JPH02254146A - Induction heating device, induction heating-type alloying furnace, and alloying method - Google Patents

Induction heating device, induction heating-type alloying furnace, and alloying method

Info

Publication number
JPH02254146A
JPH02254146A JP1071675A JP7167589A JPH02254146A JP H02254146 A JPH02254146 A JP H02254146A JP 1071675 A JP1071675 A JP 1071675A JP 7167589 A JP7167589 A JP 7167589A JP H02254146 A JPH02254146 A JP H02254146A
Authority
JP
Japan
Prior art keywords
heating
alloying
induction heating
coil
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1071675A
Other languages
Japanese (ja)
Inventor
Yasuo Ise
伊勢 保夫
Katsumasa Sekiguchi
関口 克正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1071675A priority Critical patent/JPH02254146A/en
Publication of JPH02254146A publication Critical patent/JPH02254146A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To form an Fe-Zn alloy layer having uniform thickness and composition in the width direction of a steel sheet by using a solenoid coil-type induction heating system in combination with a transverse-type induction heating system in an alloying furnace at the time of forming the plating layer of a hot dip galvanized steel sheet into an Fe-Zn alloyed plating layer by means of an alloying furnace. CONSTITUTION:At the time of providing an Fe-Zn alloy layer excellent in adhesive strength by means of mutual diffusion between Zn in the plating layer and Fe in the steel sheet by passing a hot dip galvanized steel sheet 1 through an alloying furnace to apply heating to this sheet 1, an induction heating coil 2 of solenoid coil system and plural induction heating coils 3a-3c of transverse system are adopted as a heating system in the alloying furnace, and further, the plural induction heating coils 3a-3c of transverse system are constituted so that they are freely movable in the width direction of the plated steel sheet 1. By this method, the whole width of the plated steel sheet is uniformly heated by means of the induction heating coil 2 of solenoid coil system and also the degree of heating in the width direction of the plated steel sheet 1 is regulated by means of the induction heating coils 3a-3c of transverse system, by which the Fe-Zn alloyed plating layer can be formed to uniform thickness in the width direction of the plated steel sheet 1.

Description

【発明の詳細な説明】 [産業−1−の利用分野] この発明は、金属帯を連続的に加熱する際に金属帯幅方
向で加熱の度合いを制御することが出来る加熱技術、例
えば、溶融亜鉛めっき鋼帯の加工性に微妙な影響を与え
る鉄−亜鉛合金めっき層の合金化度調整、特に従来生じ
易かっなめっき鋼帯幅方向の合金化度分布を均一にする
、三方式の誘導加熱を組み合わせ調整する合金化技術に
関するものである。
Detailed Description of the Invention [Field of Application in Industry-1-] The present invention is directed to a heating technique that can control the degree of heating in the width direction of the metal band when continuously heating the metal band, such as melting. Three methods of induction heating are used to adjust the degree of alloying of the iron-zinc alloy plating layer, which has a subtle effect on the workability of galvanized steel strips, and to even out the degree of alloying distribution in the width direction of galvanized steel strips, which is difficult to achieve in the past. This relates to alloying technology that combines and adjusts.

[従来技術] 金属帯の連続加熱は、金属帯の材質改善或は防食や装飾
のために被覆した樹脂皮膜の重合(焼き付け)或は金属
皮膜の調質など多くの分野で用いられている技術である
。加熱の方式としては、燃類ガスによるもの、金属帯に
通電しジュール熱を利用するもの、高周波電流を用いて
誘導加熱を行うもの等が一般に用いられている。
[Prior art] Continuous heating of metal strips is a technology used in many fields, such as improving the material of metal strips, polymerizing (baking) coated resin films for corrosion protection and decoration, and refining metal films. It is. Generally used heating methods include methods using fuel gas, methods using Joule heat by passing electricity through a metal band, and methods using induction heating using high frequency current.

溶融亜夕()め−)き鋼帯の合金化も連続加熱によって
処理される技術の−ってあり、この例によって、従来の
連続加熱技術を説明する。−・般に溶融亜鉛め−)き鋼
帯は連続方式により製造され、銅帯:1イルか巻き反さ
れめっきされた製品がコイルとして巻き取られるまで−
・貫した連続工程となっており、このほぼ中間に合金炉
か設けられている。
There is also a technology in which alloying of molten steel strip is carried out by continuous heating, and the conventional continuous heating technology will be explained using this example. --Generally hot-dip galvanized steel strip-) is produced by a continuous method, and the copper strip is unwound for one coil until the plated product is wound as a coil.
・It is a continuous process, and an alloy furnace is installed approximately in the middle.

この状況を第9図に示す。図て、4は合金炉、8は溶融
亜鉛ボッI・、9は水冷槽、11は溶融亜鉛め−)き鋼
帯、21は気体絞りノズル、23は連続焼鈍炉、24は
鋼帯コイルである。鋼帯コイル271は巻き戻された後
、連続焼鈍炉23を通過する間に無酸化状態で浄化され
焼鈍されて溶融亜鉛めっきボット8に入る。ここ°C表
層に溶融した亜鉛を付着した溶融亜鈴めっき鋼帯11は
気体絞りノズル21の開を通過するときに、余分な亜鉛
を払拭され[」釣力付着量に調整される9次の合金化炉
4では、付着量や鋼帯厚や走行速度等に応じてその度合
いを調整して加熱することによって、亜鉛めっき皮膜に
鉄を拡散させ合金化処理を行う。
This situation is shown in FIG. In the figure, 4 is an alloy furnace, 8 is a molten zinc plate I, 9 is a water cooling tank, 11 is a hot dip galvanized steel strip, 21 is a gas throttle nozzle, 23 is a continuous annealing furnace, and 24 is a steel strip coil. be. After the steel strip coil 271 is unwound, it passes through the continuous annealing furnace 23, where it is purified and annealed in a non-oxidized state, and then enters the hot-dip galvanizing bot 8. When the hot-dip zinc-plated steel strip 11, which has molten zinc adhered to its surface layer, passes through the opening of the gas throttle nozzle 21, excess zinc is wiped off and the ninth-order alloy is adjusted to the amount of adhesion due to its fishing force. In the heat treatment furnace 4, iron is diffused into the galvanized film and an alloying process is performed by adjusting the degree of heating according to the amount of adhesion, the thickness of the steel strip, the running speed, etc.

この後、形状矯正、化成処理、オイリング等の仕上は処
理を何れも連続的に施されて製品となりコイル状に巻き
取られる。
Thereafter, finishing treatments such as shape correction, chemical conversion treatment, and oiling are continuously applied to the product, which is then wound into a coil.

亜鉛めっき層を合金化するのは、これによ−)で溶接性
か向上し又塗装性がよくなり塗装後耐食性か改善される
からであり、これらの特性が特に自動車用鋼板で厳しく
要求されているからである。
The reason for alloying the galvanized layer is that it improves weldability, paintability, and corrosion resistance after painting, and these properties are particularly required for automotive steel sheets. This is because

合金化炉では溶融亜鉛めっき鋼帯を480°C乃至60
0°Cに加熱する。この加熱方法として、#、もよく用
いられているのは直火加熱式で、従来の合金化炉の殆と
はこの形式である。この方式では、金属帯の表裏に対面
する炉壁に多数のカソプハナ−を並I\て燃焼させるこ
とにより加熱する。したがって、力7プハ−す−の点滅
により金属帯幅方向の温度を変えることはてきる。しか
し、定量的に調整することは困難で、例えば、個々のバ
ナーめ燃焼量を均一に保つことが難しい。史に、燃焼し
たガスが炉内を吹き抜けるため、その影響が金属帯幅方
向の著しい温度差となって現れる。
In the alloying furnace, hot-dip galvanized steel strip is heated at 480°C to 60°C.
Heat to 0°C. The most commonly used heating method is the direct heating method, and most conventional alloying furnaces are of this type. In this method, a large number of cassophaners are burned in parallel on the furnace walls facing the front and back sides of the metal strip to heat the metal strip. Therefore, it is possible to change the temperature in the width direction of the metal strip by blinking the force 7 phase. However, it is difficult to adjust it quantitatively, for example, it is difficult to keep the combustion amount of each burner uniform. Historically, the combusted gas blows through the furnace, resulting in a significant temperature difference across the width of the metal strip.

前に記した樹脂皮膜を焼きイ]ける場合では、ガス燃焼
加熱でも直火型ではなく間接型を用いるが、加熱の度合
いを調整する難しさは以前として残る。
In the case of baking the resin film described above, an indirect type is used instead of a direct type even for gas combustion heating, but the difficulty of adjusting the degree of heating remains as before.

この点を解決するために、最近、誘導加熱式が利用され
るようにな−)てきた。誘導加熱式では、ソレノイドコ
イル方式とトランスバース方式とが−・般に知られてい
る。ソしノイドコイル方式を第7図に、トランスバース
方式を第8図に各々示す。これらの図で1は金属帯、2
はソレノイドコイル方式の加熱コイル、3はトランスバ
ース方式の加熱コイルである。ソレノイドコイル方式の
加熱コイル2は、金属帯1の周囲を取り巻いている。ト
ランスバース方式の加熱コイル8は金属帯1を挿んで両
側にか対峙している。両方式の特徴は、ソしノイドコイ
ル方式が板幅依存性か殆ど無いのに対して、トランスバ
ース方式ては依存性が犬きく金属帯幅方向に温度差か生
してしまうことである。このため、金属帯の連続加熱で
はソレノイドコイルが専ら用いられ、l・ランスバース
方式は用いられていない(例えば、特開昭61=207
562)。
To solve this problem, induction heating has recently come into use. As for the induction heating type, the solenoid coil type and the transverse type are generally known. The solenoid coil method is shown in FIG. 7, and the transverse method is shown in FIG. 8. In these figures, 1 is a metal band, 2
3 is a solenoid coil type heating coil, and 3 is a transverse type heating coil. A solenoid coil type heating coil 2 surrounds the metal band 1. Transverse type heating coils 8 are opposed to each other on both sides with metal strips 1 inserted therein. The characteristic of both types is that while the solenoid coil type has almost no dependence on the width of the metal strip, the transverse type has very little dependence on the width of the metal strip, resulting in a temperature difference in the width direction of the metal strip. For this reason, solenoid coils are exclusively used for continuous heating of metal strips, and the lanceverse method is not used (for example, JP-A-61=207
562).

[発明が解決しようとする課題] ソレノイドコイル方式の誘導加熱によって金属帯幅方向
に均一に加熱することは出来るようになったが、金属帯
によっては金属帯自身が幅方向に不均一な特性を持つも
のがある。特にめっきされたり或は樹脂皮膜など表面処
理を施された金属帯では、処理被膜厚が中央部と幅方向
端部とで買なることが多い。このような場合、ソレノイ
ドコイル方式では幅方向の位置よって加熱エネルギ投入
量を調整することができず、結果として製品の性質に幅
方向の不均一を生じさせてしまう。
[Problem to be solved by the invention] Although it has become possible to uniformly heat the metal strip in the width direction by induction heating using a solenoid coil method, some metal strips may have non-uniform characteristics in the width direction. I have something. In particular, in metal strips that have been plated or surface-treated with a resin coating, the thickness of the treated coating is often different between the center portion and the widthwise end portions. In such a case, with the solenoid coil method, it is not possible to adjust the amount of heating energy input depending on the position in the width direction, resulting in non-uniformity in the properties of the product in the width direction.

このような問題を解決するためにこの発明はなされたも
ので、誘導加熱の方式を組み合わせることによって、金
属帯幅方向の特性の均一化することを目的とするもので
ある。
The present invention was made to solve these problems, and aims to make the characteristics of the metal strip uniform in the width direction by combining induction heating methods.

(]課題を解決するための手段] この]、]的を達成するための手段は、金属帯を連続加
熱する加熱装置において、ソレノイドコイル方式の加熱
コイルとトランスバース方式の加熱コイルとを併設し、
な誘導加熱装置であり、溶融亜鉛め−1さ#4引1を連
続的に合金化する合金化炉においでは、ソレノイドコイ
ル方式の加熱コイルとトランスバース方式の加熱コイル
とを前記溶融亜鉛めっき鋼帯の進路方向に所定の間隔を
おいて併設し、旧つ、前記トランスバース方式の加熱コ
イルがn1■記溶融亜鉛めつき鋼帯の進行直角方向に位
置の調節かできるように可動に設置した誘導加熱合金イ
し炉であり、並びに、ソレノイドコイル方式のhNAコ
fルと)・ランスバース方式の加熱コイルとを併用する
ことによって、走行する溶融亜鉛めつき鋼帯の幅方向の
加熱条件を調整し、前記溶融亜鉛めっき鋼帯の幅方向の
き全化度を均一にする合金化方法である1、 [作用] 前述したように、金属帯の連続加熱装置がンレメイドコ
イル方式の誘導加熱装置であった場合、金属帯はその幅
方向にほぼ均一に加熱される。厳密に言えば、金属帯の
形状に基づく縁端部効果によって、金属帯縁端部のみが
中央部より誘導電流が多くなり4乃至5°C程度より高
温に加熱されるか、温度差としても不十分て、又、この
現象はソレノイドコイル、周波数及び金属帯の形状や電
気的性質によって固定されてしまうもので、金属帯幅方
向の温度分布制御には利用できない。この金属帯幅方向
に関して均一加熱特性を有するソレノイドコイル方式の
加熱コイルと反対に不拘−加熱特性即ち部分加熱特性と
存する1〜ランスハ〜スブノ式の加熱コイルとか併設さ
れていると、ソレノイドコイル方式での全体加熱に加え
て、加熱の度合いを高めたい位置にトランスバース方式
の加熱コイルを適用することかでき、金属帯幅方向の温
度分布制御か可能となる。
(Means for solving the problem) The means for achieving this goal is to install a solenoid coil type heating coil and a transverse type heating coil in a heating device that continuously heats a metal strip. ,
In an alloying furnace that continuously alloys hot-dip galvanized steel #4, a solenoid coil type heating coil and a transverse type heating coil are used to heat the hot-dip galvanized steel. The heating coils of the transverse method were installed movably in the direction perpendicular to the direction of travel of the hot-dip galvanized steel strip. It is an induction heating alloy heating furnace, and by using a solenoid coil type hNA coil and a lance bar type heating coil, it is possible to control the heating conditions in the width direction of a running hot-dip galvanized steel strip. This is an alloying method that adjusts the degree of roughening in the width direction of the hot-dip galvanized steel strip to make it uniform. 1. [Function] As mentioned above, the continuous heating device for the metal strip is an inductive coil type induction heating device. In this case, the metal strip is heated almost uniformly in its width direction. Strictly speaking, due to the edge effect based on the shape of the metal band, only the edge of the metal band receives more induced current than the center, and is heated to a higher temperature of about 4 to 5°C, or even as a temperature difference. Moreover, this phenomenon is fixed by the solenoid coil, the frequency, the shape and electrical properties of the metal strip, and cannot be used to control the temperature distribution in the width direction of the metal strip. In contrast to the solenoid coil type heating coil, which has uniform heating characteristics in the width direction of the metal strip, if a solenoid coil type heating coil is also installed, which has an unrestricted heating characteristic, that is, a partial heating characteristic, the solenoid coil type heating coil is installed. In addition to heating the entire metal strip, transverse heating coils can be applied to positions where the degree of heating is desired to be increased, making it possible to control the temperature distribution in the width direction of the metal strip.

溶融亜鉛めっき鋼帯では、−・殻に、溶融亜鉛ポットで
溶融した亜鉛を1]゛着した後、気体絞りにより付着層
か調整される。この状況を第6図に示ず。図で、(a)
図は斜視図で(b)図は縦断面図である。溶融亜鉛めっ
き鋼帯11の両側に気体絞り7ズル21が各々の面に向
は対向して配置されており、これから吹き出す気体によ
って余剰な亜鉛22は払拭される、この場合、気体は溶
融亜鉛めっき鋼帯11の面に沿って層流を形成し余剰な
(lIi紹22を溶融亜鉛ボッl−8へ押し戻すが、面
かj″、外れたところては対向する流れが干渉し合って
乱流となる。このため、溶融亜鉛め−)き鋼帯の縁端部
近傍ては絞り効果が減し、亜鉛の付着量が多くなる。溶
融亜鉛めっき鋼帯の付着量分布の一例を第5図に示す。
In hot-dip galvanized steel strips, after 1) molten zinc is deposited on the shell in a hot-dip zinc pot, the deposited layer is adjusted by gas restriction. This situation is not shown in Figure 6. In the figure, (a)
The figure is a perspective view, and the figure (b) is a longitudinal sectional view. Gas throttles 7 and nozzles 21 are placed on both sides of the hot-dip galvanized steel strip 11, facing each other, and the gas blown out from these removes excess zinc 22. In this case, the gas is used to remove the hot-dip galvanized steel strip. A laminar flow is formed along the surface of the steel strip 11 and the excess (lIi introduction 22) is pushed back into the molten zinc bottle 1-8, but when the surface deviates from the surface, the opposing flows interfere with each other and become turbulent. Therefore, near the edges of the hot-dip galvanized steel strip, the squeezing effect is reduced and the amount of zinc deposited increases.An example of the distribution of the amount of zinc deposited on the hot-dip galvanized steel strip is shown in Figure 5. Shown below.

図で、横軸は銅帯の縁端部がらの距離、輸動は亜鉛のイ
11て、幅1.219順の鋼帯について測定したものあ
る。中央部が60 mg /’ m”で一定あるのに対
して、縁端部に近づき50乃至60開近辺から付着量が
増え、縁端部では中央部のそれを10%以上上回ってい
る。
In the figure, the horizontal axis is the distance from the edge of the copper strip, and the transport is measured for a steel strip with a width of 1.219 mm. While the amount at the center is constant at 60 mg/'m'', the amount of adhesion increases from around 50 to 60 mm near the edges, and exceeds that at the center by more than 10% at the edges.

方既述したように、亜鉛めっき層を鋼素地からの鉄のh
K iiダによって合金化し、溶融亜鉛めっき鋼板J)
塗装性や溶接性の向上か図られているか、合金化の度合
いは溶融亜鉛めっき鋼板の加工性に微妙に影響する。溶
融亜鉛めっき鋼板の幅方向中央部の合金化度が適正てあ
っても、縁端部近傍が適正でなければその製品の加工性
は劣ることになる。
As mentioned above, the galvanized layer is removed from the steel substrate.
Alloyed and hot-dip galvanized steel sheet J)
The degree of alloying, whether improvements are made to paintability or weldability, and the degree of alloying have a subtle effect on the workability of hot-dip galvanized steel sheets. Even if the degree of alloying at the center in the width direction of a hot-dip galvanized steel sheet is appropriate, if the degree of alloying near the edges is not appropriate, the workability of the product will be poor.

合金化の度合いはめっき層中の鉄含有量によっζ決まる
のて、亜鉛の付着量の多いところは平均以上に加熱し、
鉄の拡散量を増加さぜることに、1: 、。
The degree of alloying is determined by the iron content in the plating layer, so areas with a large amount of zinc deposited are heated above the average,
1: To increase the amount of iron diffusion.

て均一性を確保しなけれはならない。然るに、連続的に
加熱する合金化炉では溶融亜鉛めっき鋼(七の中央部も
縁端部も同時に加熱され加熱時間は同一である。したが
って、均一な合金化度を得るなめには加熱の程度を変え
ることによってこれを達成しなければならない。h金化
炉にソレノイ1へコイル方式の加熱=1イルと1ヘラン
スハ一ス方式の加熱コイルとを、溶融亜鉛めっき鋼帯の
進行方向に、併設することによってソレノイドコイル方
式によって全幅を均一に加熱し、■・ランスバース方式
によってより強い加熱が必要なところな(jを加熱する
ことかでき、加熱の度合いを幅方向で調整することが可
能になる。両者を併設するとき所定の間隔をおくのは、
各々の磁束が干渉し合って加熱効率か低下するのを防ぐ
ためである。更に、トランスバース方式の加熱コイルを
溶融亜鉛めっき鋼帯の進行方向直角に位置の調整が出来
るように設置することによって、各種の銅帯幅や厚さ或
はめつき付着量分布に対処することか容易に出来るし、
又、銅帯の蛇行に対してもこれに追従して所定位置を加
熱することも可能となる。
uniformity must be ensured. However, in an alloying furnace that heats continuously, the center and edges of hot-dip galvanized steel are heated at the same time, and the heating time is the same. Therefore, in order to obtain a uniform degree of alloying, the degree of heating is This must be achieved by changing the heating furnace.Solenoid 1 coil type heating = 1 coil and 1 Herans hash type heating coils are installed in the direction of progress of the hot-dip galvanized steel strip. By doing so, the solenoid coil method heats the entire width uniformly, and the lance-verse method heats areas that require stronger heating (J, making it possible to adjust the degree of heating in the width direction. When installing both, it is important to leave a certain distance between them.
This is to prevent each magnetic flux from interfering with each other and reducing heating efficiency. Furthermore, by installing a transverse heating coil so that its position can be adjusted perpendicular to the direction of travel of the hot-dip galvanized steel strip, it is possible to deal with various copper strip widths, thicknesses, and coating weight distributions. It's easy to do,
Furthermore, it is also possible to follow the meandering of the copper strip and heat a predetermined position.

以上のように、ソレノイI・コイル方式の加熱コイルと
トランスバース方式の加熱コイルとを併設した合金化炉
では、溶融亜鉛めっき鋼帯幅方向の任意の位置を任意の
度合いで加熱することがてきる。したがって、この合金
化炉を用いて、溶融亜鉛め−)き鋼帯幅方向の加熱条件
を調整すると、幅方向に均一に合金化することもできる
。加熱条件力調整には、鋼帯幅、鋼帯厚さ、めっき付着
量、銅帯走行速度等の既定条件のほかに、縁端検出器、
め一つき14着量計、合金化度計等の操業中の変化を捉
える測定器からの情報も加味して用いるとよい4、 [実施例] 〈実施例1) 熱間圧延によって幅1840Il111.厚さ3.7m
mに圧延した鋼帯を、ソレノイドコイル方式の加熱コイ
ルとトランスバース方式の加熱コイルとを(Jl用した
加熱装置によ−)で連続的に加熱したのも′:1イルに
巻き取った。用いた装置の概要を第1図に示す。(21
)図は横面図で(LJ)図はL面図である。ソレノイド
コイル方式の加熱=1イル2に次いで、鋼帯である金属
帯]の走行路に沿ってトランスバース方式の加熱コイル
3a、3b、3cを配置した。トランスバース方式の加
熱コイル3a3b、3cは金属帯1の各面に向かって各
々一対が対峙しており、且つ、金属帯lの幅方向中心線
から各々400 nui、700mm、900++uI
隔たった位置に配置した。そして、金属帯1の縁端部に
近いトランスバース方式の加熱コイノロJと電流を大き
くして加熱した。この加熱装置を通過後に金属帯1を巻
き取ったところ、結晶粒度の均一な製品が得られた。こ
の加熱装置を使用しなかった場合、金属帯断面の結晶粒
は断面中心部はと粗く外側へ向かって細かくなるが、こ
の現象は金属帯の冷却速度分布と一致する。この装置を
用いた場合はソレノイI・コイル方式によって金属帯表
層が加熱され、加えて)・ランスバース方式によって縁
端部に近い所はど表層から内層部へかけて加熱されたブ
こめ、冷却速度分布を緩和し、均一な結晶粒度が得られ
たものと届われる。
As described above, an alloying furnace equipped with a solenoid I coil type heating coil and a transverse type heating coil can heat any position in the width direction of a hot-dip galvanized steel strip to any degree. Ru. Therefore, by adjusting the heating conditions in the width direction of the hot-dip galvanized steel strip using this alloying furnace, uniform alloying in the width direction can be achieved. In addition to the predetermined conditions such as steel strip width, steel strip thickness, coating amount, and copper strip running speed, heating condition force adjustment is performed using an edge detector,
It is recommended to use information from measuring instruments that detect changes during operation, such as Metsuki 14 coating weight meter and alloying degree meter. Thickness 3.7m
A steel strip rolled to a length of 1.5 m was heated continuously using a solenoid coil type heating coil and a transverse type heating coil (using a Jl heating device) and then wound to a length of 1 mm. Figure 1 shows an overview of the equipment used. (21
) is a side view, and (LJ) is an L side view. Solenoid coil type heating = 1 Next to the coil 2, transverse type heating coils 3a, 3b, and 3c were arranged along the travel path of the metal strip, which is a steel strip. A pair of transverse heating coils 3a3b and 3c face each other toward each side of the metal strip 1, and are 400 nui, 700 mm, and 900++ uI from the center line in the width direction of the metal strip 1, respectively.
placed in separate locations. Then, heating was carried out by increasing the electric current using a transverse type heating Koinoro J near the edge of the metal band 1. When the metal strip 1 was wound up after passing through this heating device, a product with uniform crystal grain size was obtained. If this heating device was not used, the crystal grains in the cross section of the metal band would be coarse at the center of the cross section and become finer toward the outside, but this phenomenon coincides with the cooling rate distribution of the metal band. When this device is used, the surface layer of the metal strip is heated by the solenoid coil method, and in addition, the surface layer of the metal strip is heated from the surface layer to the inner layer by the lance berth method, and then cooled. It appears that the velocity distribution has been relaxed and a uniform crystal grain size has been obtained.

(実施例2) 溶融亜鉛めっき合金化炉の一例を第2図に示す。(a、
 )図は合金化炉及びその周辺の横面図、(1:))図
は(a)図のA−A断面図、(C)図はB−B断面図で
ある。4は合金化炉、5は位置調整器、6は縁端検出器
である。合金化炉4の加熱コイルは、入り口に−・対の
トラ〉・スパース方式の加熱コイル3を設置し、0.5
mの間隔をおいた後間つのソレノイ1〜=1イル方式の
加熱コイル2を設置した。ソレノイドコイル方式の加熱
コイル2はその中央を溶融亜鉛めっき鋼帯]1が通過す
る位置に設置し、トランスバース方式の加熱コイルは誘
導電流が縁端部に集中して流れるように、縁端部に寄せ
て設置しな。更に、後者には位置調整器5を取り付け、
溶融亜鉛めっき鋼帯幅方向に移動可能にした。合金化炉
の手前に縁端検出器6を配置して走行中の溶融亜鉛めっ
き鋼帯11の縁端を絶えず検出し、位置調整器5への命
令情報が91+Tられるようにした。
(Example 2) An example of a hot-dip galvanizing alloying furnace is shown in FIG. (a,
) is a side view of the alloying furnace and its surroundings, (1:)) is a cross-sectional view taken along line A-A in figure (a), and figure (C) is a cross-sectional view taken along line B-B. 4 is an alloying furnace, 5 is a position adjuster, and 6 is an edge detector. The heating coil of the alloying furnace 4 is a pair of tiger sparse type heating coils 3 installed at the entrance.
Two solenoid heating coils 2 were installed at intervals of m. The heating coil 2 of the solenoid coil type is installed at a position where the hot-dip galvanized steel strip 1 passes through its center, and the heating coil of the transverse type is installed at the edge so that the induced current flows concentratedly at the edge. Install it closer to the Furthermore, a position adjuster 5 is attached to the latter,
The hot-dip galvanized steel strip can be moved in the width direction. An edge detector 6 is arranged in front of the alloying furnace to constantly detect the edge of the running hot-dip galvanized steel strip 11 so that command information to the position adjuster 5 can be transmitted 91+T.

(実施例3) 実施例2の装置を用いて、次のように加熱条件を調整し
溶融亜鉛めっきの合金化を行った。第3図を用いてこの
状況を説明する。図で、12は亜鉛めっき付着量計、1
3は合金化度計、14は既定条件入力器、15は演算 
指令装置、16は位置制御器、17は加熱制御器である
(Example 3) Using the apparatus of Example 2, the heating conditions were adjusted as follows to perform alloying of hot-dip galvanizing. This situation will be explained using FIG. In the figure, 12 is a galvanizing coating weight meter, 1
3 is an alloying degree meter, 14 is a predetermined condition input device, and 15 is a calculation
A command device, 16 is a position controller, and 17 is a heating controller.

幅1219關、厚さ0511I11の銅帯を、溶融亜鉛
ボッ1へ8に通し460℃の亜鉛をイ・1着させ、気体
絞りノズル21て55g/m”に付着量を調整した溶融
亜鉛めっき鋼帯11を、縁端検出器6てその縁端位置を
測定しながら合金化炉4でほぼ530°Cに加辞し、空
冷に続いて水冷槽9で冷却した後、亜鉛めっき付着量計
12及び合金化度計13で各々めっき付着量及び合金化
度を測定した。縁端検出器6は光学式のものて、測定情
報を演算 指令装置15へ送る。亜鉛付着量計12は蛍
光X線分析を応用したもa)で、合金化針13とともに
溶融亜鉛めっき鋼帯1〕の幅方向の付着量分布を測定で
きるも力である。これら付着量及び合金化度についての
測定値と分布情報とを演算指令装置15に送る。演算 
指令装置15には、既定条件入力器14から銅帯幅 厚
さ 走行速度、めっき付着層、目標合金化度等を予め入
力しておく。したが−)で、演算 指令装置15には、
既定条件に加えて、操業中は溶融亜鉛めっき鋼帯縁端イ
装置、イ」着量分布及び合金化度分布の情報が刻々と入
力される。演算 指令器15はこれらの情報に基−)き
、位置制御器16及び加熱制御器17に制御指令を送る
。指令に基づいて、位置制御器16は位置調整器5を通
じてl・ランスバース方式の加熱コイル3の位置を調整
し、又、加熱制御器17は各々の加熱コイルの入力電流
を制御する。以上のように加熱条件を調整し合金化した
結果を従来例による結果とともに第4図に示す。図で、
横軸は溶融亜鉛めっき鋼帯の幅方向距離、縦軸はめつき
被膜中の鉄含有率で、(a)図は実施例、(b)図は比
較例である。従来例は、ソレノイドコイル方式の加熱コ
イルのみを用いて合金化したもので、合金化の最も不足
した縁端部と最も進んだ中央部とでは12%程度の相違
が見られるか、実施例では最大と最小の差が3%以内に
納まっている。
A copper strip with a width of 1219mm and a thickness of 0511I11 is passed through a hot-dip zinc pot 1 and coated with zinc at 460°C, and the coating amount is adjusted to 55g/m'' using a gas squeezing nozzle 21. Hot-dip galvanized steel. The strip 11 is heated to approximately 530° C. in the alloying furnace 4 while measuring its edge position with the edge detector 6, and after cooling in the air cooling tank 9, the galvanizing coating amount meter 12 and The amount of plating and the degree of alloying were measured using the alloying degree meter 13.The edge detector 6 is an optical type and sends the measurement information to the calculation command device 15.The zinc coating amount meter 12 is a fluorescent X-ray analyzer. By applying a), it is possible to measure the coating weight distribution in the width direction of the hot-dip galvanized steel strip 1 along with the alloying needle 13.The measured values and distribution information regarding the coating weight and degree of alloying are is sent to the calculation command device 15. Calculation
Copper strip width, thickness, running speed, plating adhesion layer, target alloying degree, etc. are input into the command device 15 in advance from the predetermined condition input device 14. However, -), the calculation command device 15 has the following information:
In addition to the predetermined conditions, information on the hot-dip galvanized steel strip edge equipment, coating weight distribution, and alloying degree distribution are constantly input during operation. Based on this information, the calculation command unit 15 sends control commands to the position controller 16 and the heating controller 17. Based on the command, the position controller 16 adjusts the position of the lanceverse heating coil 3 through the position adjuster 5, and the heating controller 17 controls the input current of each heating coil. The results of alloying by adjusting the heating conditions as described above are shown in FIG. 4 together with the results of the conventional example. In the figure,
The horizontal axis is the distance in the width direction of the hot-dip galvanized steel strip, and the vertical axis is the iron content in the plating film. Figure (a) is an example, and Figure (b) is a comparative example. In the conventional example, alloying was carried out using only a solenoid coil type heating coil, and there was a difference of about 12% between the edges where the alloying was the most insufficient and the central area where the alloying was the most advanced. The difference between the maximum and minimum values is within 3%.

[発明の効果] この発明によれば、金属帯の加熱にソレノイドコイル方
式の加熱コ゛イルとトランスバース方式の加熱コイルと
を併用しているので、金属帯幅方向に加熱の程度を調整
することが出来る。このため金属帯幅方向の特性を均一
化することが可能となり、例えば、溶融亜鉛めっき鋼帯
の合金化ではめっき付着量の分布に適応する加熱条件を
選ぶことがてきる。金属帯の使用技術の高度化に伴って
特性の均一化が益々要求されており、このような要望に
応えるこの発明の効果は大きい。
[Effects of the Invention] According to the present invention, since a solenoid coil type heating coil and a transverse type heating coil are used in combination to heat the metal band, the degree of heating can be adjusted in the width direction of the metal band. I can do it. Therefore, it is possible to make the characteristics in the width direction of the metal strip uniform, and for example, when alloying a hot-dip galvanized steel strip, it is possible to select heating conditions that suit the distribution of coating weight. As the technology for using metal strips becomes more sophisticated, uniformity of properties is increasingly required, and the present invention is highly effective in meeting such demands.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す加熱コイルの設置概
要図、第2図はこの発明の一実施例を示す合金化炉の概
要図、第3図はこの発明の一実施例を説明する加熱条件
調整のための制御工程図、第4図はこの発明の一効果を
示す溶融亜鉛めっき層の合金化度分布図、第5図は溶融
亜鉛めっきの付名鼠分布図、第6図はめつき付着量コン
1〜ロルに使われる気体絞りノズルの概要図、第7図は
ソレノイドコイル方式の加熱コイルの斜視図、第8図は
トランスバース方式の加熱コイルの斜視図、第9図は従
来の連続加熱技術を説明するための図である。 ]・金属帯、2・・ソレノイドコイル方式の加熱コイル
、3・1〜ランスバ一ス方式の加熱コイル、11  合
金化炉、5・位置調整器、6 ・縁端検出器、7 合金
化炉壁、8・溶融亜鉛ポット、9 水冷槽、11・・溶
融亜鉛めつき鋼帯5・亜鉛付着量計、13・・合金化度
計、・既定条件入力器、15−演算・指令装置、・位置
制御器、17・加熱制御器、 気体絞りノズル。
Fig. 1 is a schematic diagram of the installation of a heating coil showing an embodiment of this invention, Fig. 2 is a schematic diagram of an alloying furnace showing an embodiment of this invention, and Fig. 3 is an illustration of an embodiment of this invention. Fig. 4 is an alloying degree distribution diagram of a hot-dip galvanized layer showing one effect of the present invention, Fig. 5 is a nomenclature distribution diagram of hot-dip galvanizing, and Fig. 6 is a control process diagram for adjusting heating conditions. A schematic diagram of the gas throttle nozzle used in the fitting adhesion controllers 1 to 1, Figure 7 is a perspective view of a solenoid coil type heating coil, Figure 8 is a perspective view of a transverse type heating coil, and Figure 9 is a perspective view of a transverse type heating coil. FIG. 2 is a diagram for explaining a conventional continuous heating technique. ]・Metal band, 2. Heating coil of solenoid coil type, 3. 1 ~ Heating coil of lance bath type, 11 Alloying furnace, 5・Position adjuster, 6・Edge edge detector, 7 Alloying furnace wall , 8. Molten zinc pot, 9 Water cooling tank, 11. Hot dip galvanized steel strip 5. Zinc adhesion meter, 13. Alloying degree meter, . Default condition input device, 15. Calculation/command device, . Position. Controller, 17. Heating controller, gas throttle nozzle.

Claims (3)

【特許請求の範囲】[Claims] (1)金属帯を連続加熱する加熱装置において、ソレノ
イドコイル方式の加熱コイルとトランスバース方式の加
熱コイルとを併設したことを特徴とする誘導加熱装置。
(1) An induction heating device that continuously heats a metal strip, characterized in that a solenoid coil type heating coil and a transverse type heating coil are installed together.
(2)溶融亜鉛めっき鋼帯を連続的に合金化する合金炉
において、ソレノイドコイル方式の加熱コイルとトラン
スバース方式の加熱コイルとを前記溶融亜鉛めっき鋼帯
の進路方向に所定の間隔をおいて且つ前記トランスバー
ス方式の加熱コイルが前記溶融亜鉛めっき鋼帯の進行直
角方向に可動に併設したことを特徴とする誘導加熱合金
化炉。
(2) In an alloying furnace that continuously alloys a hot-dip galvanized steel strip, a solenoid coil-type heating coil and a transverse-type heating coil are placed at a predetermined interval in the direction of travel of the hot-dip galvanized steel strip. An induction heating alloying furnace characterized in that the transverse type heating coil is movably installed in a direction perpendicular to the direction of travel of the hot-dip galvanized steel strip.
(3)ソレノイドコイル方式の加熱コイルとトランスバ
ース方式の加熱コイルとを併用することによって、走行
する溶融亜鉛めっき鋼帯の幅方向の加熱条件を調整し、
前記溶融亜鉛めっき鋼帯の幅方向の合金化度を均一にす
ることを特徴とする合金化方法。
(3) By using a solenoid coil type heating coil and a transverse type heating coil together, the heating conditions in the width direction of the running hot-dip galvanized steel strip can be adjusted,
An alloying method characterized by making the degree of alloying of the hot-dip galvanized steel strip uniform in the width direction.
JP1071675A 1989-03-27 1989-03-27 Induction heating device, induction heating-type alloying furnace, and alloying method Pending JPH02254146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1071675A JPH02254146A (en) 1989-03-27 1989-03-27 Induction heating device, induction heating-type alloying furnace, and alloying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1071675A JPH02254146A (en) 1989-03-27 1989-03-27 Induction heating device, induction heating-type alloying furnace, and alloying method

Publications (1)

Publication Number Publication Date
JPH02254146A true JPH02254146A (en) 1990-10-12

Family

ID=13467392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1071675A Pending JPH02254146A (en) 1989-03-27 1989-03-27 Induction heating device, induction heating-type alloying furnace, and alloying method

Country Status (1)

Country Link
JP (1) JPH02254146A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176853A (en) * 1990-11-09 1992-06-24 Nkk Corp Production of galvannealed steel sheet excellent in press formability and resistance to powdering
JPH04193938A (en) * 1990-11-28 1992-07-14 Nkk Corp Manufacture of alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance
JPH04276053A (en) * 1991-02-28 1992-10-01 Nkk Corp Production of galvannealed steel sheet excellent in press formability and powdering resistance
JP2003290812A (en) * 2002-01-31 2003-10-14 Toshiba Ge Automation Systems Corp Induction heating device and hot rolling equipment
JP2004052035A (en) * 2002-07-19 2004-02-19 Jfe Steel Kk Hot-dip galvannealed steel sheet and manufacturing method therefor
JP2018048389A (en) * 2016-09-23 2018-03-29 新日鐵住金株式会社 Continuous molten zinc plating apparatus of steel plate, and production method of alloyed steel plate galvanized with molten zinc
JP2018048387A (en) * 2016-09-23 2018-03-29 新日鐵住金株式会社 Continuous molten zinc plating method, and continuous molten zinc plating apparatus
CN108878052A (en) * 2018-07-07 2018-11-23 西北有色金属研究院 A kind of preparation method of superconducting wires/strips

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545849A (en) * 1977-06-16 1979-01-17 Nippon Steel Corp Apparatus for heating end of metal strip piece
JPS581064A (en) * 1981-06-26 1983-01-06 Sumitomo Metal Ind Ltd Steel band supporting device of continuous plating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545849A (en) * 1977-06-16 1979-01-17 Nippon Steel Corp Apparatus for heating end of metal strip piece
JPS581064A (en) * 1981-06-26 1983-01-06 Sumitomo Metal Ind Ltd Steel band supporting device of continuous plating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176853A (en) * 1990-11-09 1992-06-24 Nkk Corp Production of galvannealed steel sheet excellent in press formability and resistance to powdering
JPH04193938A (en) * 1990-11-28 1992-07-14 Nkk Corp Manufacture of alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance
JPH04276053A (en) * 1991-02-28 1992-10-01 Nkk Corp Production of galvannealed steel sheet excellent in press formability and powdering resistance
JP2003290812A (en) * 2002-01-31 2003-10-14 Toshiba Ge Automation Systems Corp Induction heating device and hot rolling equipment
JP2004052035A (en) * 2002-07-19 2004-02-19 Jfe Steel Kk Hot-dip galvannealed steel sheet and manufacturing method therefor
JP2018048389A (en) * 2016-09-23 2018-03-29 新日鐵住金株式会社 Continuous molten zinc plating apparatus of steel plate, and production method of alloyed steel plate galvanized with molten zinc
JP2018048387A (en) * 2016-09-23 2018-03-29 新日鐵住金株式会社 Continuous molten zinc plating method, and continuous molten zinc plating apparatus
CN108878052A (en) * 2018-07-07 2018-11-23 西北有色金属研究院 A kind of preparation method of superconducting wires/strips
CN108878052B (en) * 2018-07-07 2020-05-19 西北有色金属研究院 Preparation method of superconducting wire/strip

Similar Documents

Publication Publication Date Title
CN101611159B (en) Continuous annealing equipment
KR20160098281A (en) Continuous processing line for processing a non-magnetic metal strip including a galvannealing section and method for induction heating of said strip in said galvannealing section
JPH02254146A (en) Induction heating device, induction heating-type alloying furnace, and alloying method
JPH03100154A (en) Production of alloying hot dip galvanized steel strip
KR101252640B1 (en) Induction heating apparatus and method
JPH04202633A (en) Production of hot-dip galvanized sheet of high tensile strength steel with high si content
US5512321A (en) Process for coating elongated materials with multiple layers
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
US5628842A (en) Method and apparatus for continuous treatment of a strip of hot dip galvanized steel
JP2789946B2 (en) Manufacturing method of galvannealed steel sheet
JPH05156419A (en) Alloying control method for galvannealed steel sheet
JPH0379748A (en) Alloying treatment furnace
JPH04329856A (en) Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip
KR200227127Y1 (en) Preheating apparatus for manufacturing alloyed hot dip galvanized steel sheet
US20240158885A1 (en) Continuous annealing equipment, continuous annealing method, method of producing cold-rolled steel sheets and method of producing coated or plated steel sheets
JPH06207296A (en) Method and equipment for plating strip material with zinc
JPH0645852B2 (en) Method for producing alloyed hot-dip galvanized steel strip
JPH06207297A (en) Method and equipment for plating strip material with zinc
JPH0593251A (en) Method for controlling alloying furnace in equipment for manufacturing galvannealed steel sheet
JPH01177351A (en) Method for controlling alloying degree of alloyed hot-dip galvanized steel sheet
JPH08144037A (en) Production of hot dip aluminum-zinc alloy coated steel sheet and device therefor
JPH06330276A (en) Method for controlling degree of alloying of hot dip metal coated steel sheet in induction heating type alloying furnace
JP2534834B2 (en) Manufacturing method of alloyed galvanized steel sheet
JP2024048224A (en) Alloying treatment device and alloying treatment method for hot-dip galvanized steel sheet
JPH11310862A (en) Method for adjusting spangle of molten zinc-aluminum base coating steel sheet