JPH02255592A - Method and device for producing silicon single crystal - Google Patents

Method and device for producing silicon single crystal

Info

Publication number
JPH02255592A
JPH02255592A JP1076699A JP7669989A JPH02255592A JP H02255592 A JPH02255592 A JP H02255592A JP 1076699 A JP1076699 A JP 1076699A JP 7669989 A JP7669989 A JP 7669989A JP H02255592 A JPH02255592 A JP H02255592A
Authority
JP
Japan
Prior art keywords
silicon
single crystal
heat
raw material
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076699A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamio
神尾 寛
Kenji Araki
健治 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1076699A priority Critical patent/JPH02255592A/en
Priority to FI901414A priority patent/FI901414A0/en
Priority to MYPI90000472A priority patent/MY105592A/en
Priority to EP90303260A priority patent/EP0390503A1/en
Priority to KR1019900004176A priority patent/KR930005407B1/en
Priority to CN90102475A priority patent/CN1018001B/en
Publication of JPH02255592A publication Critical patent/JPH02255592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the silicon single crystal of a low oxygen concn. level by providing a dissipated heat suppressing member above the liquid surface of molten silicon and controlling the quantity of the heat to be dissipated from the surface of the molten silicon in a crucible, thereby suppressing the quantity of the oxygen in the melt. CONSTITUTION:The crucible 1 in which molten silicon 5 is put is partitioned by a partitioning member 11 to the single crystal growing part B on the inner side and the raw material melting part A on the outer side, between which the molten silicon 5 is gently moved. The dissipated heat suppressing member 14 is provided above the liquid surface of this silicon 4, by which member the quantity of the heat to be dissipated from the liquid surface is controlled. The quantity of the oxygen in the silicon melt 4 is suppressed in this way. While a silicon raw material 16 is continuously supplied to the above-mentioned raw material supplying part A, the silicon single crystal 5 is pulled up from the prescribed growing part B.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、チョクラルスキー法によるシリコン単結晶の
製造方法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for producing a silicon single crystal using the Czochralski method.

[従来の技術] 原料を連続的に供給しながらチョクラルスキー法により
溶融シリコンを引上げてシリコン単結晶を製造する方法
(以下連続供給CZ法と略す)は古くから良く知られて
おり、その概略構成は第5図に示すようなものである。
[Prior art] The method of producing silicon single crystals by pulling up molten silicon using the Czochralski method while continuously supplying raw materials (hereinafter referred to as continuous supply CZ method) has been well known for a long time, and its outline is as follows. The configuration is as shown in FIG.

第5図において、1は石英るつぼ、4は溶融シリコン、
5はシリコン単結晶、6はヒータ、llは仕切り部材、
12は仕切り部材11に設けられた小孔で、16はシリ
コンの粒状原料である。Aは単結晶引上げ部、Bは原料
供給部である。
In Fig. 5, 1 is a quartz crucible, 4 is molten silicon,
5 is a silicon single crystal, 6 is a heater, ll is a partition member,
12 is a small hole provided in the partition member 11, and 16 is a granular silicon raw material. A is a single crystal pulling section, and B is a raw material supply section.

この連続供給C2法の優れた点は、引上げられるシリコ
ン単結晶5に見合った量のシリコンの粒状原料16を連
続的に供給するため、石英るつぼ1中の融液量を常に一
定に保つことができ、石英るつぼ1から溶解する酸素量
も常に一定であるということにある。従って、引上げら
れるシリコン単結晶5の長手方向の酸素濃度はどの位置
においても同じに保つことができる。また、シリコン単
結晶中のドーパント濃度においても、引上げられるシリ
コン単結晶5中に取り込まれるドーパント量に見合った
量をシリコン融液中に連続的に添加すれば、単結晶中の
長手方向において一定に保つことができ、従来のチョク
ラルスキー法(以下CZ法と略す)に比べて高品質、高
歩留りのシリコン単結晶を製造することができる。
The advantage of this continuous supply C2 method is that it continuously supplies silicon granular raw material 16 in an amount commensurate with the silicon single crystal 5 to be pulled, so the amount of melt in the quartz crucible 1 can always be kept constant. The reason is that the amount of oxygen dissolved from the quartz crucible 1 is always constant. Therefore, the oxygen concentration in the longitudinal direction of the silicon single crystal 5 to be pulled can be kept the same at any position. Also, the dopant concentration in the silicon single crystal can be kept constant in the longitudinal direction of the single crystal by continuously adding to the silicon melt an amount commensurate with the amount of dopant taken into the silicon single crystal 5 to be pulled. It is possible to produce silicon single crystals of high quality and high yield compared to the conventional Czochralski method (hereinafter abbreviated as CZ method).

[発明が解決しようとする課題] 以上のように、第5図に示した基本構成の連続供給CZ
法は、従来のCZ法に比べて優れている。
[Problem to be solved by the invention] As described above, the continuous supply CZ with the basic configuration shown in FIG.
The method is superior to the conventional CZ method.

特に長手方向に亘って同じ酸素濃度のシリコン単結晶が
製造できることは画期的である。
In particular, it is epoch-making that silicon single crystals can be produced with the same oxygen concentration along the length.

しかしながら、連続供給C2法では、単結晶の長手方向
の酸素濃度を一定に保つことができるものの、その酸素
濃度レベルが、従来のC2法で得られる単結晶中の酸素
濃度レベルよりもかなり高く、それを下げるのが困難で
あるといった問題がある。
However, although the continuous supply C2 method can keep the oxygen concentration in the longitudinal direction of the single crystal constant, the oxygen concentration level is considerably higher than the oxygen concentration level in the single crystal obtained by the conventional C2 method. There is a problem that it is difficult to lower it.

シリコン中の酸素濃度は、ICの品質やデバイス工程で
のハンドリング性を決める重要な要素であり、少なくと
も従来のC2法で得られる酸素濃度レベルまで低減させ
る必要があるが、現在のところ、そのような酸素濃度の
低減化技術はまだ提案されていない。
The oxygen concentration in silicon is an important factor that determines the quality of ICs and the ease of handling in device processes, and it is necessary to reduce the oxygen concentration to at least the level that can be obtained using the conventional C2 method. No technology for reducing oxygen concentration has yet been proposed.

連続供給CZ法において、単結晶中の酸素濃度が高くな
るのはつぎの理由に依るものである。連結供給する粒状
原料を加熱、溶解するための原料溶解部を余分に持つた
め、炉体は大きく、るつぼ上方の開孔部は広くなる。こ
のため、単結晶中の酸素濃度に直接関係する単結晶引上
げ部領域の融液面からの放散熱量はC2法と比較して多
くなるので、溶融シリコンへの主熱供給源である石英る
つぼの温度は高くならざるを得ない。溶融シリコン中の
酸素量は、融液面からの酸素の蒸発量と酸素の供給源で
ある石英るつぼの溶解量でおおよそ決まる。石英るつぼ
は高温はどシリコン融液に溶は易く、このために、石英
るつぼの溶解量がCZ法よりも多くなり、溶融シリコン
液中の酸素濃度レベルが高くなる。
The reason why the oxygen concentration in the single crystal increases in the continuous supply CZ method is as follows. Since it has an extra raw material melting section for heating and melting the granular raw materials that are connected and supplied, the furnace body is large and the opening above the crucible is wide. For this reason, the amount of heat dissipated from the melt surface in the single crystal pulling region, which is directly related to the oxygen concentration in the single crystal, is greater than in the C2 method, so the amount of heat dissipated from the melt surface in the single crystal pulling region is greater than that in the C2 method. The temperature has to rise. The amount of oxygen in molten silicon is approximately determined by the amount of oxygen evaporated from the melt surface and the amount dissolved in the quartz crucible, which is the oxygen supply source. A quartz crucible is easily dissolved in a high-temperature silicon melt, and for this reason, the amount of dissolution in a quartz crucible is larger than in the CZ method, and the oxygen concentration level in the molten silicon liquid is higher.

従って、引上げられるシリコン単結晶は長手方向に渡っ
て一定ではあるが、酸素濃度レベルが高いものとなって
しまうのが現状である。
Therefore, the current situation is that the silicon single crystal that is pulled has a high oxygen concentration level, although it is constant in the longitudinal direction.

本発明は、上述の問題点を解決するためになされたもの
で、連続供給CZ法において、その特徴を生かしつつシ
リコン単結晶の長手方向の酸素濃度レベルを低減すべく
、溶融シリコン液中の酸素量を低減することを可能にし
たシリコン単結晶の製造方法及びその装置を得ることを
目的とする。
The present invention was made in order to solve the above-mentioned problems, and in order to reduce the oxygen concentration level in the longitudinal direction of a silicon single crystal while taking advantage of the characteristics of the continuous supply CZ method, the present invention aims to reduce the oxygen concentration level in the longitudinal direction of a silicon single crystal. An object of the present invention is to obtain a method for manufacturing silicon single crystal and an apparatus therefor, which makes it possible to reduce the amount of silicon single crystal.

[課題を解決するための手段] 本発明に係るシリコン単結晶の製造方法は、溶融シリコ
ン液面からの放散熱量を制御することにより、溶融シリ
コン液中の酸素量を抑制する。
[Means for Solving the Problems] The method for manufacturing a silicon single crystal according to the present invention suppresses the amount of oxygen in the molten silicon liquid by controlling the amount of heat dissipated from the molten silicon liquid surface.

また、本発明に係るシリコン単結晶の製造装置は、上記
の製造方法を実施するために、溶融シリコン液面上方に
、その液面からの放散熱量を調節する放散熱抑制部材を
設置している。この放散熱抑制部材としては以下の態様
が挙げられる。
Furthermore, in order to carry out the above-described manufacturing method, the silicon single crystal manufacturing apparatus according to the present invention includes a heat dissipation suppressing member installed above the molten silicon liquid surface to adjust the amount of heat dissipated from the liquid surface. . The following aspects can be mentioned as this radiation heat suppression member.

(a)放散熱抑制部材は繊維状耐火物から構成され、そ
の耐火物量を調節することにより放散熱抑制度合を調整
する。そして、繊維状耐火物を金属板で被覆する。
(a) The radiation heat suppression member is made of a fibrous refractory, and the degree of radiation heat suppression is adjusted by adjusting the amount of the refractory. Then, the fibrous refractory is covered with a metal plate.

(b)放散熱抑制部材は間隙を持った多層金属板から構
成され、その金属板の枚数を調節することにより放散熱
抑制度合を調整する。
(b) The radiation heat suppression member is composed of multilayer metal plates with gaps, and the degree of radiation heat suppression is adjusted by adjusting the number of the metal plates.

(c)放散熱抑制部材は電気抵抗発熱体から構成され、
通電量を抑制することにより放散熱抑制度合を制御する
(c) the dissipation heat suppressing member is composed of an electrical resistance heating element;
The degree of suppression of dissipated heat is controlled by suppressing the amount of electricity.

[作 用] 本発明においては、放散熱抑制部材により溶融シリコン
液面からの放散熱量が抑制され、その結果溶融液中の酸
素量も抑制され、引上げられるシリコン単結晶中の酸素
濃度が低減する。
[Function] In the present invention, the amount of heat dissipated from the molten silicon liquid surface is suppressed by the dissipation heat suppressing member, and as a result, the amount of oxygen in the melt is also suppressed, and the oxygen concentration in the silicon single crystal to be pulled is reduced. .

[実施例] 第1図は本発明の一実施例を模式的に示した断面図であ
る。図において、1は石英るつぼで、黒鉛るつぼ2の中
にセットされており、黒鉛るつぼ2はベデイスタル3上
に上下動及び回転可能に支持されている。4はるつぼ1
内に入れられた溶融シリコンで、これから柱状に育成さ
れた単結晶5が引上げられる。6は黒鉛るつぼ2をとり
囲むヒータ、7はこのヒータ6をとり囲むホットゾーン
断熱材で、これらはチャンバー8内に収容されている。
[Example] FIG. 1 is a sectional view schematically showing an example of the present invention. In the figure, a quartz crucible 1 is set in a graphite crucible 2, and the graphite crucible 2 is supported on a bedistal 3 so as to be movable up and down and rotatable. 4 crucible 1
A single crystal 5 grown in a columnar shape is pulled up by the molten silicon placed inside. 6 is a heater surrounding the graphite crucible 2; 7 is a hot zone heat insulating material surrounding the heater 6; these are housed in a chamber 8.

11は高純度の石英からなり、るつぼ1と同心的に構成
された仕切り部材で、高さ方向のは?中央部から下の領
域には、微少小孔12が貫設されている。従って、仕切
り部材11の外側の溶融液は微少小孔12を介してのみ
静かに内側に移動できるため、原料溶解部Aと結晶引上
げ部Bとを十分に仕切ることができる。
11 is a partition member made of high-purity quartz and configured concentrically with crucible 1. What is the height in the height direction? A minute hole 12 is provided in the area below the center. Therefore, the molten liquid outside the partition member 11 can quietly move inward only through the minute holes 12, so that the raw material melting section A and the crystal pulling section B can be sufficiently partitioned off.

9はチャンバー8に、仕切り部材11の外側の溶融液面
に対応して設けた開口部で、この開口部9には粒状原料
の供給装置13が挿入固定されており、供給装置13の
先端部は仕切り部材11の外側の溶融液面と対向してい
る。この供給装置13はチャンバー8の外部に設けた原
料供給チャンバー(図示せず)に連結されており、粒状
原料を連続的に溶融液表面上に供給する。以上は連続供
給CZ法の装置と基本的には同じである。
Reference numeral 9 denotes an opening provided in the chamber 8 corresponding to the molten liquid surface on the outside of the partition member 11. A supply device 13 for granular raw material is inserted and fixed into this opening 9, and the tip of the supply device 13 is inserted into and fixed to the opening 9. is opposed to the molten liquid surface on the outside of the partition member 11. This supply device 13 is connected to a raw material supply chamber (not shown) provided outside the chamber 8, and continuously supplies the granular raw material onto the surface of the melt. The above is basically the same as the continuous supply CZ method apparatus.

14は放散熱抑制部材で、熱伝導率の小さい繊維状耐火
物を使用している。放散熱抑制部材14の外周部は石英
ガラス板(図示せず)を介してホットゾーン断熱材7に
支持され、溶融シリコン4を覆うよう°にセットされて
いる。15は粒状原料16の供給路に設けた穴、17は
単結晶引上げに支障のないように設けた円形状の切欠部
である。
Reference numeral 14 denotes a heat dissipation suppressing member, which is made of a fibrous refractory with low thermal conductivity. The outer periphery of the heat dissipation suppressing member 14 is supported by the hot zone heat insulating material 7 via a quartz glass plate (not shown), and is set at an angle so as to cover the molten silicon 4 . Reference numeral 15 is a hole provided in a supply path for the granular raw material 16, and reference numeral 17 is a circular notch provided so as not to hinder the pulling of the single crystal.

上記のように構成された製造装置において、放散熱抑制
部材14は断熱部材としての峨能を果たし、その厚みあ
るいは切欠部17の面積を調整することにより、溶融シ
リコン4の液面からの放散熱量を任意に抑制制御するこ
とができる。また、原料溶解部Bの溶融シリコン及び石
英仕切り部材11に対しても保熱効果があり、ヒータ6
の温度を下げても、粒状原料1Bの未溶解あるいは仕切
り部材11からの凝固発生といった単結晶5の引上げに
支障となる問題が起らないことが確認された。
In the manufacturing apparatus configured as described above, the heat dissipation suppressing member 14 functions as a heat insulating member, and by adjusting its thickness or the area of the notch 17, the amount of heat dissipated from the liquid surface of the molten silicon 4 can be reduced. can be arbitrarily suppressed and controlled. It also has a heat retention effect on the molten silicon in the raw material melting section B and the quartz partition member 11, and the heater 6
It was confirmed that even if the temperature was lowered, problems such as unmelting of the granular raw material 1B or solidification from the partition member 11 that would hinder the pulling of the single crystal 5 did not occur.

放散熱抑制部材14により溶融シリコン4からの放散熱
量を抑制すると、ヒータ6の温度を下げることができる
。従って、ヒータ6に囲まれている石英るつぼ1の温度
は低下し、溶融シリコン中への石英るつぼの溶解量が減
少するので、溶融シリコン中の酸素量を下げることがで
きる。すなわち、引上げられるシリコン単結晶中の酸素
濃度は放散熱抑制部材14の放散熱量の抑制度合を制御
することにより、従来の連続供給CZ法では得られなか
ったような低濃度レベルまで制御できるようになった。
When the amount of heat dissipated from the molten silicon 4 is suppressed by the dissipation heat suppressing member 14, the temperature of the heater 6 can be lowered. Therefore, the temperature of the quartz crucible 1 surrounded by the heater 6 is lowered, and the amount of the quartz crucible dissolved into the molten silicon is reduced, so that the amount of oxygen in the molten silicon can be lowered. That is, by controlling the degree of suppression of the amount of heat dissipated by the dissipation heat suppressing member 14, the oxygen concentration in the silicon single crystal to be pulled can be controlled to a low concentration level that could not be obtained with the conventional continuous supply CZ method. became.

第2図(A)(B)は放散熱抑制部材の実施例を示した
もので、同図(A)は同図(B)のA−A断面図、同図
(B)は平面図である。この実施例の放散熱抑制部材1
4は繊維状耐火物20を金属板21で囲ったものである
。放散熱抑制部材14は溶融シリコン4の液面上方に設
置するため汚染源になってはいけない。繊維状耐火物2
0は長時間使用中に剥離することも考えられるので、本
実施例のように金属板21で被覆し汚染防止を配慮して
おく方がより良い。
Figures 2 (A) and 2 (B) show examples of the heat dissipation suppressing member; Figure 2 (A) is a sectional view taken along line A-A in Figure 2 (B), and Figure 2 (B) is a plan view. be. Dissipation heat suppression member 1 of this example
4, a fibrous refractory 20 is surrounded by a metal plate 21. Since the heat dissipation suppressing member 14 is installed above the liquid level of the molten silicon 4, it must not become a source of contamination. Fibrous refractory 2
0 may peel off during long-term use, so it is better to cover it with a metal plate 21 as in this embodiment to prevent contamination.

金属板21は、耐熱性、耐化学反応性及び高温強度性を
考え、使用環境に合ったものでなくてはならない。本実
施例では、金属板21に厚さ0.5關のモリブデンを使
用した。ただし、モリブデンはカーボンと高温で接する
と炭化物を作り易いので、石英ガラス板(図示せず)を
介してホットゾーン断熱材(カーボン製)7の上に設置
する。
The metal plate 21 must be suitable for the environment in which it will be used, taking into consideration heat resistance, chemical reaction resistance, and high-temperature strength. In this embodiment, molybdenum with a thickness of 0.5 mm was used for the metal plate 21. However, since molybdenum tends to form carbides when it comes into contact with carbon at high temperatures, it is installed on the hot zone insulation material (made of carbon) 7 via a quartz glass plate (not shown).

また、繊維状耐火物20には、熱伝導率の非常に小さい
アルミナを主体とした材料を使用し、モリブデンとの反
応を防止した。
Further, the fibrous refractory 20 is made of a material mainly composed of alumina, which has a very low thermal conductivity, to prevent reaction with molybdenum.

第3図(A)(B)は放散熱抑制部材の他の実施例を示
したものであり、同図(A)は同図(B)のA−A断面
図、同図(B)は平面図である。この実施例の放散熱抑
制部材14は金属板22を多層構造にしたものであり、
断熱効果を高めるために各金属板22が接触しないよう
にスペーサ23を介在させている。金属板22にはモリ
ブデンを使用し、ホットゾーン断熱材7との間に石英ガ
ラス板(図示せず)を介して設置する。
FIGS. 3(A) and 3(B) show other embodiments of the heat dissipation suppressing member, and FIG. 3(A) is a sectional view taken along line A-A in FIG. FIG. The heat dissipation suppressing member 14 of this embodiment has a multilayer structure of a metal plate 22,
In order to enhance the heat insulation effect, spacers 23 are interposed so that the metal plates 22 do not come into contact with each other. The metal plate 22 is made of molybdenum, and is installed between the metal plate 22 and the hot zone heat insulating material 7 via a quartz glass plate (not shown).

第4図は(A)(B)は放散熱抑制部材の他の実施例を
示したもので、同図(A)は同図(B)のA−A断面図
、同図(B)は平面図である。この実施例は放散熱抑制
部材14に電気抵抗発熱体24を使用したものである。
4(A) and 4(B) show other embodiments of the heat dissipation suppressing member; FIG. 4(A) is a sectional view taken along line A-A in FIG. FIG. In this embodiment, an electric resistance heating element 24 is used as the radiation heat suppressing member 14.

この実施例では、シリコン融液4からの放散熱量を抑制
制御するために発熱体24の温度を、端子25.25か
らの通電量を制御することにより調整した。前述の繊維
状耐火物2゜を放散熱抑制部材14として使用する場合
に比べ微細な放散熱量制御、すなわち単結晶中の酸素濃
度制御が可能であった。なお、この放散熱抑制部材14
は端子25及び支持部2Bにより上方がら固定し、ホッ
トゾーン断熱材7に接触しないように取り付けられて設
置される。
In this example, in order to suppress and control the amount of heat dissipated from the silicon melt 4, the temperature of the heating element 24 was adjusted by controlling the amount of current supplied from the terminals 25 and 25. Compared to the case where the aforementioned fibrous refractory 2° is used as the heat dissipation suppressing member 14, finer control of the amount of dissipated heat, that is, control of the oxygen concentration in the single crystal, was possible. Note that this radiation heat suppression member 14
is fixed from above by the terminal 25 and the support part 2B, and is installed so as not to contact the hot zone heat insulating material 7.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、溶融
シリコン液面がらの放散熱量を抑制することにより、シ
リコン溶融液中の酸素量を調整できるように構成したの
で、連続供給cz法において低酸素濃度レベルのシリコ
ン単結晶の製造が可能になり、実施による効果は大であ
る。
As is clear from the above description, according to the present invention, the amount of oxygen in the silicon melt can be adjusted by suppressing the amount of heat dissipated from the surface of the molten silicon, so that it is possible to adjust the amount of oxygen in the silicon melt. It has become possible to manufacture silicon single crystals with low oxygen concentration levels, and the effects of implementation are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を模式的に示した縦断面図、
第2図(A)(B)は放散熱抑制部材のの実施例の断面
図及び平面図、第3図(A)(B)はは放散熱抑制部材
の他の実施例の断面図及び平面図、第4図は(A)(B
)は放散熱抑制部材のの他の実施例の断面図及び平面図
、第5図は従来の連続供給CZ法の概略図である。 に石英るつぼ、2:黒鉛るつぼ、4:溶融シリコン、5
:単結晶、6:ヒータ、8:チャンバ、ll:石英仕切
り部材、I4:放散熱抑制部材、lB=粒状原料。 代理人 弁理士 佐 々 木 宗 治 第1図 14:歓散均午刊炸材 く」
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of the present invention;
2(A) and (B) are a sectional view and a plan view of an embodiment of the heat dissipation suppressing member, and FIGS. 3(A) and (B) are a sectional view and a plan view of another embodiment of the dissipation heat suppressing member. Figure 4 is (A) (B)
) is a sectional view and a plan view of another embodiment of the heat dissipation suppressing member, and FIG. 5 is a schematic diagram of the conventional continuous supply CZ method. quartz crucible, 2: graphite crucible, 4: molten silicon, 5
: Single crystal, 6: Heater, 8: Chamber, 11: Quartz partition member, I4: Dissipation heat suppressing member, 1B = Granular raw material. Agent Patent Attorney Muneharu Sasaki Figure 1 14: Kansankyun Gokan Hitsujiku

Claims (6)

【特許請求の範囲】[Claims] (1)溶融シリコンが入れられたるつぼを該溶融シリコ
ンが静かに移動しうるように内側の単結晶育成部と外側
の原料供給部とに仕切り、該原料供給部にシリコン原料
を連続的に供給しながら前記単結晶育成部から溶融シリ
コンを引き上げてシリコン単結晶を製造する方法におい
て、 前記溶融シリコン液面からの放散熱量を制御することに
より、シリコン溶融液中の酸素量を抑制することを特徴
とするシリコン単結晶の製造方法。
(1) A crucible containing molten silicon is divided into an inner single crystal growth section and an outer raw material supply section so that the molten silicon can move quietly, and the silicon raw material is continuously supplied to the raw material supply section. In the method for producing a silicon single crystal by pulling up molten silicon from the single crystal growth section, the amount of oxygen in the silicon melt is suppressed by controlling the amount of heat dissipated from the molten silicon liquid surface. A method for producing silicon single crystal.
(2)溶融シリコンが入れられたるつぼを該溶融シリコ
ンが静かに移動しうるように内側の単結晶育成部と外側
の原料供給部とに仕切り、該原料供給部にシリコン原料
を連続的に供給しながら前記単結晶育成部から溶融シリ
コンを引き上げてシリコン単結晶を製造する装置におい
て、 前記溶融シリコン液面上方に、該融液面からの放散熱量
を調節する放散熱抑制部材を設置したことを特徴とする
シリコン単結晶の製造装置。
(2) The crucible containing molten silicon is divided into an inner single crystal growth section and an outer raw material supply section so that the molten silicon can move quietly, and the silicon raw material is continuously supplied to the raw material supply section. However, in the apparatus for producing a silicon single crystal by pulling up molten silicon from the single crystal growth section, a heat dissipation suppressing member is installed above the surface of the molten silicon to adjust the amount of heat dissipated from the surface of the melt. Characteristic silicon single crystal manufacturing equipment.
(3)放散熱抑制部材が繊維状耐火物からなっており、
該耐火物量を調節することにより、放散熱抑制度合を調
整することを特徴とする請求項2記載のシリコン単結晶
の製造装置。
(3) The heat dissipation suppressing member is made of fibrous refractory,
3. The silicon single crystal manufacturing apparatus according to claim 2, wherein the degree of suppression of heat dissipation is adjusted by adjusting the amount of the refractory.
(4)繊維状耐火物を金属板で被覆したことを特徴とす
る請求項3記載のシリコン単結晶の製造装置。
(4) The silicon single crystal manufacturing apparatus according to claim 3, wherein the fibrous refractory is covered with a metal plate.
(5)放散熱抑制部材が間隙を持った多層金属板からな
っており、該金属板の枚数を調節することにより、放散
熱抑制度合を調整することを特徴とする請求項2記載の
シリコン単結晶の製造装置。
(5) The silicon monomer according to claim 2, wherein the heat dissipation suppressing member is made of a multilayer metal plate having gaps, and the degree of suppressing the dissipation heat is adjusted by adjusting the number of the metal plates. Crystal manufacturing equipment.
(6)放散熱抑制部材が電気抵抗発熱体からなっており
、通電量を抑制することにより放散熱抑制度合を制御す
ることを特徴とする請求項2記載のシリコン単結晶の製
造装置。
(6) The silicon single crystal manufacturing apparatus according to claim 2, wherein the dissipation heat suppressing member is made of an electrical resistance heating element, and the degree of dissipation heat suppression is controlled by suppressing the amount of current applied.
JP1076699A 1989-03-30 1989-03-30 Method and device for producing silicon single crystal Pending JPH02255592A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1076699A JPH02255592A (en) 1989-03-30 1989-03-30 Method and device for producing silicon single crystal
FI901414A FI901414A0 (en) 1989-03-30 1990-03-21 ANORDINATION FOR FRAMING A KISELENKRISTALLER.
MYPI90000472A MY105592A (en) 1989-03-30 1990-03-26 Apparatus of manufacturing silicon single crystals.
EP90303260A EP0390503A1 (en) 1989-03-30 1990-03-27 Apparatus of manufacturing silicon single crystals
KR1019900004176A KR930005407B1 (en) 1989-03-30 1990-03-28 Apparatus for manufacturing silicon single crystals
CN90102475A CN1018001B (en) 1989-03-30 1990-03-30 Make the equipment of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076699A JPH02255592A (en) 1989-03-30 1989-03-30 Method and device for producing silicon single crystal

Publications (1)

Publication Number Publication Date
JPH02255592A true JPH02255592A (en) 1990-10-16

Family

ID=13612749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076699A Pending JPH02255592A (en) 1989-03-30 1989-03-30 Method and device for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JPH02255592A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345154A (en) * 2011-08-14 2012-02-08 上海合晶硅材料有限公司 Method and device for improving oxygen content in monocrystalline silicon crystal bar
WO2012077279A1 (en) * 2010-12-06 2012-06-14 信越半導体株式会社 Heat insulating cylinder, method for manufacturing heat insulating cylinder, and apparatus for manufacturing single crystal
JP2012153570A (en) * 2011-01-26 2012-08-16 Daiichi Kiden:Kk Pulling-up sapphire single crystal growing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077279A1 (en) * 2010-12-06 2012-06-14 信越半導体株式会社 Heat insulating cylinder, method for manufacturing heat insulating cylinder, and apparatus for manufacturing single crystal
JP2012153570A (en) * 2011-01-26 2012-08-16 Daiichi Kiden:Kk Pulling-up sapphire single crystal growing apparatus
CN102345154A (en) * 2011-08-14 2012-02-08 上海合晶硅材料有限公司 Method and device for improving oxygen content in monocrystalline silicon crystal bar

Similar Documents

Publication Publication Date Title
KR930001895B1 (en) Method and equipment for manufacturing silicon single crystal
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
JPH02133389A (en) Production device of silicon single crystal
JP3811408B2 (en) Method and apparatus for producing a single crystal made of silicon
KR20160075498A (en) Silicon single crystal puller
KR930005408B1 (en) Apparatus for manufacturing silicon single crystals
KR930005407B1 (en) Apparatus for manufacturing silicon single crystals
JPH1081596A (en) Production of single crystal and apparatus therefor
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JPH08337491A (en) Apparatus for producing crystal by czochralski method and its production
JPH03295891A (en) Device for producing silicon single crystal
JPS6153187A (en) Device for growing single crystal
EP1538242B1 (en) Heater for crystal formation, apparatus for forming crystal and method for forming crystal
JPH02255592A (en) Method and device for producing silicon single crystal
KR100421125B1 (en) Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
KR101645650B1 (en) Device for producing single crystals and method for producing single crystals
JP2709310B2 (en) Single crystal pulling device
KR100297575B1 (en) Single crystal production method and drawing device
KR100467836B1 (en) A Graphite heater of a Grower for single crystalline silicon ingot
JPH01317189A (en) Production of single crystal of silicon and device therefor
JPH03164494A (en) Method and apparatus for producing silicon single crystal
KR102532226B1 (en) Heat shield assembly of single crystal pulling apparatus
JPH11189487A (en) Production apparatus for oxide single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPH03193694A (en) Crystal growing device