JPH02256147A - Beam rotating mechanism for multiple quadrupole lens - Google Patents

Beam rotating mechanism for multiple quadrupole lens

Info

Publication number
JPH02256147A
JPH02256147A JP1077671A JP7767189A JPH02256147A JP H02256147 A JPH02256147 A JP H02256147A JP 1077671 A JP1077671 A JP 1077671A JP 7767189 A JP7767189 A JP 7767189A JP H02256147 A JPH02256147 A JP H02256147A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
lens
quadrupole
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1077671A
Other languages
Japanese (ja)
Inventor
Yutaka Kawada
豊 川田
Kenichi Inoue
憲一 井上
Kiyotaka Ishibashi
清隆 石橋
Akira Kobayashi
明 小林
Koji Inoue
浩司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1077671A priority Critical patent/JPH02256147A/en
Publication of JPH02256147A publication Critical patent/JPH02256147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To restrict the increase of the spherical aberration or the like at minimum and lighten a weight to compactize by providing a beam rotating mechanism for rotating the charged particle beam between multiple quadrupole magnetic lenses. CONSTITUTION:An inductor symmetry magnetic lens 1 consists of a coil 2 and a yoke 3, and the line of magnetic force 4 generated between the yokes 3 is formed in symmetry with a center axis 5 as the axial center to be set between the yokes 3. consequently, the charger particle is rotated around of the center axis 5 when the charged particle passes through the magnetic lenses 1. quadrupole lenses 6, 7 of the front and rear steps between which the magnetic lenses 1 are located are located between deflecting electrodes 12 and sample placing stands 13 to axially rotate the charged particle beam 8 with the mag netic lenses 1 and while converge it rocally. The increase of the spherical aberra tion is thereby restricted at minimum, and the lighting of a weight and the compactization can be aimed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高エネルギー荷電粒子ビーム応用装置に適用
される多重4極子レンズのビーム回転機構に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a beam rotation mechanism of a multiple quadrupole lens applied to a high-energy charged particle beam application device.

(従来の技術) 高エネルギー荷電粒子ビーム加工装置は、周知の如く、
高エネルギーをもって一定方向に流れる電子ビームを電
磁レンズで絞って固体表面に焦点を結合すると、電子ビ
ームのパワー密度が大きくなり、電子のもつエネルギー
の大部分が熱エネルギーに変換されて、材料表面の気化
蒸発によって除去加工を行うものであるが、これには、
W、 Mo1ステンレス鋼等加工し難い金属或いはガラ
ス、水晶、セラミック、半導体材料、宝石類等への微小
穴や異形穴加工又はスリット加工に用いられる電子ビー
ム加工への応用として不活性ガス、例えばArイオン等
を電気的に加速して、10〜20KeVの高エネルギー
のイオンを細かくビーム状に収束して被加工物の表面に
投射し、その部分を原子・分子のオーダで除去加工する
イオンビーム応用装置が存在する。
(Prior art) As is well known, high-energy charged particle beam processing equipment
When an electron beam flowing in a certain direction with high energy is condensed with an electromagnetic lens and focused on a solid surface, the power density of the electron beam becomes large, and most of the energy of the electrons is converted into thermal energy, resulting in Removal processing is performed by vaporization, and this involves the following:
Inert gas, e.g. Ion beam application that electrically accelerates ions, etc., and focuses high-energy ions of 10 to 20 KeV into a fine beam onto the surface of the workpiece, removing that part on the order of atoms and molecules. The device is present.

そして、上述の応用装置に使用されている荷電粒子ビー
ム用4極子レンズは、第5図及び第6図に示されるよう
に、一般に多重4極子レンズQ@が前後段(20a) 
(20b)に配置して使用されている。
As shown in FIGS. 5 and 6, the quadrupole lens for charged particle beam used in the above-mentioned applied equipment generally has multiple quadrupole lenses Q@ in the front and rear stages (20a).
(20b).

これは、数MeVのH+ビーム或いはHe”+ビームを
用いて空間分解能数μmオーダのRBS 、 PIXE
等の局所分析を行うシステムに、ビームを最小径数μm
オーダに絞る収束レンズQOとして用いられている。
This uses an H+ beam or a He''+ beam of several MeV to produce RBS and PIXE with a spatial resolution on the order of several μm.
For systems that perform local analysis such as
It is used as a converging lens QO that narrows down to an order of magnitude.

ところが、昨今上記のシステムにおいては空間分解能サ
ブミクロンオーダが要求されるようになり、上記多重4
極子レンズ(20a) (20b)に該レンズ間の相対
的なビーム軸回りの回転組立誤差Eの精度が0.000
1°程度迄必要とされている。
However, in recent years, spatial resolution on the order of submicrons has come to be required in the above-mentioned systems, and the above-mentioned multiplex 4
The accuracy of the relative rotation assembly error E around the beam axis between the polar lenses (20a) and (20b) is 0.000.
It is required up to about 1°.

しかしながら、回転組立誤差Eの精度が上述の精度を要
する場合には、それを機械的な手段のみで得ようとすれ
ば高度な技術と精密機械が必要であり、現在の技術水準
並びに機器においては極めて困難である。
However, if the accuracy of the rotational assembly error E requires the above-mentioned accuracy, advanced technology and precision machinery are required if it is to be obtained only by mechanical means, and with the current technology level and equipment, It is extremely difficult.

そこで、従来この打開策としては、電気的手段によって
機械的な回転組立誤差による収差を補正する方法がとら
れている。
Therefore, as a conventional solution to this problem, a method has been adopted in which aberrations caused by mechanical rotational assembly errors are corrected by electrical means.

その代表例として、4極子マグネツトについて4個のポ
ールピースを電気的に浮上させ、各々交互に十と−の電
位を印加する手段、又は二重4極子レンズについては、
図示は省略するが第3の4極子レンズを補正用に付加す
る手段が採用されている。
As a typical example, for a quadrupole magnet, four pole pieces are electrically levitated and a voltage of 0 and - is applied alternately to each pole piece, or for a double quadrupole lens,
Although not shown, means for adding a third quadrupole lens for correction is employed.

(発明が解決しようとする課題) 前掲の如く、高エネルギー荷電粒子ビーム応用装置に適
用するこの種多重4極子レンズの機械的な回転組立誤差
による収差を補正する手段として従来採用されているも
のにあっては、未だ次の問題点を抱えている。
(Problem to be Solved by the Invention) As mentioned above, the method conventionally employed as a means for correcting aberrations caused by mechanical rotational assembly errors of this type of multi-quadrupole lens applied to high-energy charged particle beam application equipment. However, the following problem still exists.

即ち、4極子マグネットQOについて第7図の説明図に
ある通り、4個のポールピースPを電気的に浮上させ、
各々交互に十と−の電位を印加するようにしているが、
4個のポールピースPを電気的に浮上させる必要がある
ので、4極子マグネットQIの構成、その組立製作手段
に制約が存在し、また、第3の4極子レンズを補正用に
付加する二重4極子レンズ(20a) (20b)を用
いて行う場合には、第3の4極子レンズを設置しなけれ
ばならないので装置全体が大型化し、又4極子レンズQ
I自体の相対的回転による収差以外に生ずる収差、例え
ば、球面収差等が大きくなるこの種のレンズ固有の問題
点を持っている。
That is, as shown in the explanatory diagram of FIG. 7 regarding the quadrupole magnet QO, four pole pieces P are electrically levitated,
The potentials of 0 and - are applied alternately to each, but
Since it is necessary to electrically levitate the four pole pieces P, there are restrictions on the configuration of the quadrupole magnet QI and its assembly and production method. When using quadrupole lenses (20a) (20b), a third quadrupole lens must be installed, which increases the size of the entire device, and the quadrupole lens Q
This type of lens has the inherent problem of large aberrations such as spherical aberrations other than the aberrations caused by the relative rotation of I itself.

本発明は上述の観点に鑑み発明されたものであって、4
極子マグネット自体の構成並びにその組立製作手段に制
約がなく、又球面収差等の増大を最小限に抑止すること
ができ、しかも装置全体が軽量、且つ小型となる高エネ
ルギー荷電粒子ビーム用多重4極子レンズを提供するこ
とに課題がある。
The present invention was invented in view of the above-mentioned viewpoints, and includes 4
A multi-quadrupole for high-energy charged particle beams that has no restrictions on the configuration of the pole magnet itself or its assembly and production method, can minimize increases in spherical aberration, etc., and is lightweight and compact as a whole. There are challenges in providing lenses.

(課題を解決するための手段) 前述の課題を解決するための手段として本発明は、荷電
粒子ビーム源から引き出された荷電粒子ビームをコリメ
ータ通過させた後偏向電極により偏向させると共に荷電
粒子ビームを多重4極子しンズで収束し、この収束され
た荷電粒子ビームによって試料台に載置した試料を照射
して加工又は分析する高エネルギー荷電粒子ビーム応用
装置において、前記荷電粒子ビーム用4極子レンズば多
重4極子マグネットレンズ構成とされる他、該多重4極
子マグネットレンズ間には荷電粒子ビームを回転させる
ビーム回転機構が配設されてなる構成の発明と、前記ビ
ーム回転機構が荷電粒子ビームの中心軸に対して回転軸
対称の磁場を形成することが可能な構成である発明の高
エネルギー荷電粒子ビーム用多重4極子レンズを採用し
たものである。
(Means for Solving the Problems) As a means for solving the above-mentioned problems, the present invention provides a method in which a charged particle beam extracted from a charged particle beam source is deflected by a deflection electrode after passing through a collimator, and the charged particle beam is deflected by a deflection electrode. In a high-energy charged particle beam application device that converges with multiple quadrupole beams and processes or analyzes a sample placed on a sample stage by irradiating the focused charged particle beam with the focused charged particle beam, the quadrupole lens for charged particle beam is used. In addition to having a multiple quadrupole magnet lens configuration, a beam rotation mechanism for rotating a charged particle beam is disposed between the multiple quadrupole magnet lenses, and the beam rotation mechanism is a center of the charged particle beam. This system employs the multi-quadrupole lens for high-energy charged particle beams of the invention, which has a configuration capable of forming a magnetic field that is rotationally symmetrical about the axis.

(作 用) 前掲の如く、本発明によれば多重4極子マグネットレン
ズ間には荷電粒子ビームを回転させる独立したビーム回
転機構を配設したので、4極子レンズ自体の構成並びに
製作・組立における制約条件が少なく、又このビーム回
転機構は荷電粒子ビームの中心軸に対して回転軸対称の
磁場を形成する構成を具体的に採用している関係上、4
極子しンズ自体の相対的回転による収差以外に生ずる収
差、例えば、球面収差等が大きくなる欠点が解消できる
(Function) As mentioned above, according to the present invention, an independent beam rotation mechanism for rotating the charged particle beam is provided between the multiple quadrupole magnet lenses, so there are no restrictions on the configuration of the quadrupole lenses themselves, and on the production and assembly. There are few conditions, and this beam rotation mechanism specifically adopts a configuration that forms a magnetic field that is rotationally symmetrical with respect to the central axis of the charged particle beam.
It is possible to eliminate the disadvantage of large aberrations such as spherical aberrations other than the aberrations caused by the relative rotation of the pole lens itself.

更に、本発明によれば装置全体の構成が軽量・小型化が
図れる利点もある。
Furthermore, the present invention has the advantage that the overall structure of the device can be made lighter and smaller.

(実施例) 以下、本発明の実施例に係る高エネルギー荷電粒子ビー
ム応用装置に置ける多重4極子レンズについて、第1図
乃至第4図を参照しながら詳述する。
(Example) Hereinafter, a multi-quadrupole lens installed in a high-energy charged particle beam application device according to an example of the present invention will be described in detail with reference to FIGS. 1 to 4.

本実施例は荷電粒子ビームを回転させる構成として、軸
回転対称磁気レンズを適用した装置例の実施例であるが
、第1図の断面図は軸回転対称磁気レンズを示すもので
あって、同図において、符号(1)は軸回転対称磁気レ
ンズ(以下、単に磁気レンズとする。)自体を示し、そ
れはコイル(2)とヨーク(3)とから構成され、ヨー
ク(3) (3)間に発生する磁力線(4)はヨーク(
3) (3)間に設定する中心軸(5)を軸中心とした
対称に形成されるものである。
This example is an example of an apparatus in which an axially rotationally symmetrical magnetic lens is applied as a configuration for rotating a charged particle beam, but the cross-sectional view in FIG. In the figure, the reference numeral (1) indicates an axially rotationally symmetrical magnetic lens (hereinafter referred to simply as a magnetic lens) itself, which is composed of a coil (2) and a yoke (3). The magnetic field lines (4) generated in the yoke (
3) It is formed symmetrically about the central axis (5) set between (3).

従って、荷電粒子が磁気レンズ(1)を通過する際に中
心軸(5)の回りに回転する角度ψは、ψ−−/−e/
8mφX、110 Nl  (rad) −■但し、e
;荷電粒子がもつ電荷量 m;荷電粒子がもつ質量 φ;荷電粒子がもつ加速電圧 μ0;真空の透磁力 N;コイルの巻数 I;コイル電流 で与えられる。
Therefore, the angle ψ that a charged particle rotates around the central axis (5) when passing through the magnetic lens (1) is ψ−−/−e/
8mφX, 110Nl (rad) -■ However, e
Amount of electric charge m possessed by a charged particle; Mass φ possessed by a charged particle; Accelerating voltage μ0 possessed by a charged particle; Vacuum permeability N; Number of turns I of a coil; given by coil current.

そこで、上記0式に2MeVHe−イオンを当てはめる
と、ψの2.2X10−6NIとなる。
Therefore, when 2MeVHe- ions are applied to the above equation 0, ψ becomes 2.2X10-6NI.

そして、ψCOO,0OO1(’ ) col、7 X
l0−6(rad)とすれば、NIω0.83アンペア
グーンとなり、N1■の値は実用値となることが窺い知
れる。
And ψCOO,0OO1(') col,7 X
It can be seen that if it is l0-6 (rad), then NIω0.83 amperage, and the value of N1■ is a practical value.

第2図の実施例は、2重4極子レンズを示す断面図であ
って、前後段の4極子レンズ(6)(7)間に第1図の
実施例に示した構成の磁気レンズ(1)を配置した構成
のものである。
The embodiment of FIG. 2 is a sectional view showing a double quadrupole lens, and the magnetic lens (1) having the configuration shown in the embodiment of FIG. ).

本発明の多重4極子レンズの構成は以上の通りであるが
、次に、これらを高エネルギー荷電粒子ビーム応用装置
に適用し、磁気レンズ(1)を用いて回転組立誤差の補
正を行う場合を、第3図及び第4図の模式図に基づき説
明する。
The configuration of the multiple quadrupole lens of the present invention is as described above. Next, we will discuss the case where these are applied to a high-energy charged particle beam application device and the rotational assembly error is corrected using the magnetic lens (1). , will be explained based on the schematic diagrams of FIGS. 3 and 4.

第3図の模式図は、高エネルギー荷電粒子ビーム(8)
を局所領域に収束させる装置例の模式図であるが、同図
において符号(9)は荷電粒子ビーム源、00)は該荷
電粒子ビーム源から引き出された荷電粒子ビームが通過
するスリット(11)を設けたコリメータ、02)は一
対の偏向電極、面は被加工試料04)を載置する試料載
置台、0団は2次電子06)を検出する2次電子検出器
であって、本発明の磁気レンズ(1)を配置した前後段
の4極子レンズ(6) (7)は、前記偏向電極02)
と試料載置台面との間に配置され、荷電粒子ビーム(8
)を前記磁気レンズ(1)で軸回転させながらそれを局
所収束させる構成である。
The schematic diagram in Figure 3 is a high-energy charged particle beam (8).
This is a schematic diagram of an example of a device that converges a charged particle beam onto a local area. In the figure, reference numeral (9) is a charged particle beam source, and 00 is a slit (11) through which the charged particle beam extracted from the charged particle beam source passes. 02) is a pair of deflection electrodes, the surface is a sample mounting table on which the processed sample 04) is placed, group 0 is a secondary electron detector for detecting secondary electrons 06), and the present invention The quadrupole lenses (6) and (7) in the front and rear stages in which the magnetic lenses (1) are arranged are connected to the deflection electrode 02).
and the sample mounting table surface, and a charged particle beam (8
) is locally converged while being rotated around its axis by the magnetic lens (1).

この場合、試料0■で得られる荷電粒子ビーム(8)の
ビーム径はコリメータ01)のスリット幅00)を極小
にすればする程理論的には無限小とすることができるが
、実際には前後段4極子レンズ(6) (7)が有する
色収差の他、これら前後段4極子レンズ(6) (7)
の相対的回転誤差による収差の為、得られるビーム径は
有限となる。
In this case, the beam diameter of the charged particle beam (8) obtained from sample 0■ can theoretically be made infinitely small by minimizing the slit width 00) of the collimator 01), but in reality In addition to the chromatic aberration that the front and rear quadrupole lenses (6) (7) have, these front and rear quadrupole lenses (6) (7)
Due to aberrations caused by relative rotational errors, the beam diameter obtained is finite.

これについて本実施例は、試料θ3)上での荷電粒子ビ
ーム(8)径を評価しながら磁気レンズ(1)のコイル
(2)に流れる電流値を調節することによってその調整
制御を行っている。
Regarding this, in this example, the adjustment control is performed by adjusting the value of the current flowing through the coil (2) of the magnetic lens (1) while evaluating the diameter of the charged particle beam (8) on the sample θ3). .

荷電粒子ビーム(8)径の評価手段としては、試料03
)上に荷電粒子ビーム(8)を照射した時に発生する2
次電子Oe量を2次電子検出器0ωで検出して得られる
試料側表面上の2次電子像の解像度によって評価するよ
うにしている。
As a means of evaluating the diameter of the charged particle beam (8), sample 03
) generated when charged particle beam (8) is irradiated onto
The amount of secondary electrons Oe is evaluated by the resolution of a secondary electron image on the sample side surface obtained by detecting the amount of secondary electrons Oe with a secondary electron detector 0ω.

このようにして荷電粒子ビーム(8)径の評価がなされ
\ば、その評価に基づく結果により磁気レンズ(1)の
励磁力、つまりコイル(2)に流れる電流値を設定すれ
ば、入射する荷電粒子ビーム(8)のエネルギーを変更
しない限り、再調整することはない。
If the diameter of the charged particle beam (8) is evaluated in this way, the excitation force of the magnetic lens (1), that is, the value of the current flowing through the coil (2), can be set based on the results based on the evaluation. There is no readjustment unless the energy of the particle beam (8) is changed.

本実施例では磁気レンズ(1)のコイル(2)に流す定
電流電源として、出力電流がO〜2A、設定精度が10
mA程度のものを適用する。
In this example, as a constant current power supply flowing through the coil (2) of the magnetic lens (1), the output current is 0 to 2 A, and the setting accuracy is 10
Approximately mA is applied.

例えば、上記コイル(2)の巻数が50巻とすれば、本
実施例の場合では前掲の0式によって、回転角度ψは、
0.0120°、回転設定精度は0.00006°以下
の値が得られる。
For example, if the number of turns of the coil (2) is 50, in the case of this embodiment, the rotation angle ψ is calculated by the above equation 0.
A value of 0.0120° and a rotation setting accuracy of 0.00006° or less can be obtained.

次に、荷電粒子ビーム(8)を回転させること一14極
磁気レンズ(6) (7)の回転組立誤差との関係につ
いて記述すると、4極子レンズ(6) (7)の収束発
散作用は、レンズ1個では一方向に収束作用すると共に
直角方向にも発散作用を為すが、これを前後段レンズの
極性を異にしておけば、第4図に示す如くx方向には収
束発散作用をなし、Y方向、即ち、直角方向には発散後
収束する。
Next, to describe the relationship between rotating the charged particle beam (8) and the rotational assembly error of the quadrupole magnetic lenses (6) and (7), the convergence and divergence effect of the quadrupole lenses (6 and 7) is as follows. A single lens has a convergence effect in one direction and a divergence effect in the perpendicular direction, but if the front and rear lenses have different polarities, there is no convergence and divergence effect in the x direction, as shown in Figure 4. , in the Y direction, that is, in the orthogonal direction, diverges and then converges.

従って、全体としては前後段の2段でXY両方向に収束
効果を発揮する。
Therefore, as a whole, the two stages, the front and rear stages, exhibit convergence effects in both the X and Y directions.

ところで、4極磁気レンズ(6)(7)に相対的回転組
立誤差があれば、前段の4極子レンズ(6)によってY
方向に発散された荷電粒子ビーム(8)は、後段の4極
子レンズ(7)は収束作用以外に回転誤差に比例した発
散効果が加わる為、結果として試料03)上では荷電粒
子ビーム(8)の焦点が定まらなくなる。
By the way, if there is a relative rotational assembly error in the quadrupole magnetic lenses (6) and (7), the Y
The quadrupole lens (7) in the latter stage adds a divergence effect proportional to the rotational error in addition to the convergence effect, so that the charged particle beam (8) diverged in the direction of the charged particle beam (8) on sample 03). becomes unfocused.

これを解決するために本実施例では、前段の4極子レン
ズ(6)を通過した荷電粒子ビーム(8)が後段の4極
子レンズ(7)に達するまでに回転誤差分だけ磁気レン
ズ(1)により荷電粒子ビーム(8)をビーム中心軸回
りに回転させ、等価的に回転組立精度を補正するように
している。
In order to solve this problem, in this embodiment, the charged particle beam (8) that has passed through the quadrupole lens (6) at the front stage is moved through the magnetic lens (1) by the amount of rotational error before reaching the quadrupole lens (7) at the rear stage. The charged particle beam (8) is rotated around the beam center axis to equivalently correct rotational assembly accuracy.

しかしながら、本実施例のように磁気レンズ(1)と前
後段の4極子レンズ(6)(7)の球面収差を最小限に
抑止するようにしているが、前後段の4極子レンズ(6
) (7)を追加することは必然的に球面収差の増大を
来し、レンズの種類によりその球面収差は異なるが、本
実施例にあっては磁気レンズ(1)に軸対称レンズを使
用して最小の球面収差となるようにしいている。
However, as in this embodiment, the spherical aberration of the magnetic lens (1) and the front and rear quadrupole lenses (6) and (7) is suppressed to a minimum.
) Adding (7) inevitably causes an increase in spherical aberration, and the spherical aberration differs depending on the type of lens, but in this example, an axially symmetrical lens is used as the magnetic lens (1). The lens is designed to minimize spherical aberration.

本実施例は以上の通りであるが、要するに従来法におい
て第3の4極子レンズを追加設置する場合にあっても、
又本発明における軸対称磁気レン”ズを適用する場合に
おいてもレンズ自体の球面収差が補正できることではな
く、球面収差の増大幅を最小に抑止することである。
The present example is as described above, but in short, even if a third quadrupole lens is additionally installed in the conventional method,
Furthermore, even when the axially symmetrical magnetic lens of the present invention is applied, the objective is not to correct the spherical aberration of the lens itself, but to suppress the increase in spherical aberration to a minimum.

(発明の効果) 本発明は以上の如く、高エネルギー荷電粒子ビーム応用
装置に適用する荷電粒子ビーム用4極子レンズとして、
多重4極子マグネットレンズ構成とする他、該多重4極
子マグネットレンズ間には荷電粒子ビームを回転させる
ビーム回転機構を配設した構成、或いは該ビーム回転機
構は、荷電粒子ビームの中心軸に対して回転軸対称の磁
場を形成することが可能な構成にしたので、4極子マグ
ネットレンズ自体の構成並びに製作・組立における制約
条件が少なく、4極子レンズ自体の相対的回転による収
差以外に生ずる球面収差の増大を最小限に抑止すること
ができ、又回転組立誤差の補正が等価的にできる等\の
効果がある。更に、装置全体の構成も軽量・小型化が図
れる効果も有する。
(Effects of the Invention) As described above, the present invention provides a quadrupole lens for charged particle beams applied to a high-energy charged particle beam application device.
In addition to the multiple quadrupole magnet lens configuration, a beam rotation mechanism for rotating the charged particle beam may be disposed between the multiple quadrupole magnet lenses, or the beam rotation mechanism may rotate with respect to the central axis of the charged particle beam. Since the configuration is capable of forming a magnetic field that is symmetrical about the rotational axis, there are fewer restrictions on the configuration and manufacturing/assembly of the quadrupole magnet lens itself, and there are fewer spherical aberrations that occur in addition to aberrations due to the relative rotation of the quadrupole lens itself. The increase can be suppressed to a minimum, and rotational assembly errors can be equivalently corrected. Furthermore, the overall structure of the device can also be made lighter and smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高エネルギー荷電粒子ビーム応用装置
における多重4極子レンズに適用する磁気レンズの実施
例を示す断面図、第2図は本発明の高エネルギー荷電粒
子ビーム用多重4極子レンズの他の実施例を示す断面図
、第3図は本発明の高エネルギー荷電粒子ビーム用多重
4極子レンズを適用する高エネルギー荷電粒子ビーム応
用装置の全体構成を示す模式図、第4図は荷電粒子ビー
ム収束発散の関係を示す説明用模式図、第5図及び第6
図は従来の高エネルギー荷電粒子ビーム用多重レンズを
示す説明図、第6図は従来の高エネルギー荷電粒子ビー
ム用多重4極子レンズを示す側面図、第7図は従来の4
極子マグネツトにおける電位の印加を説明するための説
明図である。 符号の名称は以下の通りである。 (1) (2I−軸対称磁気レンズ、(2)−コイル、
(3)−ヨーク、(4)−磁力線、(5)−軸対称磁気
レンズの中心軸、(6)(20a) −・−前段4極レ
ンズ、(7)(2ob) 、−後段4極レンズ、(8)
−荷電粒子ビーム、(9)−・−荷電粒子ビーム源、a
[I)−コリメータのスリット、(11)−・・コリメ
ータ、02)・・−偏向電極、03)−試料、圓−試料
載置台、05)−二次電子検出器、0ω−・−二次電子
、XY−荷電粒子ビーム収束発散方向、P−ポールピー
ス、E−ビーム軸回りの回転組立誤差。 第1図 第2図 第3図 第4図 第7図
FIG. 1 is a sectional view showing an embodiment of a magnetic lens applied to a multiple quadrupole lens in a high-energy charged particle beam application device of the present invention, and FIG. 3 is a schematic diagram showing the overall configuration of a high-energy charged particle beam application device to which the multiple quadrupole lens for high-energy charged particle beams of the present invention is applied, and FIG. 4 is a sectional view showing another embodiment. Explanatory schematic diagrams showing the relationship between beam convergence and divergence, Figures 5 and 6
The figure is an explanatory diagram showing a conventional multiplex lens for high-energy charged particle beams, FIG. 6 is a side view showing a conventional multiplex quadrupole lens for high-energy charged particle beams, and FIG.
FIG. 3 is an explanatory diagram for explaining the application of a potential in a pole magnet. The names of the codes are as follows. (1) (2I-Axisymmetric magnetic lens, (2)-Coil,
(3) - Yoke, (4) - Line of magnetic force, (5) - Central axis of axisymmetric magnetic lens, (6) (20a) - - Front stage quadrupole lens, (7) (2ob), - Rear stage quadrupole lens , (8)
-Charged particle beam, (9)--Charged particle beam source, a
[I) - Collimator slit, (11) - Collimator, 02) - Deflection electrode, 03) - Sample, circle - Sample mounting table, 05) - Secondary electron detector, 0ω - - Secondary Electron, XY-charged particle beam convergence/divergence direction, P-pole piece, E-rotational assembly error around the beam axis. Figure 1 Figure 2 Figure 3 Figure 4 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)荷電粒子ビーム源から引き出された荷電粒子ビー
ムをコリメータに通過させた後偏向電極により偏向させ
ると共に荷電粒子ビームを4極子レンズで収束し、この
収束された荷電粒子ビームによって試料台に載置した試
料を照射して加工又は分析する高エネルギー荷電粒子ビ
ーム応用装置において、前記荷電粒子ビーム用4極子レ
ンズは多重4極子マグネットレンズ構成とされる他、該
多重4極子マグネットレンズ間には荷電粒子ビームを回
転させるビーム回転機構が配設されてなる構成の多重4
極子レンズのビーム回転機構。
(1) The charged particle beam extracted from the charged particle beam source is passed through a collimator and then deflected by a deflection electrode, and the charged particle beam is focused by a quadrupole lens. In a high-energy charged particle beam application device that processes or analyzes a sample by irradiating it, the quadrupole lens for the charged particle beam has a configuration of multiple quadrupole magnet lenses, and there is a charged particle beam between the multiple quadrupole magnet lenses. A multiplex 4 configuration in which a beam rotation mechanism for rotating a particle beam is provided.
Polar lens beam rotation mechanism.
(2)請求項(1)記載のビーム回転機構は、荷電粒子
ビームの中心軸に対して回転軸対称の磁場を形成するこ
とが可能な構成である高エネルギー荷電粒子ビーム応用
装置における多重4極子レンズ。
(2) The beam rotation mechanism according to claim (1) is a multi-quadrupole device in a high-energy charged particle beam application device having a configuration capable of forming a magnetic field symmetrical about the rotational axis with respect to the central axis of the charged particle beam. lens.
JP1077671A 1989-03-28 1989-03-28 Beam rotating mechanism for multiple quadrupole lens Pending JPH02256147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077671A JPH02256147A (en) 1989-03-28 1989-03-28 Beam rotating mechanism for multiple quadrupole lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077671A JPH02256147A (en) 1989-03-28 1989-03-28 Beam rotating mechanism for multiple quadrupole lens

Publications (1)

Publication Number Publication Date
JPH02256147A true JPH02256147A (en) 1990-10-16

Family

ID=13640346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077671A Pending JPH02256147A (en) 1989-03-28 1989-03-28 Beam rotating mechanism for multiple quadrupole lens

Country Status (1)

Country Link
JP (1) JPH02256147A (en)

Similar Documents

Publication Publication Date Title
US6191423B1 (en) Correction device for correcting the spherical aberration in particle-optical apparatus
JP3985057B2 (en) Correction device for lens aberration correction of particle optical equipment
JP4620981B2 (en) Charged particle beam equipment
TWI747301B (en) Particle beam system for azimuthal deflection of individual particle beams and method for azimuth correction in a particle beam system
JP6490772B2 (en) Charged particle beam equipment
US7872240B2 (en) Corrector for charged-particle beam aberration and charged-particle beam apparatus
TW202046366A (en) Charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets
US4912326A (en) Direct imaging type SIMS instrument
US7947964B2 (en) Charged particle beam orbit corrector and charged particle beam apparatus
JP5153348B2 (en) Charged particle beam trajectory corrector and charged particle beam apparatus
JP5738378B2 (en) Octapole device and spot size improving method
US5986269A (en) Correction device for correcting chromatic aberration in particle-optical apparatus
US6246058B1 (en) Correction device for correcting chromatic aberration in particle-optical apparatus
EP1489641B1 (en) Charged particle deflecting system
US8723134B2 (en) Electrostatic corrector
JP2023518758A (en) Particle beam system having a multipole lens array for independently focusing multiple individual particle beams, uses thereof, and related methods
JPS61101944A (en) Charged particle beam focusing system
US20080185514A1 (en) Achromatic mass separator
JPH02230647A (en) Multi-position device and its manufacture
JPH0660840A (en) Magnetic quadrupole lens and ion-beam accelerating and decelerating devices using it
JPH02256147A (en) Beam rotating mechanism for multiple quadrupole lens
US9396904B2 (en) Multipole lens, method of fabricating same, and charged particle beam system
JP6737539B2 (en) Charged particle beam device
JPH0234426B2 (en)
US20240047169A1 (en) Simple Spherical Aberration Corrector for SEM