to the present invention will be described below with reference to FIGS. 2 to 9. First, FIG. 2 shows how the aluminum alloy piston 12 is reinforced by the inorganic fiber structure 11. These are reinforced in a ring-shaped composite structure. Next, inorganic fiber structure 11 applied to the present invention
The material may be made of metal fibers such as molybdenum, tungsten, or stainless steel, but is preferably made of ceramic fibers such as boron, carbon, silicon carbide, or alumina, or lightweight inorganic fibers such as glass fibers. . Further, the surface of the inorganic fibers is preferably coated with a metal such as copper in order to improve wettability with molten aluminum alloy metal. Next, as shown in FIGS. 3 to 5, the piston head 13 is
A method of combining the inorganic fiber structure 11 into the interior will be explained. First, as shown in FIG. 3, the inorganic fiber structure 11 formed into an annular plate shape is placed at a predetermined position in the cavity 18 of the gravity casting mold 17. That is, for example, the outer periphery 19 of the inorganic fiber structure 11 having an outer diameter larger than the outer diameter of the piston is inserted into the piston head 1 of the mold 17.
It is installed in the annular installation part 20 provided in the part corresponding to No. 3. Next, as shown in FIG. 4, molten aluminum alloy metal 21 is supplied into the cavity 18 from the pouring spout 22. At this time, a certain amount of molten metal 21 is supplied to fill the feeder reservoir 23 provided at the top of the mold 17. Next, as shown in FIG. 5, immediately after this, the pouring port 22 is completely closed, and the molten metal 21 is poured into the feeder reservoir 23 using a gas 24 that is inert to the molten metal 21, such as nitrogen gas or argon gas. A maximum pressure of about 50 kg/cm 2 is applied to the filled feeder section 25. That is, for example, the upper part of the mold 17 is closed with the lid 26 which can be raised and lowered, and the pouring port 22 and the upper part of the feeder reservoir 23 are completely closed at the same time. At this time, especially the feeder reservoir 2
3 and the lid body 26, the space between them is sealed with an O-ring 27 so that the gas 24 does not leak. Then, the valve 29 of the gas supply pipe 28 is opened, and the pressurized gas 24 is supplied from the gas compressor 30 or the like to the upper surface of the feeder section 25 to apply a low pressure of up to about 50 kg/cm 2 to the feeder section 25. to be loaded. As a result, the entire molten metal 21 within the cavity 18 is under low pressure, and a portion of the molten metal 21 is reliably completely filled into the voids of the inorganic fiber structure 11. The gas pressure is then applied until the molten metal 21 solidifies (usually for about 3 to 4 minutes). As a result of the above, a sound cast product having a dense structure in which the voids of the inorganic fiber structure 11 are completely filled with the molten metal 21 is manufactured. The volume content of the inorganic fiber structure 11 is in the range of about 10 to 60%, but if the volume content is too low, the inorganic fiber structure 1
The characteristics of 1 are not utilized, and if it is too large, problems will occur in the filling properties of the molten metal 21, so it is usually about 20
A range of ~40% is preferred. After casting as described above, the piston 12 is cut to form the inorganic fiber structure 11 as shown in FIG.
The outer periphery 19 of the piston is cut to match the outer diameter of the piston, and the combustion chamber 32 is cut into the piston head 13. Incidentally, when the inorganic fiber structure 11 is annularly composited into the first piston ring groove 14 and the skirt portion 15, this is done at the same time as when the inorganic fiber structure 11 is composited into the piston head 13 described above. That is, as shown in FIGS. 6 and 8, for example, each inorganic fiber structure has a size commensurate with the size of the first piston ring groove 14 and the skirt portion 15, and has an outer diameter larger than the piston outer diameter. 11 are installed in the annular installation portions 33 and 34 provided in a portion corresponding to the first piston ring groove 14 and a portion corresponding to the skirt portion 15 of the mold 17, respectively, and arranged in the cavity 18. After that, the same casting process as described above is performed to cast the piston 12, and then the first piston ring groove 14 and the skirt portion 1 are formed as shown in FIGS. 7 and 9.
5 is cut. The inorganic fiber structure 11 may be applied to the second and third piston ring grooves 35 and 36 shown in FIG. 2 and other important locations, such as the vicinity of the piston boss and the vicinity of the cooling cavity in the piston head, as necessary. It can also be combined. Next, examples of pistons manufactured according to the present invention will be described. Example 1 A non-directional inorganic fiber structure consisting of an annular plate with a thickness of about 5 μm, a length of about 200 μm, a glass fiber coated with copper on the surface, and a bulk density of 1.0 g/cm 3 was molded. It is installed at a position equivalent to the piston head in the cavity of the aluminum alloy (JIS-AC8A).
Supply molten metal at 750℃ into the mold cavity,
After a predetermined amount of molten metal is filled into the cavity,
Close the pouring port of the mold and pour the molten metal into the feeder section for 20 minutes.
Solidified by loading Kg/cm 2 of nitrogen gas. In this case, the volume content of the inorganic fiber structure is approximately 30
It was %. The thermal shock resistance of the head of the piston, whose head is reinforced with an inorganic fiber structure, is improved by heating it to about 400°C with a high-frequency induction heating device and then cooling it in air to about 50°C. The table below shows the results of investigating the occurrence of cracks around the combustion chamber of the piston head after repeated loading 3000 times.

【表】 実施例 2 太さが約8μ、長さが約200μ、表面にに銅を被
覆したガラス繊維からなり、嵩密度が0.8g/cm3
の環状体からなる無方向性の無機質繊維構成体を
金型のキヤビテイ内において第1ピストンリング
溝相当位置に設置し、アルミニウム合金(JIS−
AC8A)の750℃の溶融金属を金型のキヤビテイ
内に所定量充填させた後、金型の注湯口を閉鎖
し、溶融金属の押湯部に30Kg/cm2の窒素ガスを負
荷させて凝固させたもの。 この場合無機質繊維構成体の体積含有率は約25
%であつた。 ところで第1ピストンリング溝は、運転中ピス
トンリングによる激しいたゝき等によつて、へた
り或いは摩耗による損傷を受け易い。耐へたり
性、耐摩耗性には硬さが大きな役割を果し、硬さ
が大きい程有利である。そこで上記無機質繊維構
成体によつて補強された第1ピストンリング溝部
分の硬さを満足した結果を次表に示す。
[Table] Example 2 The thickness is approximately 8μ, the length is approximately 200μ, the surface is made of glass fiber coated with copper, and the bulk density is 0.8g/cm 3
A non-directional inorganic fiber structure consisting of an annular body is installed in the mold cavity at a position corresponding to the first piston ring groove, and an aluminum alloy (JIS-
After filling the cavity of the mold with a predetermined amount of 750°C molten metal (AC8A), the pouring port of the mold is closed, and 30 kg/cm 2 of nitrogen gas is applied to the feeder section of the molten metal to solidify it. What made me. In this case, the volume content of the inorganic fiber component is approximately 25
It was %. However, the first piston ring groove is susceptible to damage due to wear or wear due to severe wobbling of the piston ring during operation. Hardness plays a major role in fatigue resistance and abrasion resistance, and the greater the hardness, the more advantageous it is. The following table shows the results of satisfying the hardness of the first piston ring groove portion reinforced by the above-mentioned inorganic fiber structure.

【表】 実施例 3 太さが約15μ、長さが約200μ、表面に銅を被覆
したガラス繊維からなり、嵩密度が0.6g/cm3
円筒体からなる無方向性の無機質繊維構成体を金
型のキヤビテイ内においてスカート部相当位置に
設置し、アルミニウム合金(JIS−AC8A)の750
℃の溶融金属を金型のキヤビテイ内に所定量充填
させた後、金型の注湯口を閉鎖し、溶融金属の押
湯部に45Kg/cm2の窒素ガスを負荷させて凝固させ
たもの。 この場合無機質繊維構成体の体積含有率は約25
%であつた。なおこの実施例3では実施例1及び
2と比較して特に嵩密度が小さく、またガス圧力
が高いのは、ピストンのスカート部は肉厚が薄い
為に溶融金属が早く凝固し、無機質繊維構成体の
空隙部内に溶融金属が充填され難い為である。 ところでピストンのスカート部の熱膨張を小さ
く抑制すれば、シリンダとピストンとの間のクリ
アランスを小さくすることが出来るので、摺動特
性の改善や騒音の低下にも効果がある。そこで上
記無機質繊維構成体によつて補強されたスカート
部の熱膨張係数を測定した結果を次表に示す。
[Table] Example 3 A non-directional inorganic fiber structure consisting of a cylindrical body with a thickness of approximately 15 μm, a length of approximately 200 μm, a glass fiber coated with copper on the surface, and a bulk density of 0.6 g/cm 3 Installed in the mold cavity at a position corresponding to the skirt part, and made of aluminum alloy (JIS-AC8A) 750
After filling a predetermined amount of molten metal into the cavity of a mold, the pouring port of the mold is closed, and 45 kg/cm 2 of nitrogen gas is loaded into the feeder section of the molten metal to solidify it. In this case, the volume content of the inorganic fiber component is approximately 25
It was %. In addition, in this Example 3, the bulk density is particularly small compared to Examples 1 and 2, and the gas pressure is high because the molten metal solidifies quickly because the skirt part of the piston is thin, and the inorganic fiber composition This is because it is difficult for molten metal to fill the voids in the body. By the way, if the thermal expansion of the skirt portion of the piston is suppressed, the clearance between the cylinder and the piston can be reduced, which is effective in improving sliding characteristics and reducing noise. The following table shows the results of measuring the coefficient of thermal expansion of the skirt portion reinforced with the above-mentioned inorganic fiber structure.

【表】【table】

【表】 勿論ピストンスカート部におけるシリンダに対
する耐焼付き性も大巾に改善された。 以上述べた本発明による繊維強化アルミニウム
合金製ピストンの製造方法は、重力鋳造法と低加
圧凝固鋳造法とを巧みに組合せたものであつて、
次のような利点が得られる。 (1) ガス圧力によつて溶融金属を負荷させる方法
であり、その圧力も最大約50Kg/cm2の低圧力と
することが可能であるから、従来のような大型
で高価なプレス機は一切不要である。 (2) 低圧力である為に無機質繊維構成体の破壊が
なく、その無機質繊維構成体の特性(耐熱衝撃
性、耐へたり性、耐摩耗性、耐熱膨張性、耐焼
付き性等)を充分に発揮させることが出来る。 (3) 低圧力である為に無機質繊維構成体が圧縮さ
れ難く、その圧縮率にバラツキが少ないので、
無機質繊維構成体の空隙部内への溶融金属の充
填性が非常に良い。従つて無機質繊維構成体は
ピストン内へ極めて確実かつ強固に複合され
る。 (4) 低圧力である為に無機質繊維構成体の鋳型内
での位置ずれが発生し難く、無機質繊維構成体
をピストンの所定位置に常に正確に複合させる
ことが出来る。 (5) 低圧力であるからら、面倒な圧力制御を行わ
なくて済み、生産性が非常に高い。
[Table] Of course, the seizure resistance of the piston skirt to the cylinder has also been greatly improved. The method for manufacturing a fiber-reinforced aluminum alloy piston according to the present invention described above is a skillful combination of gravity casting method and low pressure solidification casting method.
The following advantages can be obtained. (1) This is a method of loading molten metal with gas pressure, and the pressure can be as low as 50 kg/cm 2 at most, so there is no need for conventional large and expensive press machines. Not necessary. (2) Since the pressure is low, there is no destruction of the inorganic fiber structure, and the properties of the inorganic fiber structure (thermal shock resistance, fatigue resistance, abrasion resistance, thermal expansion resistance, seizure resistance, etc.) are maintained sufficiently. can be demonstrated. (3) Because the pressure is low, the inorganic fiber structure is difficult to compress, and there is little variation in the compression ratio, so
The molten metal fills the voids of the inorganic fiber structure very well. The inorganic fiber structure is therefore very securely and firmly integrated into the piston. (4) Since the pressure is low, it is difficult for the inorganic fiber structure to be misaligned within the mold, and the inorganic fiber structure can always be accurately composited at the predetermined position of the piston. (5) Since the pressure is low, there is no need for troublesome pressure control, and productivity is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の製造方法の一例を説明する断面
図である。第2図〜第9図は本発明の製造方法の
一実施例を示したものであつて、第2図は製造さ
れたピストンの断面図、第3図〜第5図はピスト
ン頭部内への無機質繊維構成体の複合方法を説明
する断面図、第6図及び第7図は第1ピストンリ
ング溝部分への無機質繊維構成体の複合方法を説
明する拡大断面図、第8図及び第9図はスカート
部分への無機質繊維構成体の複合方法を説明する
拡大断面図である。 また図面に用いられた符号において、11……
無機質繊維構成体、12……ピストン、13……
ピストン頭部、14……第1ピストンリング溝、
15……スカート部、17……重力鋳造用金型、
18……キヤビテイ、21……アルミニウム合金
の溶融金属、22……注湯口、24……ガス、2
6……蓋体、28……ガス供給管である。
FIG. 1 is a sectional view illustrating an example of a conventional manufacturing method. Figures 2 to 9 show an embodiment of the manufacturing method of the present invention, in which Figure 2 is a sectional view of the manufactured piston, and Figures 3 to 5 are views of the inside of the piston head. 6 and 7 are enlarged sectional views illustrating the method of combining the inorganic fiber structure into the first piston ring groove portion, and FIGS. 8 and 9 are The figure is an enlarged sectional view illustrating a method of combining the inorganic fiber structure onto the skirt portion. Also, in the symbols used in the drawings, 11...
Inorganic fiber structure, 12... Piston, 13...
Piston head, 14...first piston ring groove,
15...Skirt part, 17...Gravity casting mold,
18... Cavity, 21... Molten metal of aluminum alloy, 22... Pouring port, 24... Gas, 2
6...Lid body, 28...Gas supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 重力鋳造用金型のキヤビテイ内の所定位置に
無機質繊維構成体を設置し、次に前記キヤビテイ
内にアルミニウム合金の溶融金属を供給し、この
後直ちに前記溶融金属に対して不活性なガスによ
る最大50Kg/cm2の低圧力を前記キヤビテイ内に負
荷させることによつて、前記溶融金属を前記繊維
構成体の空隙部に充填させ、そのガス圧力による
加圧下で前記溶融金属を凝固させるようにした繊
維強化アルミニウム合金製ピストンの製造方法。
1. An inorganic fiber structure is installed at a predetermined position in a cavity of a gravity casting mold, and then molten aluminum alloy metal is supplied into the cavity, and immediately thereafter, the molten metal is heated with an inert gas. By applying a low pressure of a maximum of 50 kg/cm 2 into the cavity, the molten metal is filled into the voids of the fiber structure, and the molten metal is solidified under pressure due to the gas pressure. A method for manufacturing a fiber-reinforced aluminum alloy piston.
JP18633181A 1981-11-20 1981-11-20 Production of fiber reinforced aluminum alloy piston Granted JPS5886968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18633181A JPS5886968A (en) 1981-11-20 1981-11-20 Production of fiber reinforced aluminum alloy piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18633181A JPS5886968A (en) 1981-11-20 1981-11-20 Production of fiber reinforced aluminum alloy piston

Publications (2)

Publication Number Publication Date
JPS5886968A JPS5886968A (en) 1983-05-24
JPH0225700B2 true JPH0225700B2 (en) 1990-06-05

Family

ID=16186470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18633181A Granted JPS5886968A (en) 1981-11-20 1981-11-20 Production of fiber reinforced aluminum alloy piston

Country Status (1)

Country Link
JP (1) JPS5886968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667705U (en) * 1993-03-02 1994-09-22 株式会社こあ Work cabin with telescopic legs

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191654A (en) * 1984-03-12 1985-09-30 Izumi Jidosha Kogyo Kk Piston for internal-combustion engine and production thereof
GB8413800D0 (en) * 1984-05-30 1984-07-04 Ae Plc Manufacture of pistons
JP2857415B2 (en) * 1989-05-16 1999-02-17 マツダ株式会社 Pressure casting method
JP4237576B2 (en) 2003-08-11 2009-03-11 富士重工業株式会社 Piston of internal combustion engine
DE102005027540A1 (en) * 2005-06-15 2006-12-28 Ks Kolbenschmidt Gmbh Shortening the cycle time in the series production of pistons for internal combustion engines
CN102941334B (en) * 2012-11-27 2015-07-01 山东圣泉新材料股份有限公司 Casting pressurizing system and casting pressurizing method
DE102014216517A1 (en) * 2014-08-20 2016-02-25 Mahle International Gmbh Casting tool and method of manufacturing a piston for an internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393120A (en) * 1977-01-27 1978-08-15 Honda Motor Co Ltd Fiber reinforcement complex portion material and its preparation
JPS568705A (en) * 1979-06-29 1981-01-29 Goodyear Tire & Rubber Truck tire for heavy body
JPS568706A (en) * 1980-06-23 1981-01-29 Ohtsu Tire & Rubber Co Ltd Bead-part holding member for air-tire wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393120A (en) * 1977-01-27 1978-08-15 Honda Motor Co Ltd Fiber reinforcement complex portion material and its preparation
JPS568705A (en) * 1979-06-29 1981-01-29 Goodyear Tire & Rubber Truck tire for heavy body
JPS568706A (en) * 1980-06-23 1981-01-29 Ohtsu Tire & Rubber Co Ltd Bead-part holding member for air-tire wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667705U (en) * 1993-03-02 1994-09-22 株式会社こあ Work cabin with telescopic legs

Also Published As

Publication number Publication date
JPS5886968A (en) 1983-05-24

Similar Documents

Publication Publication Date Title
EP0143330B1 (en) Reinforced pistons
JP3212245B2 (en) Casting method, casting apparatus and casting
US5058653A (en) Process for lost foam casting of metal parts
KR920003685B1 (en) Method of squeeze rorming metal articles
JPH06238421A (en) Metal matrix composite material and its production
US4966221A (en) Method of producing aluminum alloy castings and piston made of aluminum alloy
US6103397A (en) Metallic porous product and composite product thereof and method of producing the same
JPH0225700B2 (en)
US5161595A (en) Process for the lost foam casting, under low pressure, of aluminium alloy articles
US6070323A (en) Piston for internal combustion engine and material therefore
US5273098A (en) Removable cores for metal castings
JP2001276961A (en) Preformed porous metal product and production process of composite metallic parts using the same
JPH03229958A (en) Crankshaft bearing part for internal combustion engine
JPH11138251A (en) Aluminum nitride-aluminum base composite material and production thereof
JPS6233730A (en) Wear resistant composite material
JPS6021306A (en) Manufacture of composite reinforced member
JPS60119348A (en) Piston of internal-combustion engine and manufacture thereof
US6964292B2 (en) Process of fabricating castings provided with inserts, with improved component/inset mechanical cohesion, and an insert usable in the process
KR102297170B1 (en) Cast iron inserts for shrink-fitting process and manufacturing method of dissimilar metal members using the same
JPS62286660A (en) Composite member having excellent wear resistance and its production
JPH0373750B2 (en)
JPS61166935A (en) Composite member superior in wear resistance and its manufacture
JP6867255B2 (en) Complex with low coefficient of thermal expansion and high adhesion
JPS5922272Y2 (en) piston
JPS606265A (en) Production of composite fiber member