JPH02254128A - Manufacture of metal-matrix composite material - Google Patents

Manufacture of metal-matrix composite material

Info

Publication number
JPH02254128A
JPH02254128A JP7594789A JP7594789A JPH02254128A JP H02254128 A JPH02254128 A JP H02254128A JP 7594789 A JP7594789 A JP 7594789A JP 7594789 A JP7594789 A JP 7594789A JP H02254128 A JPH02254128 A JP H02254128A
Authority
JP
Japan
Prior art keywords
metal
molded body
molten metal
formed body
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7594789A
Other languages
Japanese (ja)
Inventor
Shinji Kato
加藤 眞治
Yoshiaki Kajikawa
義明 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7594789A priority Critical patent/JPH02254128A/en
Publication of JPH02254128A publication Critical patent/JPH02254128A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently manufacture the metal-matrix composite material in a high yield by forming a porous formed body constituted of metal and metallic fluoride on a graphite supporting body having prescribed shape, penetrating Al molten metal into the formed body, solidifying it and removing the supporting body. CONSTITUTION:Carbon fibers 12 plated with Ni are wound around a graphite bar 10 having prescribed dimension by filament winding so that the angle is formed into about 45 degrees to form a cylindrical fibrous formed body 14 of prescribed thickness. The formed body 14 is immersed into a saturated water soln. 16 of K2ZrF6 of about 80 deg.C together with the graphite bar 10 until the temp. of the water soln. comes to about 30 deg.C, and, after that, the formed body 14 is dried to stick K2ZrF6 thereon. Furthermore, the formed body 14 is preheated to about 200 deg.C together with the graphite bar, which is immersed into pure Al molten metal 18 of about 750 deg.C for about 30sec and is discharged to solidify the Al molten metal 18. From this solidified body, the graphite bar 10 is pulled out to form a pipe 20 constituted of the pure Al 18 compositely reinforced with the carbon fibers 12. In this way, the pipe 20 having good adhesive conditions of the carbon fibers 12 and the pure Al 18 can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合材料に係り、更に詳細にはセラミック繊
維の如き無機質の繊維等を強化材とし、アルミニウム合
金等をマトリックスとする金属基複合材料の製造方法に
係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to composite materials, and more particularly to metal matrix composite materials that use inorganic fibers such as ceramic fibers as reinforcements and aluminum alloys as a matrix. Regarding the manufacturing method.

従来の技術及び発明が解決しようとする課題金属基複合
材)4の主要な製造方法として、昭和58年に出版され
た「工業材料」の第31巻第13号の第21頁乃至第2
6頁に記載されている如く、粉末冶金法、ホットプレス
法、高圧鋳造法、減圧鋳造法がある。
Problems to be Solved by the Prior Art and the Invention As a main manufacturing method for metal matrix composite materials (4), the following methods are described in "Industrial Materials", Vol. 31, No. 13, pp. 21 to 2, published in 1981.
As described on page 6, there are powder metallurgy methods, hot press methods, high pressure casting methods, and vacuum casting methods.

これらはそれぞれに長所を有しているが、何れの方法に
於ても加圧用の型や鋳型か必要であり、また犬山りな加
圧装置や減圧装置が必要であり、従って複合材料を紙庫
に且能率よく製造することが困難である。
Each of these methods has its advantages, but each method requires a pressure mold or mold, and also requires a large number of pressure devices and depressurization devices, so it is difficult to use composite materials in paper storage. It is difficult to manufacture it efficiently.

また粉末冶金法以外の上述の方法に於ては、表面まで強
化材にて複合強化された複合材料を製造することが困難
であり、逆に粉末冶金法に於ては長m維を強化材とする
複合材料を製造することが困難である。
In addition, in the above-mentioned methods other than powder metallurgy, it is difficult to manufacture composite materials that are reinforced with reinforcing materials up to the surface, and conversely, in powder metallurgy, long fibers are used as reinforcing materials. It is difficult to manufacture composite materials with

更に上述の何れの方法に於ても、中空の複合材料を製造
するためには、複合材料を形成した後切削その他の機械
加工を大幅に行うことが必要てあリ、また長尺の複合材
料を製造することが困難である。
Furthermore, in any of the above-mentioned methods, in order to manufacture hollow composite materials, it is necessary to perform extensive cutting and other machining after forming the composite material. is difficult to manufacture.

本発明は、マトリックス金属の溶湯を加圧するための鋳
型や所定形状の複合材料を製造するための鋳型を用いる
ことなく、所定形状の表面まで強化材にて複合強化され
た軽金属よりなる複合1イ料を所定の形状及びχJ法に
て非常に能率よく且紙庫に非常に高い歩留りにて製造す
ることのできる方法を提供することを目的としている。
The present invention provides a composite material made of a light metal composite reinforced with a reinforcing material up to the surface of a predetermined shape without using a mold for pressurizing molten matrix metal or a mold for manufacturing a composite material of a predetermined shape. It is an object of the present invention to provide a method by which paper can be produced in a predetermined shape and according to the χJ method very efficiently and with a very high yield in paper storage.

課題を解決するための手段 上述の如き目的は、本発明によれば、Al、Mg、Al
合金、及びMg合金よりなる群より選択された金属をマ
トリックスとする金属基複合飼料の製造方法にして、少
くとも表面部が炭素又は黒鉛よりなる所定形状の支持体
上に無機質の強化材とマトリックスの溶湯に対する濡れ
性に優れた金属と金属フッ化物とを含む多孔質の成形体
を形成し、前記成形体の少くとも一部をマトリックスの
溶湯に接触させ、前記溶湯を実質的に加圧することなく
前記成形体中に浸透させた後凝固させ、しかる後前記支
持体を除去する金属基複合飼料の製造方法によって達成
される。
Means for Solving the Problems According to the present invention, the above-mentioned objects are achieved by using Al, Mg, Al
A method for producing a metal-based composite feed in which the matrix is a metal selected from the group consisting of Mg alloys and Mg alloys, wherein an inorganic reinforcing material and a matrix are placed on a support having a predetermined shape, the surface of which is made of carbon or graphite. forming a porous molded body containing a metal and a metal fluoride that have excellent wettability with respect to the molten metal, and bringing at least a portion of the molded body into contact with the molten metal of the matrix to substantially pressurize the molten metal. This is achieved by a method for producing a metal matrix composite feed, which comprises infiltrating the metal-based composite feed into the molded body, solidifying the feed, and then removing the support.

発明の作用及び効果 無機質の強化材と金属と金属フッ化物とを含む多孔質の
成形体の少くとも一部がマトリックス金属の溶湯と接触
せしめられると、溶湯は金属を伝って成形体中へ浸透し
、金属フッ化物はマトリックス金属の溶湯及び金属の酸
化膜を除去して強化材に対する溶湯の濡れを改善する。
Functions and Effects of the Invention When at least a portion of a porous molded body containing an inorganic reinforcing material, a metal, and a metal fluoride is brought into contact with the molten metal of the matrix metal, the molten metal permeates through the metal and into the molded body. However, the metal fluoride improves wetting of the molten metal to the reinforcing material by removing the molten metal of the matrix metal and the oxide film of the metal.

またマトリックス金属の溶湯及び金属は互いに反応する
ことによって発熱し、その熱によって溶湯及び強化材か
加熱され、これにより溶湯の成形体中への浸透性及び強
化材の濡れ性が向上され、これによりマトリックス金属
の溶湯が成形体全体に良好に浸透して行く。
In addition, the molten matrix metal and the metal generate heat by reacting with each other, and the heat heats the molten metal and the reinforcing material, which improves the permeability of the molten metal into the compact and the wettability of the reinforcing material. The molten metal of the matrix metal satisfactorily penetrates into the entire molded body.

また炭素や黒鉛は軽金属の溶湯に対し殆ど濡れないので
、軽金属の溶湯が凝固した後にその凝固体より支持体を
容易に除去することができる。
Further, since carbon and graphite hardly wet the molten light metal, the support can be easily removed from the solidified body after the molten light metal is solidified.

従って本発明の方法によれば、強化(イと金属と金属フ
ッ化物とを含む多孔質の成形体を所定形状の支持体」二
に所定の形状及び寸法にて形成し、その成形体をマトリ
ックス金属の溶湯に接触させれば、成形体全体にマトリ
ックス金属の溶湯が過不足なく迅速に浸透し、マトリッ
クス金属の溶湯が凝固するまで成形体は支持体によって
所定の形状及び寸法に維持され、またマトリックス金属
の溶湯が凝固した後に凝固体より支持体を容易に除去す
ることができるので、表面まで強化材にて複合強化され
た軽金属よりなる複合材料を所定の形状及び寸法にて容
易に且能率よく形成することかできる。
Therefore, according to the method of the present invention, a porous molded body containing reinforcement (a), metal, and metal fluoride is formed in a predetermined shape and size on a support of a predetermined shape, and the molded body is placed in a matrix. When brought into contact with molten metal, the molten matrix metal quickly permeates throughout the molded body, and the molded body is maintained in a predetermined shape and size by the support until the molten matrix metal solidifies. Since the support can be easily removed from the solidified body after the molten matrix metal has solidified, it is possible to easily and efficiently produce a composite material made of a light metal reinforced with a reinforcing material up to the surface in a predetermined shape and size. Can be well formed.

またマトリックス金属の溶湯を加圧したり所定の製品形
状を郭定するための鋳型は不要であり、また高圧鋳造法
の場合の如く鋳型内の複合飼料以外の部分にて多量のマ
トリックス金属が凝固することがないので、従来の複合
材料の製造方法の場合に比して、非常に高い歩留りにて
実質的に所定の形状及び寸法の複合材料を能率よく低数
に製造することができる。
Furthermore, there is no need for a mold to pressurize the molten matrix metal or define a predetermined product shape, and a large amount of the matrix metal solidifies in parts of the mold other than the composite feed, as in the case of high-pressure casting. Therefore, it is possible to efficiently manufacture a small number of composite materials having a substantially predetermined shape and size with a very high yield compared to conventional methods for manufacturing composite materials.

また本発明の方法によれば、所定形状の支持体の周りに
成形体を形成することにより、所定形状の内部空間を有
する中空の複合材料を容易に製造することができ、また
長尺の支持体上に長尺の成形体を形成することにより長
尺の複合材料を容品に製造することができる。
Further, according to the method of the present invention, by forming a molded body around a support body of a predetermined shape, a hollow composite material having an internal space of a predetermined shape can be easily manufactured, and a long support body can be easily manufactured. By forming a long molded body on a body, a long composite material can be manufactured into a container.

本発明の方法に於ては、金属フッ化物は任意の金属元素
のフッ化物であってよいが、例えばに2ZrF6 、K
2 TiF6 、KAlF4 、K3 AlF6 、K
p AlF3  ・Hp O,CsA IF4 、Cs
 A、 l F 5  ・H!!Oの如く、アルカリ金
属、アルカリ土類金属、希土類金属の如き電気的に正の
元素と結合したTi、Zr、Hf5V、、Nb、Taの
如き遷移金属又はAlを含むフッ化物であることが好ま
しい。従って本発明の他の一つの詳細な特徴によれば、
金属フッ化物は電気的に正の金属元素と結合した遷移金
属又はAlを含むフッ化物である。
In the method of the present invention, the metal fluoride may be a fluoride of any metal element, for example, 2ZrF6, K
2 TiF6, KAlF4, K3 AlF6, K
p AlF3 ・Hp O, CsA IF4 , Cs
A, l F 5 ・H! ! It is preferable to use a fluoride containing transition metals such as Ti, Zr, Hf5V, Nb, Ta, or Al combined with electrically positive elements such as O, alkali metals, alkaline earth metals, and rare earth metals. . According to another detailed feature of the invention, therefore:
The metal fluoride is a fluoride containing a transition metal or Al combined with an electrically positive metal element.

また本発明の方法に於ては、金属はマトリックスの溶湯
に対する濡れ性に優れている限り任意の金属であってよ
いか、特にNi、Fe5Co、CI  S Mn−、C
uS Ag、、 S  i S MgS A  l、 
 Zn。
Further, in the method of the present invention, the metal may be any metal as long as it has excellent wettability to the molten metal of the matrix.
uS Ag,, S i S MgS A l,
Zn.

S rl、PbSTi、Nb、又はこれらを主成分とす
る合金であることが好ましい。従って本発明の他の一つ
の詳細な特徴によれば、金属はNi、Fe、Co、Cr
、Mn、Cu、Ag、S 15Mg。
Preferably, it is S rl, PbSTi, Nb, or an alloy containing these as main components. Therefore, according to another detailed feature of the invention, the metals include Ni, Fe, Co, Cr.
, Mn, Cu, Ag, S 15Mg.

Al、Zn、Sn、SPb、T i、Nb、及びこれら
を主成分とする合金よりなる群より選択された金属であ
る。
The metal is selected from the group consisting of Al, Zn, Sn, SPb, Ti, Nb, and alloys containing these as main components.

本願発明者等が行った実験的研究の結果によれば、成形
体中に金属及び金属フッ化物が含まれていれば、マトリ
ックス金属の溶湯の成形体中への浸透性を向上させるこ
とができるが、強化材に対する金属の重量比が296以
上であり、強化材に対する金属フッ化物の重量比か0.
03%以上、特に0.05%以上である場合にマトリッ
クス金属の溶湯を成形体中へ良好に浸透させることかで
きる。従って本発明の他の一つの詳細な特徴によれば、
成形体中の金属の量は強化材に対する重量比で見て2%
以上に設定され、成形体中の金属フッ化物の量は強化材
に対する重量比で見て0.03%以上、好ましくは0.
0596以上に設定される。
According to the results of experimental research conducted by the inventors of the present application, if the molded body contains metal and metal fluoride, the permeability of the molten matrix metal into the molded body can be improved. However, the weight ratio of metal to reinforcing material is 296 or more, and the weight ratio of metal fluoride to reinforcing material is 0.
When the amount is 0.03% or more, particularly 0.05% or more, the molten matrix metal can be well penetrated into the molded body. According to another detailed feature of the invention, therefore:
The amount of metal in the compact is 2% by weight relative to the reinforcement.
The amount of metal fluoride in the molded body is set to be 0.03% or more, preferably 0.03% or more in terms of weight ratio to the reinforcing material.
Set to 0596 or higher.

また本願発明者等が行った実験的研究の結果によれば、
成形体中の強化材、金属、及び金属フッ化物の合計の体
積率が低過ぎても逆に高過ぎてもマトリックス金属の溶
湯を成形体中に良好に浸透させることか困難になる。従
って本発明の更に他の一つの詳細な特徴によれば、成形
体中の強化材、金属、及び金属フッ化物の合計の体積率
は5〜80%、好ましくは6〜80%に設定される。
Also, according to the results of experimental research conducted by the inventors of the present application,
If the total volume fraction of the reinforcing material, metal, and metal fluoride in the molded body is too low, or conversely too high, it will be difficult to allow the molten metal of the matrix metal to satisfactorily penetrate into the molded body. According to yet another detailed feature of the invention, the total volume fraction of reinforcing material, metal and metal fluoride in the compact is therefore set between 5 and 80%, preferably between 6 and 80%. .

また本願発明者等が行った実験的研究の結果によれば、
成形体中に含まれる金属の体積率が高い値であってもマ
トリックス金属の溶湯を成形体中に良好に浸透させるこ
とができるが、金属の量が多くなればなる程強化材の体
積率が相対的に低下し、またその種類によってはマトリ
ックス金属の組成が大きく変化するこ占になる。従って
本発明の更に他の一つの詳細な特徴によれば、成形体中
の金属の体積率は80%以下、好ましくは75%以下に
設定される。
Also, according to the results of experimental research conducted by the inventors of the present application,
Even if the volume fraction of the metal contained in the molded body is high, the molten matrix metal can be penetrated into the molded body well, but the larger the amount of metal, the lower the volume fraction of the reinforcing material. Depending on the type, the composition of the matrix metal may change significantly. Therefore, according to yet another detailed feature of the invention, the volume fraction of metal in the molded body is set to 80% or less, preferably 75% or less.

また本発明の方法に於ては、金属は短繊維、ウィスカ、
粉末の如き微細片として使用され、従って強化材と金属
の微細片と金属フッ化物の微細片との混合物又は表面に
金属の微細片及び金属フッ化物の微細片が付着された強
化材にて成形体が形成されてよく、或いは強化材と金属
の微細片との混合物にて成形体が形成され、しかる後側
々の強化材の表面に金属フッ化物の微細片か付着されて
よい。また金属は強化材の表面に被覆されてもよく、ま
た強化材の表面に金属か被覆され、その被覆層中に金属
フッ化物の微細片が分散され、かかる複合被覆層を有す
る強化材を用いて成形体が形成されてもよい。
Further, in the method of the present invention, the metal can be short fibers, whiskers,
It is used as fine pieces such as powder, and is therefore formed by a mixture of reinforcing material, fine metal pieces and fine metal fluoride pieces, or a reinforcing material with fine metal pieces and metal fluoride fine pieces attached to the surface. A body may be formed, or a compact may be formed from a mixture of the reinforcement and metal particles, after which metal fluoride particles may be applied to the surface of the reinforcement on either side. Metal may also be coated on the surface of the reinforcing material, or metal may be coated on the surface of the reinforcing material and fine pieces of metal fluoride may be dispersed in the coating layer, and a reinforcing material having such a composite coating layer may be used. A molded body may also be formed.

また本発明の方法に於ては、強化材は長繊維、短繊維、
ウィスカ、粒子、又はそれらの混合物の如き任意の形態
のものであってよく、また金属フッ化物も短繊維、ウィ
スカ、粉末の如き任意の形態のものであってよい。
Further, in the method of the present invention, the reinforcing material may be long fibers, short fibers,
It may be in any form such as whiskers, particles, or mixtures thereof, and the metal fluoride may also be in any form such as short fibers, whiskers, or powder.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 まず第1図に示されている如く、直径80mm。Example 1 First, as shown in Figure 1, the diameter is 80 mm.

長さ100mmの黒鉛棒10の周りに厚さ0.2μmに
てN1メツキが施された平均繊維径7μmの炭素繊維1
2(東し株式会社製rT300J、フィラメント数60
00本)を巻取り角度456にて積層厚さか5mmにな
るようフィラメントワインディングによって巻き付ける
ことにより、円筒状の繊維成形体14を形成した。次い
で第2図に示されている如く、繊維成形体14を黒鉛棒
ごと80℃のKpZrF6の飽和水溶液16中に該溶液
の温度が30℃になるまで浸漬し、しかる後m維成形体
を乾燥させることにより、繊維の表面に微細なに2Zr
F6を再結晶により付着させた。
Carbon fiber 1 with an average fiber diameter of 7 μm and N1 plating applied to a thickness of 0.2 μm around a graphite rod 10 with a length of 100 mm.
2 (rT300J manufactured by Toshi Co., Ltd., number of filaments: 60
A cylindrical fiber molded body 14 was formed by winding the fibers (00 pieces) by filament winding at a winding angle of 456 to a laminated thickness of 5 mm. Next, as shown in FIG. 2, the fiber molded body 14, together with the graphite rod, was immersed in a saturated aqueous solution 16 of KpZrF6 at 80°C until the temperature of the solution reached 30°C, and then the fiber molded body was dried. By this, fine 2Zr is added to the surface of the fiber.
F6 was deposited by recrystallization.

次いで繊維成形体]4を黒鉛棒ごと200℃に15分間
予熱した後、第3図に示されている如く、繊維成形体を
黒鉛棒ごと750℃の純Alの溶湯18中に約30秒間
浸漬し、しかる後繊維成形体を溶湯より取出し、そのま
まの状態で溶湯を凝固させた。この場合溶湯はそれが凝
固するまで表面張力により繊維成形体に付着した状態を
維持し、実質的に成形体より滴り落ちることはなかった
Then, after preheating the fiber molded article 4 together with the graphite rod to 200°C for 15 minutes, as shown in FIG. After that, the fiber molded body was taken out from the molten metal, and the molten metal was allowed to solidify in that state. In this case, the molten metal remained attached to the fiber molded body due to surface tension until it solidified, and substantially did not drip from the molded body.

次いでかくして得られた凝固体より黒鉛棒を抜取ること
により、第4図に示されている如く、炭素繊維12にて
複合強化された純AIよりなるパイプ20を形成した。
Next, a graphite rod was extracted from the thus obtained solidified body to form a pipe 20 made of pure AI compositely reinforced with carbon fibers 12, as shown in FIG.

尚かくして形成されたパイプの別法を測定したところ、
このパイプは元の繊維成形体と実質的に同一の形状及び
寸法を何していることが認められた。またこのパイプを
軸線に沿って切断し、その断面を研磨して光学顕微鏡に
て観察したところ、炭素繊維の体積率は約43%であり
、元の繊維成形体全体に純AIが過不足なく良好に浸透
しており、炭素繊維と純AIとの密着状態も良好である
ことが確認された。
Furthermore, when we measured another method for the pipe thus formed, we found that
This pipe was found to have substantially the same shape and dimensions as the original fibrous molding. In addition, when this pipe was cut along the axis and the cross section was polished and observed under an optical microscope, the volume percentage of carbon fiber was approximately 43%, and the entire original fiber molded body contained pure AI without excess or deficiency. It was confirmed that the carbon fibers had penetrated well and the state of adhesion between the carbon fibers and pure AI was also good.

実施例2 第5図に示されている如く、黒鉛よりなり200X30
0Xb 体22の周りにその長手方向に沿って実質的に平行に繊
維径30μmのステンレス鋼繊維24(JIS規格5U
S316)を積層厚さが’z++mになるよう巻付ける
ことにより、断面矩形の繊維成形体26を形成した。次
いで繊維成形体26の個々の繊維24の表面に実施例1
の場合と同様の要領にてKpZrF6を微細に付着させ
た。
Example 2 As shown in Figure 5, a 200x30 piece made of graphite
0Xb Stainless steel fibers 24 with a fiber diameter of 30 μm (JIS standard 5U
S316) was wound so that the laminated thickness was 'z++m, thereby forming a fiber molded body 26 having a rectangular cross section. Next, Example 1 was applied to the surface of each fiber 24 of the fiber molded body 26.
KpZrF6 was deposited finely in the same manner as in the case of .

次いで繊維成形体26を支持体ごと約300’Cに10
分間予熱した後、第6図に示されている如く、繊維成形
体を支持体ごと約750°Cのアルミニウム合金(JA
S規格AC8A)の溶湯28 rl]に約20秒間浸漬
し、しかる後繊維成形体を溶湯より取出し、そのままの
状態で溶湯を凝固させた。
Next, the fiber molded body 26 together with the support was heated to about 300'C for 10 minutes.
After preheating for a minute, as shown in Figure 6, the fibrous molded body and support were heated to approximately 750°C using an aluminum alloy (JA
The fiber molded body was immersed in a molten metal (28 rl) of S standard AC8A) for about 20 seconds, and then the fiber molded body was taken out from the molten metal, and the molten metal was allowed to solidify in that state.

この場合にも溶湯はそれが凝固するまで表面張力により
繊維成形体に付着しまた状態を維持し、実質的に成形体
より滴り落ちることはなかった。次いで第7図に示され
ている如く、かくして得られた凝固体より支持体を崩壊
させて除去することにより断面矩形の中空の複合材料3
0を形成し、更にその両端部の接続部を切断することに
より、第8図に示されている如く、ステンレス鋼繊維2
4にて複合強化されたアルミニウム合金よりなる板状の
複合材料32を形成した。
In this case as well, the molten metal adhered to the fiber molded body due to surface tension and remained in this state until it solidified, and substantially did not drip from the molded body. Next, as shown in FIG. 7, the support is disintegrated and removed from the thus obtained coagulated body, thereby forming a hollow composite material 3 with a rectangular cross section.
By forming a stainless steel fiber 2 and cutting the connections at both ends, as shown in FIG.
In Step 4, a plate-shaped composite material 32 made of a composite reinforced aluminum alloy was formed.

尚かくして形成された複合材料の寸法を測定したところ
、この複合材料の幅及び厚さは元の繊維成形体と実質的
に同一であることが認められた。
Furthermore, when the dimensions of the composite material thus formed were measured, it was found that the width and thickness of the composite material were substantially the same as the original fibrous molding.

またこの腹合材料をステンレス鋼繊維に対し実質的に垂
直に切断し、その断面を研磨して光学顕微鏡にて観察し
たところ、ステンレスw4繊維の体積率は約35%であ
り、個々のステンレス鋼繊維の間にアルミニウム合金が
過不足なく良好に浸透しており、ステンレス鋼繊維とア
ルミニウム合金との密着状態も良好であることが確認さ
れた。
In addition, when this material was cut substantially perpendicularly to the stainless steel fibers, and the cross section was polished and observed under an optical microscope, the volume percentage of stainless steel W4 fibers was approximately 35%, and the individual stainless steel It was confirmed that the aluminum alloy had penetrated well between the fibers, and that the adhesion between the stainless steel fibers and the aluminum alloy was also good.

実施例3 KA I F4粉末が水に懸澗されたスラリーを用意し
、該スラリーに対し超音波振動を加えつつ、平均繊維径
15μmの炭化ケイ素繊維(目本力ボン株式会社製「ニ
カロン」、フィラメント数500本)を連続的にスラリ
ー中に通し、これにより個々の繊維の表面にK A I
 F 4を微細に付着させた。次いでかくして処理され
た繊維を十分に乾燥させた後、直径210m1111長
さ1100Il1の黒鉛棒の周りに巻取り角度的90°
にてコイル状に繊維を巻(1けることにより、厚さ2m
ff1の円筒状の繊維成形体を形成した。次いで繊維成
形体を黒鉛棒ごと200℃に約15分間予熱した後、約
720℃のアルミニウム合金(JIS規格AC2C)の
溶湯中に15秒間浸漬し、しかる後繊維成形体を溶湯よ
り取出し、そのままの状態で溶湯を凝固させた。この場
合にも溶湯はそれが凝固するまで表面張力により繊維成
形体に付着した状態を維持し、実質的に繊維成形体より
滴り落ちることはなか一つだ。次いでかくして得られた
凝固体より黒鉛棒を抜取ることにより、炭化ケイ素繊維
にて複合強化されたアルミニウム合金よりなるパイプを
形成した。
Example 3 A slurry in which KA I F4 powder was suspended in water was prepared, and while applying ultrasonic vibration to the slurry, silicon carbide fibers with an average fiber diameter of 15 μm (“Nicalon” manufactured by Memoto Rikibon Co., Ltd., 500 filaments) are continuously passed through the slurry, thereby applying K A I to the surface of each individual fiber.
F4 was deposited finely. The thus treated fibers, after being thoroughly dried, were then wound around a graphite rod with a diameter of 210 m and a length of 1100 Il at an angle of 90°.
Wrap the fiber into a coil (1 roll will make the fiber 2m thick)
A cylindrical fiber molded body of ff1 was formed. Next, the fiber molded body and the graphite rod were preheated to 200°C for about 15 minutes, and then immersed in a molten aluminum alloy (JIS standard AC2C) at about 720°C for 15 seconds.Then, the fiber molded body was taken out from the molten metal and left as it was. The molten metal was solidified in this state. In this case as well, the molten metal remains attached to the fibrous molded body due to surface tension until it solidifies, and it is rare that the molten metal actually drips from the fibrous molded body. Next, a graphite rod was extracted from the thus obtained solidified body to form a pipe made of an aluminum alloy compositely reinforced with silicon carbide fibers.

尚かくして形成されたパイプの寸法を測定したところ、
このパイプは元の繊維成形体と実質的に同一の形状及び
寸法を有していることが認められた。またパイプを軸線
に沿って切断し、その断面を研磨して光学顕微鏡にて観
察したところ、炭化ケイ素繊維の体積率は約48%であ
り、元の繊維成形体全体にアルミニウム合金が過不足な
く良好に浸透しており、炭化ケイ素繊維とアルミニウム
合金との密着状態も良好であることが確認された。
Furthermore, when we measured the dimensions of the pipe thus formed, we found that
The pipe was found to have substantially the same shape and dimensions as the original fibrous compact. In addition, when the pipe was cut along the axis and the cross section was polished and observed under an optical microscope, the volume percentage of silicon carbide fibers was approximately 48%, and there was no excess or deficiency of aluminum alloy in the entire original fiber molded body. It was confirmed that there was good penetration and that the adhesion between the silicon carbide fiber and the aluminum alloy was also good.

実施例4 外径80mm、内径78111′llのステンレスtl
il (J IS規格S U S 304 )よりなり
円筒状の外周面に厚さ0.5mmにて黒鉛か塗布された
パイプを用意し、該パイプの周りに平均繊維径8μmの
ステンレス鋼繊維(JIS規格S U S 31−6、
東京製綱株式今月製「ザスミックファイバー」、フィラ
メント数6000本)を積層厚さが3mmになるようコ
イル状に巻付けることにより、円筒状の繊維成形体を形
成した。次いて容器内に貯容されたKAlF4のアルコ
ール懸濁液中に繊維成形体をパイプごと浸漬し、容器を
密封してその内部を減圧し、しかる後繊維成形体を懸濁
液より取出して十分に乾燥させ、これにより個々のステ
ンレス鋼繊維の表面にKA I F4を微細に付着させ
た。次いで繊維成形体をパイプこと150℃に15分間
予熱し、しかる後繊維成形体をパイプごと750℃の純
Alの溶湯中に20秒間浸漬し、しかる後繊維成形体を
溶湯より取出し、そのままの状態で溶湯を凝固さぜた。
Example 4 Stainless steel TL with an outer diameter of 80 mm and an inner diameter of 78111'll
A cylindrical pipe made of steel (JIS standard SUS 304) coated with graphite to a thickness of 0.5 mm is prepared, and around the pipe is stainless steel fiber (JIS standard SUS 304) with an average fiber diameter of 8 μm. Standard SUS 31-6,
A cylindrical fiber molded body was formed by winding "Zasmic Fiber" (manufactured by Tokyo Rope Co., Ltd., 6,000 filaments) into a coil so that the laminated thickness was 3 mm. Next, the fiber molded body along with the pipe is immersed in an alcohol suspension of KAlF4 stored in a container, the container is sealed and the inside is depressurized, and then the fiber molded body is taken out from the suspension and thoroughly soaked. It was dried, thereby finely depositing KA I F4 on the surface of each stainless steel fiber. Next, the fiber molded body was preheated to 150°C for 15 minutes, and then the fiber molded body together with the pipe was immersed in a pure Al melt at 750°C for 20 seconds, and then the fiber molded body was taken out from the molten metal and left as it was. The molten metal was solidified.

この場合にも溶湯はそれが凝固するまで表面張力により
繊維成形体に付着した状態を維持し、実質的に繊維成形
体より滴り落ちることはなかった。次いでかくして得ら
れた凝固体よりパイプを引抜き、これによりステンレス
鋼繊維にて複合強化された純AIよりなるパイプを形成
した。
In this case as well, the molten metal remained attached to the fiber molded body due to surface tension until it solidified, and substantially did not drip from the fiber molded body. A pipe was then pulled out from the thus obtained solidified body, thereby forming a pipe made of pure AI compositely reinforced with stainless steel fibers.

尚かくして形成されたパイプの寸法を測定したところ、
このパイプは元の繊維成形体と実質的に同一の形状及び
寸法を有していることが認められた。またこのパイプを
軸線に沿って切断し、その断面を研磨して光学顕微鏡に
て観察しところ、ステンレス鋼繊維の体積率は約41%
であり、元の繊維成形体全体に純Alが過不足なく良好
に浸透しており、ステンレス鋼繊維と純Alとの密着状
態も良好であることが確認された。
Furthermore, when we measured the dimensions of the pipe thus formed, we found that
The pipe was found to have substantially the same shape and dimensions as the original fibrous compact. In addition, when this pipe was cut along the axis and the cross section was polished and observed under an optical microscope, the volume percentage of stainless steel fibers was approximately 41%.
It was confirmed that the pure Al had penetrated into the entire original fiber molded article in just the right amount and that the adhesion between the stainless steel fiber and the pure Al was also good.

実施例5 粒径10μmの黒鉛粉末よりなり10X50X15++
+mの寸法を有する支持体を用意し、該支持体の周りに
実施例1に於て使用された炭素繊維と同−のNiメツキ
が施された炭素繊維を長手方向に沿って積層厚さが5)
になるよう巻付け、これにより断面中空の繊維成形体を
形成した。次いで繊維成形体を実施例1の場合と同一の
要領にて処理することにより個々の炭素繊維の表面にに
2ZrF6を再結晶により付着させた。
Example 5 Made of graphite powder with a particle size of 10 μm 10X50X15++
A support body having a dimension of 5)
The fibers were wound so as to form a fiber molded body having a hollow cross section. Next, the fiber molded body was treated in the same manner as in Example 1, so that 2ZrF6 was deposited on the surface of each carbon fiber by recrystallization.

次いで繊維成形体を支持体ごと200 ’Cに15分間
予熱した後、約750℃の純Mgの溶湯中に30秒間浸
漬し、しかる後繊維成形体を溶湯より取出し、そのまま
の状態で溶湯を凝固させた。この場合にも溶湯はそれか
凝固するまで表面張力により繊維成形体に(=1着した
状態を維持し、実質的に繊維成形体より滴り落ちること
はなかった。次いでかくして得られた凝固体より支持体
を崩壊によって除去することにより、炭素繊維にて複合
強化された純Mgよりなる中空体を形成した。
Next, the fibrous molded body along with the support was preheated to 200'C for 15 minutes, and then immersed in a pure Mg molten metal at about 750°C for 30 seconds.After that, the fibrous molded body was taken out from the molten metal, and the molten metal was solidified in that state. I let it happen. In this case as well, the molten metal remained attached to the fiber molded body due to surface tension until it solidified, and did not substantially drip from the fiber molded body. By removing the support by collapse, a hollow body made of pure Mg composite reinforced with carbon fibers was formed.

尚かくして形成された中空体の寸法を測定したところ、
この中空体は元の繊維成形体と実質的に同一の形状及び
寸法を有していることが認められた。またこの中6空体
を炭素繊維に垂直に切断し、その断面を研磨して光学顕
微鏡にて観察したところ、炭素繊維の体積率は約46%
であり、元の繊維成形体全体に純Mgが過不足なく良好
に浸透しており、炭素繊維と純Mgとの密着状態も良好
であることが確認された。
Furthermore, when the dimensions of the hollow body thus formed were measured,
This hollow body was found to have substantially the same shape and dimensions as the original fibrous molding. In addition, when this hollow body was cut perpendicular to the carbon fibers and the cross section was polished and observed with an optical microscope, the volume percentage of carbon fibers was approximately 46%.
It was confirmed that pure Mg had penetrated into the entire original fiber molded article in just the right amount and that the adhesion between the carbon fiber and pure Mg was also good.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。例えば上述
の何れの実施例に於ても支持体の表面は平滑であるが、
表面に凹凸を有する支持体を使用すれば、その凹凸とは
逆の凹凸を有する複合材料を製造することができる。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art that For example, in all of the above embodiments, the surface of the support is smooth;
By using a support having irregularities on its surface, it is possible to produce a composite material having irregularities opposite to the irregularities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明による複合材料の製造方法の
一つの実施例を示す一連の工程図、第5図乃至第8図は
本発明による複合材料の製造方法の他の一つの実施例を
示す一連の工程図である。 10・・・黒鉛棒、]2・・・炭素繊維、]4・・・繊
維成形体、16・・・KpZrF6の飽和水溶液、18
・・・純AIの溶湯、20・・・パイプ、22・・支持
体、24・・・ステンレス鋼繊維、26・・・繊維成形
体、28・・・アルミニウム合金の溶湯、30・・・複
合H料、32・・・板状の複合材料 特 許 出 願 人    トヨタ自動車株式会社代 
  理   人   弁理士  明石 昌毅第 図 20・・ツマイブ 第 図 第5 図 弔6 図
1 to 4 are a series of process diagrams showing one embodiment of the method for manufacturing a composite material according to the present invention, and FIGS. 5 to 8 are a series of process diagrams showing another embodiment of the method for manufacturing a composite material according to the present invention. 1 is a series of process diagrams showing examples. 10...Graphite rod, ]2... Carbon fiber, ]4... Fiber molded body, 16... Saturated aqueous solution of KpZrF6, 18
...Pure AI molten metal, 20...Pipe, 22...Support, 24...Stainless steel fiber, 26...Fiber molded body, 28...Aluminum alloy molten metal, 30...Composite H fee, 32... Plate-shaped composite material patent applicant: Toyota Motor Corporation representative
Patent Attorney Masatake Akashi Figure 20...Tsumaibu Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  Al、Mg、Al合金、及びMg合金よりなる群より
選択された金属をマトリックスとする金属基複合材料の
製造方法にして、少くとも表面部が炭素又は黒鉛よりな
る所定形状の支持体上に無機質の強化材とマトリックス
の溶湯に対する濡れ性に優れた金属と金属フッ化物とを
含む多孔質の成形体を形成し、前記成形体の少くとも一
部をマトリックスの溶湯に接触させ、前記溶湯を実質的
に加圧することなく前記成形体中に浸透させた後凝固さ
せ、しかる後前記支持体を除去する金属基複合材料の製
造方法。
A method for producing a metal matrix composite material having a matrix of a metal selected from the group consisting of Al, Mg, Al alloys, and Mg alloys, wherein the inorganic material is forming a porous molded body containing a reinforcing material, a metal with excellent wettability to the molten metal of the matrix, and a metal fluoride, and bringing at least a part of the molded body into contact with the molten metal of the matrix, so that the molten metal is substantially absorbed by the molten metal. A method for producing a metal matrix composite material, wherein the metal matrix composite material is infiltrated into the molded body without being pressurized, and then solidified, and then the support is removed.
JP7594789A 1989-03-28 1989-03-28 Manufacture of metal-matrix composite material Pending JPH02254128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7594789A JPH02254128A (en) 1989-03-28 1989-03-28 Manufacture of metal-matrix composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7594789A JPH02254128A (en) 1989-03-28 1989-03-28 Manufacture of metal-matrix composite material

Publications (1)

Publication Number Publication Date
JPH02254128A true JPH02254128A (en) 1990-10-12

Family

ID=13590928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7594789A Pending JPH02254128A (en) 1989-03-28 1989-03-28 Manufacture of metal-matrix composite material

Country Status (1)

Country Link
JP (1) JPH02254128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150945A (en) * 1990-10-15 1992-05-25 Mitsui Toatsu Chem Inc Deodorizing oxide solid catalyst
US6635357B2 (en) * 2002-02-28 2003-10-21 Vladimir S. Moxson Bulletproof lightweight metal matrix macrocomposites with controlled structure and manufacture the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150945A (en) * 1990-10-15 1992-05-25 Mitsui Toatsu Chem Inc Deodorizing oxide solid catalyst
US6635357B2 (en) * 2002-02-28 2003-10-21 Vladimir S. Moxson Bulletproof lightweight metal matrix macrocomposites with controlled structure and manufacture the same

Similar Documents

Publication Publication Date Title
US4732779A (en) Fibrous material for composite materials, fiber-reinforced metal produced therefrom, and process for producing same
JPH031437B2 (en)
FI91724C (en) Process for manufacturing a metal matrix composite using a negative form of an alloy
JPH0413412B2 (en)
JPH02254128A (en) Manufacture of metal-matrix composite material
JPS61295346A (en) Fiber-reinforced metal and its production
US4899800A (en) Metal matrix composite with coated reinforcing preform
JP2909546B2 (en) Manufacturing method of metal matrix composite material
JP3107563B2 (en) Manufacturing method of metal matrix composite material
JP2909545B2 (en) Manufacturing method of metal matrix composite material
JP2576188B2 (en) Manufacturing method of metal matrix composite material
JPH024935A (en) Manufacture of metal matrix composite
JP2576187B2 (en) Manufacturing method of metal matrix composite material
JP2541298B2 (en) Manufacturing method of metal matrix composite material
JP2576186B2 (en) Manufacturing method of metal matrix composite material
JPS6238412B2 (en)
JPH0331434A (en) Production of clad material containing metal matrix composite
JPH01279713A (en) Manufacture of metal-based composite material
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JP2579837B2 (en) Preforms for metal matrix composites
JPH086250B2 (en) Hybrid fiber manufacturing method
JPS6029433A (en) Production of fiber-reinforced metallic composite material
JPS642471B2 (en)
JPH01279719A (en) Manufacture of metal-based composite material
JPS609838A (en) Fiber-reinforced metallic body and its production