JPH02253898A - Anaerobic treatment of waste water - Google Patents

Anaerobic treatment of waste water

Info

Publication number
JPH02253898A
JPH02253898A JP1073867A JP7386789A JPH02253898A JP H02253898 A JPH02253898 A JP H02253898A JP 1073867 A JP1073867 A JP 1073867A JP 7386789 A JP7386789 A JP 7386789A JP H02253898 A JPH02253898 A JP H02253898A
Authority
JP
Japan
Prior art keywords
ammonia
reactor
water
anaerobic
anaerobic reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1073867A
Other languages
Japanese (ja)
Inventor
Sakae Fukunaga
栄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1073867A priority Critical patent/JPH02253898A/en
Publication of JPH02253898A publication Critical patent/JPH02253898A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To lower the concn. of ammonia in an anaerobic reactor at the time of a treatment of waste water contg. nitrogen compds. at a high concn. by introducing a part of the treating water contg. the ammonia generated in the anaerobic reactor into an ammonia diffusion reactor, and then returning this water to the anaerobic reactor. CONSTITUTION:The waste water contg. the nitrogen compds. at the high concn. are decomposed and slaked by anaerobic microorganisms to gaseous methane and carbon dioxide when this waste water is sent into the anaerobic reactor 5. The compds. in the waste water are then converted to the ammonia and much of org. carbon to the carbon dioxide. The ammonia and carbon dioxide are dissolved in the water in the reactor 5. A part of the treated water is admitted through a return water intake piping 8 into the ammonia diffusion reactor 9 where the air from an air supply pipe 10 is brought into contact with the water. The water which is thereby lowered in the ammonia concn. is sent via a return piping 13 to a raw water adjusting tank 2 and is returned into the anaerobic reactor 5. The water in the reactor 5 is thus diluted and the ammonia concn. is lowered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、嫌気性微生物で廃水処理する廃水の嫌気性処
理方法に係り、特に廃水中の窒素化合物濃度が高い場合
の廃水の嫌気性処理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for anaerobic treatment of wastewater using anaerobic microorganisms, and particularly to anaerobic treatment of wastewater when the concentration of nitrogen compounds in the wastewater is high. It is about the method.

[従来の技術] 廃水の嫌気性処理方法は、嫌気性微生物の作用によって
廃水中の有機物質を還元的に分解消化するものであり、
第7図に示すように、廃水を原水調整槽aに貯溜した後
、原水ボン1bで嫌気性リアクタCに送り、そこで嫌気
性微生物の作用によって廃水処理を行い、処理水は嫌気
性リアクタCから流出配管dに流出・するようになって
いる、また、嫌気性リアクタCの上澄水あるいは流出配
管dに流出された処理水を返送ポンプeで原水調整槽a
あるいは嫌気性リアクタCに返送して、廃水を嫌気性処
理する場合もある。
[Prior Art] Anaerobic wastewater treatment methods reductively decompose and digest organic substances in wastewater through the action of anaerobic microorganisms.
As shown in Fig. 7, after wastewater is stored in a raw water adjustment tank a, it is sent to an anaerobic reactor C using a raw water tank 1b, where the wastewater is treated by the action of anaerobic microorganisms, and the treated water is sent from the anaerobic reactor C. The supernatant water of the anaerobic reactor C or the treated water discharged to the outflow pipe d is sent to the raw water adjustment tank a using a return pump e.
Alternatively, the wastewater may be returned to the anaerobic reactor C for anaerobic treatment.

[発明が解決しようとする課題] しかしながら、従来の廃水の嫌気性処理方法にあっては
、廃水中のタンパク質等の窒素化合物濃度が高い(廃水
中の窒素分としての濃度が1000u/II以上)と、
窒素化合物は嫌気性リアクタ内でアンモニアに変換し、
このアンモニアが大部分水に溶解するので、嫌気性リア
クタ内のアンモニア濃度が高くなり、アンモニアが嫌気
性微生物に阻害作用を及ぼすために、嫌気性リアクタの
廃水処理能力が低下する問題があった。
[Problem to be solved by the invention] However, in the conventional anaerobic treatment method of wastewater, the concentration of nitrogen compounds such as proteins in the wastewater is high (concentration as nitrogen content in the wastewater is 1000 u/II or more). and,
Nitrogen compounds are converted to ammonia in an anaerobic reactor,
Since most of this ammonia is dissolved in water, the ammonia concentration within the anaerobic reactor becomes high, and since ammonia exerts an inhibitory effect on anaerobic microorganisms, there is a problem that the wastewater treatment capacity of the anaerobic reactor decreases.

そこで、本発明は、上記課題を解決すべくなされたもの
で、高濃度窒素化合物を含む廃水を処理する場合、嫌気
性リアクタ内のアンモニア濃度を低減できる廃水の嫌気
性処理方法を提供することを目的とする。
Therefore, the present invention has been made to solve the above problems, and aims to provide an anaerobic treatment method for wastewater that can reduce the ammonia concentration in an anaerobic reactor when treating wastewater containing high concentration nitrogen compounds. purpose.

[課題を解決するための手段] 本発明は、上記目的を達成するために、高濃度窒素化合
物を含む廃水を嫌気性リアクタ内に導入し、これを嫌気
性微生物で廃水処理する廃水の嫌気性処理方法において
、上記嫌気性リアクタ内で生じるアンモニアを含む処理
液の一部をアンモニア放散リアクタに導入し、この処理
液を空気と接触させて液中のアンモニアを放散させた後
、この液を嫌気性リアクタに戻すようにしたものである
[Means for Solving the Problems] In order to achieve the above object, the present invention introduces wastewater containing highly concentrated nitrogen compounds into an anaerobic reactor, and processes the wastewater with anaerobic microorganisms. In the treatment method, a part of the treatment liquid containing ammonia produced in the anaerobic reactor is introduced into an ammonia dispersion reactor, the treatment liquid is brought into contact with air to diffuse ammonia in the liquid, and then the liquid is anaerobically It was designed to be returned to the sexual reactor.

[作用] 高濃度窒素化合物を含む廃水を嫌気性リアクタ内に導入
すると、廃水は嫌気性微生物で処理される。ところが、
嫌気性リアクタ内で窒素化合物がアンモニアに変換し、
このアンモニアの大部分かがりアクタ内の液に溶解する
ことにより、アンモニアが嫌気性微生物に阻害作用を及
ぼす、そこで、嫌気性リアクタ内の処理液の一部をアン
モニア放散リアクタに導入し、この処理液を空気と接触
させて液中のアンモニアを放散させた後、この液を嫌気
性リアクタに戻すことにより、嫌気性リアクタ内のアン
モニア濃度を低減させることができ、アンモニアによる
嫌気性微生物の阻害作用を弱めることができる。
[Operation] When wastewater containing highly concentrated nitrogen compounds is introduced into an anaerobic reactor, the wastewater is treated with anaerobic microorganisms. However,
Nitrogen compounds are converted to ammonia in the anaerobic reactor,
By dissolving most of this ammonia in the liquid in the anaerobic reactor, ammonia exerts an inhibitory effect on anaerobic microorganisms.Therefore, a part of the treated liquid in the anaerobic reactor is introduced into the ammonia dispersion reactor, and the treated liquid is By bringing the liquid into contact with air to dissipate the ammonia in the liquid, and then returning this liquid to the anaerobic reactor, the ammonia concentration in the anaerobic reactor can be reduced, and the inhibitory effect of ammonia on anaerobic microorganisms can be reduced. It can be weakened.

[実施例] 本発明の好適実施例を添付図面に基づいて説明する。[Example] Preferred embodiments of the present invention will be described based on the accompanying drawings.

第1図は、本発明に係る廃水の嫌気性処理方法を実施す
るために採用する装置の第1の実施例を示すものである
。第1図に示すように、タンパク質等の窒素化合物の濃
度が高い(廃水中の窒素分としての濃度が1000 u
/J1以上)廃水の流入配管1には、この廃水を処理原
水として貯溜するための原水調整槽2が接続されている
。この原水調整槽2には、原水ポンプ3が取付けられた
原水配管4を介して嫌気性リアクタ5が接続され、原水
ポンプ3によって原水調整槽2の廃水を嫌気性リアクタ
5に送るようになっている。
FIG. 1 shows a first embodiment of an apparatus employed to carry out the method for anaerobic treatment of wastewater according to the present invention. As shown in Figure 1, the concentration of nitrogen compounds such as proteins is high (the concentration of nitrogen in wastewater is 1000 u
/J1 and above) A raw water adjustment tank 2 for storing the waste water as treated raw water is connected to the waste water inflow pipe 1. An anaerobic reactor 5 is connected to this raw water adjustment tank 2 via a raw water pipe 4 to which a raw water pump 3 is attached, and the raw water pump 3 sends wastewater from the raw water adjustment tank 2 to the anaerobic reactor 5. There is.

嫌気性リアクタ5は、送られてきた廃水中の有機物質を
嫌気性微生物によってメタンガスや炭酸ガス等のバイオ
ガスに分解消化して廃水処理を行うように構成されてい
る0例えば、嫌気性リアクタ5内に砕石や合成樹脂等の
充填層(図示せず)が形成され、この充填層内を廃水が
透過すると、充填層に廃水中の有機物質が付着してその
有機物質を嫌気性微生物が分解消化する。この嫌気性リ
アクタ5の上部には、リアクタ5内に発生するバイオガ
スを取出すためのバイオガス配管6が接続されてい番と
共に、上方には処理後の水が導入される返送水取水配管
8が接続されている。この返送水取水配管8はアンモニ
ア放散リアクタ9に接続され、嫌気性リアクタ5内の処
理水が返送水取水配管8を介してアンモニア放散リアク
タ9に入り、そこからリアクタ9の上方の流出配管7に
流出するようになっている。
The anaerobic reactor 5 is configured to perform wastewater treatment by decomposing and digesting organic substances in the wastewater sent to it into biogas such as methane gas and carbon dioxide using anaerobic microorganisms. A packed bed (not shown) of crushed stone, synthetic resin, etc. is formed inside the tank, and when wastewater permeates through this packed bed, organic substances in the wastewater adhere to the packed bed and are decomposed by anaerobic microorganisms. Digest. A biogas pipe 6 is connected to the top of the anaerobic reactor 5 to take out the biogas generated in the reactor 5, and a return water intake pipe 8 is connected above to introduce the water after treatment. It is connected. This return water intake pipe 8 is connected to an ammonia dispersion reactor 9, and the treated water in the anaerobic reactor 5 enters the ammonia dispersion reactor 9 via the return water intake pipe 8, and from there to the outflow pipe 7 above the reactor 9. It's starting to leak out.

また、上記アンモニア放散リアクタ9は、嫌気性リアク
タ5に対して容量が1710の以下に形成され、下部に
空気供給管10が接続されると共に上部に空気排出管1
1が接、続され、空気によってリアクタ9内の水に溶解
しているアンモニアが放散するように構成されている。
The ammonia dissipation reactor 9 is formed to have a capacity of 1710 or less with respect to the anaerobic reactor 5, and has an air supply pipe 10 connected to the lower part and an air discharge pipe 1 to the upper part.
1 is connected, and the ammonia dissolved in the water in the reactor 9 is dissipated by air.

なお、アンモニア放散リアクタは、リアクタ内の水をブ
ロワで曝気したり機械式曝気する形式あるいは好気性固
定床や散水r床の形式でもよく、空気によって水からア
ンモニアを放散できればどのような形式でもよい。
Note that the ammonia dispersion reactor may be of a type in which the water in the reactor is aerated with a blower or mechanically aerated, or may be of an aerobic fixed bed or sprinkler bed type, and may be of any type as long as it can diffuse ammonia from water with air.

そのアンモニア放散リアクタ9の下部は、返送ボンダ1
2が取付けられた返送配管13を介して上記原水調整槽
2に接続されるか、又は図の一点線で示すように、循環
ポンプ14が取付けられた循環配管15を介して原水配
管4に接続され、返送ポンプ12又は循環ポンプ14に
よってアンモニア放散リアクタ9の水を嫌気性リアクタ
5に戻すようになっている。
The lower part of the ammonia dissipation reactor 9 is a return bonder 1.
2 is connected to the raw water adjustment tank 2 through the return piping 13 to which the pump 2 is attached, or to the raw water piping 4 through the circulation piping 15 to which the circulation pump 14 is attached, as shown by the dotted line in the figure. The water in the ammonia dispersion reactor 9 is returned to the anaerobic reactor 5 by the return pump 12 or the circulation pump 14.

次に本実施例の廃水の嫌気性処理方法について説明する
Next, the anaerobic treatment method for wastewater according to this embodiment will be explained.

タンパク質等の窒素化合物の濃度が高い(廃水中の窒素
分としての濃度が1000 +11J/J以上)廃水を
、流入配管1から原水調整槽2に貯溜させ、原水ポンプ
3によって原水配管4を介して嫌気性リアクタ5に送る
Wastewater with a high concentration of nitrogen compounds such as proteins (the concentration of nitrogen in the wastewater is 1000 + 11 J/J or more) is stored in the raw water adjustment tank 2 from the inflow pipe 1, and is pumped through the raw water pipe 4 by the raw water pump 3. Send to anaerobic reactor 5.

嫌気性リアクタ5に送られた廃水は、リアクタ5内の充
填層内を透過し、その充填層に廃水中の有機物質が付着
して嫌気性微生物によってメタンガスや炭酸ガス等のバ
イオガスに分解消化されて廃水処理が行われ、処理水が
リアクタ5の上方から排出され、返送水取水配管8及び
アンモニア放散リアクタ9を介して流出配管7に流出す
る。なお、アンモニア放散リアクタでは実質的処理はす
すまないようになっている。一方、嫌気性リアクタ5内
に発生するバイオガスは、リアクタ5から排出されバイ
オガス配管6を介してガスホルダ等に至る。
The wastewater sent to the anaerobic reactor 5 passes through the packed bed inside the reactor 5, and organic substances in the wastewater adhere to the packed bed and are decomposed and digested by anaerobic microorganisms into biogas such as methane gas and carbon dioxide gas. The treated water is discharged from above the reactor 5 and flows out to the outflow pipe 7 via the return water intake pipe 8 and the ammonia dispersion reactor 9. It should be noted that the ammonia dissipation reactor does not allow substantial treatment to proceed. On the other hand, biogas generated in the anaerobic reactor 5 is discharged from the reactor 5 and reaches a gas holder etc. via the biogas piping 6.

また、嫌気性リアクタ5内では、廃水中の窒素化合物は
アンモニアに変換し、このアンモニアが大部分りアクタ
5内の水に溶解するために、嫌気性リアクタ5内のアン
モニア濃度が高くなると共に、有機体炭素の多くは炭酸
ガスに変換し、この炭酸カスもリアクタ5内の水に溶解
する。
Furthermore, in the anaerobic reactor 5, nitrogen compounds in the wastewater are converted to ammonia, and most of this ammonia is dissolved in the water in the anaerobic reactor 5, so that the ammonia concentration in the anaerobic reactor 5 increases. Most of the organic carbon is converted into carbon dioxide gas, and this carbon dioxide residue is also dissolved in the water in the reactor 5.

そこで、炭酸ガスとアンモニアが溶解した処理水の一部
を返送水取水配管8を介してアンモニア放散リアクタ9
に流入させる。そしてアンモニア放散リアクタ9内に流
入した水に、空気供給管10からの空気を接触させると
、水に溶解している炭酸ガスの一部が放散し、水のPH
が上昇する。
Therefore, a portion of the treated water in which carbon dioxide gas and ammonia have been dissolved is returned to the ammonia dispersion reactor 9 via the water intake pipe 8.
to flow into. When the air from the air supply pipe 10 is brought into contact with the water that has flowed into the ammonia dispersion reactor 9, a part of the carbon dioxide gas dissolved in the water is dissipated, and the pH of the water increases.
rises.

すると、リアクタ9の水のアンモニアの溶解度が下がる
ので、アンモニアの一部も放敗し、アンモニア放散リア
クタ9のアンモニアの濃度が低くなる0例えば、アンモ
ニア放散リアクタ内を曝気した場合を下表に示す。
Then, the solubility of ammonia in the water in the reactor 9 decreases, so some of the ammonia also evaporates, and the concentration of ammonia in the ammonia dissipation reactor 9 decreases. .

よって、アンモニア放散リアクタ9は、アルカリ等の薬
剤や触媒を用いないでも、空気によってアンモニア濃度
を低くさせることができる。また、アンモニア放散リア
クタ9内の空気や水から放散したアンモニア等は、排ガ
スとしてリアクタ9から排出され空気排出管11に入る
ので、この排ガスを好気性廃水処理装置の曝気等に用い
ることができる。なお、空気排出管はブロワで吸引する
形式でも、自然通風でも良い。
Therefore, the ammonia dispersion reactor 9 can lower the ammonia concentration using air without using a chemical such as an alkali or a catalyst. Furthermore, ammonia and the like diffused from the air and water in the ammonia dispersion reactor 9 are discharged from the reactor 9 as exhaust gas and enter the air exhaust pipe 11, so this exhaust gas can be used for aeration of the aerobic wastewater treatment device. Note that the air exhaust pipe may be of a type that uses a blower for suction, or may be of a type that uses natural ventilation.

そして、アン上ニア放散りアクタ9でアンモニア濃度が
低くなった水を、返送ポンプ12によって返送配管13
を介して原水調整槽2に送り、そこから嫌気性リアクタ
5内に戻す、又は、上記水を、循環ポンプ14によって
循環配管15及び原水配管4を介して嫌気性リアクタ5
に戻す、いずれにせよ、アンモニア濃度が低くなった水
を嫌気性リアクタ5内に戻すことになるので、嫌気性リ
アクタ5の水にアンモニア濃度の低い水が流入する。こ
のため、リアクタ5のアンモニア濃度が高い水は希釈寄
れることになり、アンモニア濃度を低減させることがで
きる。なお、嫌気性リアクタに戻されるアンモニア放散
りアクタの水は、嫌気性リアクタ内の水を十分に希釈で
きる程度にアンモニア濃度が低くなっている。
Then, the water whose ammonia concentration has been lowered by the ammonia dispersion actor 9 is sent to the return piping 13 by the return pump 12.
The water is sent to the raw water adjustment tank 2 through the water and returned to the anaerobic reactor 5 from there, or the water is sent to the anaerobic reactor 5 via the circulation pipe 15 and the raw water pipe 4 by the circulation pump 14.
In any case, the water with a low ammonia concentration is returned to the anaerobic reactor 5, so the water with a low ammonia concentration flows into the water of the anaerobic reactor 5. Therefore, water with a high ammonia concentration in the reactor 5 can be diluted, and the ammonia concentration can be reduced. Note that the ammonia concentration of the water from the ammonia dispersion actor that is returned to the anaerobic reactor is low enough to sufficiently dilute the water in the anaerobic reactor.

上述のように、嫌気性リアクタ5のアンモニア濃度の高
い処理水の一部をアンモニア放散リアクタ9でアンモニ
ア濃度が低くなった水にさせ、この水を嫌気性リアクタ
5に戻して、嫌気性リアクタ5のアンモニア濃度を低減
させることにより、嫌気性リアクタ5内のアンモニアに
よる嫌気性微生物の阻害を弱くさせることができる。こ
のため、嫌気性微生物の阻害が弱くなると、嫌気性リア
クタ5内の嫌気性微生物は十分に廃水の処理を行うこと
ができるので、嫌気性リアクタ5の処理能力を向上させ
ることができる。
As described above, a part of the treated water with a high ammonia concentration in the anaerobic reactor 5 is made into water with a low ammonia concentration in the ammonia dispersion reactor 9, and this water is returned to the anaerobic reactor 5. By reducing the ammonia concentration in the anaerobic reactor 5, inhibition of anaerobic microorganisms by ammonia in the anaerobic reactor 5 can be weakened. Therefore, when the inhibition of anaerobic microorganisms becomes weaker, the anaerobic microorganisms in the anaerobic reactor 5 can sufficiently treat wastewater, so that the processing capacity of the anaerobic reactor 5 can be improved.

第2図は、第2の実施例を示すものである。この実権例
の第1の実施例と異なるところは、嫌気性リアクタ5a
の上方に流11配管7aが直接接続され、嫌気性リアク
タ5aの処理水が直接流出するようにしであることであ
る。このように梢成することで、従来の嫌気性リアクタ
の上澄水を原水調整槽あるいは嫌気性リアクタに返送す
る場合の配管にアンモニア放散リアクタを設けるだけで
本発明を実施することができる。
FIG. 2 shows a second embodiment. This actual example differs from the first example in that the anaerobic reactor 5a
The flow 11 piping 7a is directly connected above the anaerobic reactor 5a so that the treated water of the anaerobic reactor 5a directly flows out. With this arrangement, the present invention can be carried out simply by providing an ammonia dissipation reactor in the piping for returning the supernatant water of the conventional anaerobic reactor to the raw water adjustment tank or the anaerobic reactor.

第3図は、第3の実施例を示すものである。この実施例
の第1の実施例と異なるところは、嫌気性リアクタ5b
の上方に流出配管7bが直接接続されていると共に、嫌
気性リアクタらbの流出配管7bが接続されている位置
より下方の適宜の位置に、返送ボン116が取付けられ
た返送水取水配管17が接続され、かつアンモニア放散
リアクタ9bの下方に返送配管13b又は循環配管15
bが接続されているところである。このように構成する
ことで、返送ポンプ16によってアンモニア放散リアク
タ9bの水位を調節できると共に、返送配管13b及び
循環配管15bを介して嫌気性リアクタ5b内に戻す流
量を調整できる。
FIG. 3 shows a third embodiment. The difference between this embodiment and the first embodiment is that the anaerobic reactor 5b
An outflow pipe 7b is directly connected to the upper part, and a return water intake pipe 17 with a return bong 116 attached is located at an appropriate position below the position where the outflow pipe 7b of the anaerobic reactor b is connected. The return piping 13b or the circulation piping 15 is connected to the lower part of the ammonia dispersion reactor 9b.
b is connected. With this configuration, the water level of the ammonia dispersion reactor 9b can be adjusted by the return pump 16, and the flow rate returned into the anaerobic reactor 5b via the return pipe 13b and the circulation pipe 15b can be adjusted.

第4図及び第5図は、第1図及び第2図のそれぞれの変
形例を示すものであり、これら変形例は、空気供給管1
0.10aの空気量を絞り、空気排出管11.Llaを
ブロワ、で吸引するようにする。
4 and 5 show modifications of FIGS. 1 and 2, respectively, and these modifications include the air supply pipe 1.
Reduce the amount of air to 0.10a, and connect the air exhaust pipe 11. Make sure to suck up Lla with a blower.

また、流出配管7,7aの接続位置を、アンモニア放散
リアクタ9,9aあるいは嫌気性リアクタ5.5aの水
位より低く接続させ、かつ空気排出管11.llaをブ
ロワで吸引した場合、流出配管7,7aからガスがアン
モニア放散リアクタ9゜9aおよび嫌気性リアクタ5.
5a内に導入しないように、流出配管7,7aを、アン
モニア放散リアクタ9′!、たは嫌気性リアクタ5aの
接続位置から立ち上げて処理水が流出するようにさせる
Further, the connection positions of the outflow pipes 7, 7a are connected lower than the water level of the ammonia dissipation reactors 9, 9a or the anaerobic reactor 5.5a, and the air discharge pipes 11. When lla is suctioned by a blower, gas flows from the outflow pipes 7 and 7a to the ammonia diffusion reactor 9.9a and the anaerobic reactor 5.
5a, the outflow pipes 7, 7a are connected to the ammonia dispersion reactor 9'! , or from the connection position of the anaerobic reactor 5a to allow treated water to flow out.

さらに、返送水取水配管8,8aの接続位置を嫌気性リ
アクタ5,5aとアンモニア放散リアクタ9.9aの水
位より低く接続させる。このようにすれば、アンモニア
放散リアクタ9,9aの水位が流出配管7.7a及び返
送水取水配管8.8aの接続位置より高くなり、空気排
出管11゜11aをブロワで吸引させると、アンモニア
放散リアクタ9,9a内の気圧が下がるので、リアクタ
9.9a内の水と空気の接触が活性化されてアンモニア
の放散を一層容易にさせることができる。
Further, the connection positions of the return water intake pipes 8 and 8a are connected to be lower than the water level of the anaerobic reactors 5 and 5a and the ammonia dispersion reactor 9.9a. In this way, the water level in the ammonia dissipation reactors 9, 9a will be higher than the connection position of the outflow pipe 7.7a and the return water intake pipe 8.8a, and when the air discharge pipe 11°11a is sucked with a blower, ammonia will be dissipated. Since the air pressure inside the reactors 9, 9a is reduced, the contact between the water and the air inside the reactor 9, 9a is activated, and the ammonia can be more easily dissipated.

なお、返送ボンフ゛又は循環ポンプをアンモニア放散り
アクタの下?M側に設けてアンモニア放散リアクタから
嫌気性リアクタに戻す水量を調節するようにしたので、
嫌気性リアクタとアンモニア放散リアクタの水位はほぼ
等しくなる。このため、アンモニア放散リアクタは散水
炉床の形式を使用できない。
Also, is the return bomb or circulation pump under the ammonia dissipating actor? Since it was installed on the M side to adjust the amount of water returned from the ammonia dissipation reactor to the anaerobic reactor,
The water levels in the anaerobic reactor and the ammonia dissipation reactor become approximately equal. For this reason, the ammonia dissipation reactor cannot use the sprinkler hearth format.

第6図は、第3図の変形例を示すものであり、この変形
例は、空気供給管tabの空気量を絞り、アンモニア放
散リアクタ9bから原水調整槽2bへの水の自然流下が
可能な程度に空気排出管11bをブロワで吸引するよう
にする。このようにすれば、アンモニア放散リアクタ9
b内の気圧が下がるので、リアクタ9b内の水と空気の
接触が活性化されてアンモニアの放散を一層容易にさせ
ることができる。
FIG. 6 shows a modification of FIG. 3, in which the amount of air in the air supply pipe tab is throttled to allow natural flow of water from the ammonia dissipation reactor 9b to the raw water adjustment tank 2b. The air exhaust pipe 11b is suctioned with a blower to a certain extent. In this way, the ammonia dissipation reactor 9
Since the air pressure in reactor 9b decreases, contact between water and air in reactor 9b is activated, making it easier to dissipate ammonia.

なお、空気供給管10.10aまたは10bから供給す
る空気の代わりに他の廃ガスを用いてもよい。
Note that other waste gas may be used instead of the air supplied from the air supply pipe 10.10a or 10b.

[発明の効果1 以上要するに本発明によれば、嫌気性リアクタ内で生じ
るアンモニアを含む処理液の一部から液中のアンモニア
を放散させた後、この液を嫌気性リアクタに戻すように
したことにより、嫌気性リアクタ内のアンモニア濃度か
低減でき、アンモニアによる微生物の阻害作用が弱まる
ので、嫌気性リアクタの処理能力を向上できるという潰
れた効果を発揮する。
[Effect of the invention 1] In short, according to the present invention, after ammonia in the liquid is diffused from a part of the ammonia-containing treatment liquid generated in the anaerobic reactor, this liquid is returned to the anaerobic reactor. As a result, the ammonia concentration within the anaerobic reactor can be reduced, and the microbial inhibitory effect of ammonia is weakened, so the processing capacity of the anaerobic reactor can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す構成図、第2図は
本発明の第2の実施例を示す構成図、第3図は本発明の
第3の実施例を示す構成図、第4図は第1図の変形例を
示す構成図、第5図は第2図の変形例を示す構成図、第
6図は第3図の変形例を示す構成図、第7図は従来例を
示す構成図であるJ 図中、5.5a、5bは嫌気性リアクタ、9゜9a、9
bはアンモニア放散リアクタである。 第 1図 第2図 第5図 第6図 90、アンモニア第2電tす72り 第3図 第4図
Fig. 1 is a block diagram showing a first embodiment of the present invention, Fig. 2 is a block diagram showing a second embodiment of the present invention, and Fig. 3 is a block diagram showing a third embodiment of the present invention. , FIG. 4 is a block diagram showing a modification of FIG. 1, FIG. 5 is a block diagram showing a modification of FIG. 2, FIG. 6 is a block diagram showing a modification of FIG. 3, and FIG. 7 is a block diagram showing a modification of FIG. J is a configuration diagram showing a conventional example. In the figure, 5.5a and 5b are anaerobic reactors, 9°9a, 9
b is an ammonia dissipation reactor. Fig. 1 Fig. 2 Fig. 5 Fig. 6 Fig. 90, Ammonia 2nd electricity

Claims (1)

【特許請求の範囲】[Claims] 1、高濃度窒素化合物を含む廃水を嫌気性リアクタ内に
導入し、これを嫌気性微生物で廃水処理する廃水の嫌気
性処理方法において、上記嫌気性リアクタ内で生じるア
ンモニアを含む処理液の一部をアンモニア放散リアクタ
に導入し、この処理液を空気と接触させて液中のアンモ
ニアを放散させた後、この液を嫌気性リアクタに戻すよ
うにしたことを特徴とする廃水の嫌気性処理方法。
1. In an anaerobic wastewater treatment method in which wastewater containing highly concentrated nitrogen compounds is introduced into an anaerobic reactor and treated with anaerobic microorganisms, a portion of the treated liquid containing ammonia generated in the anaerobic reactor. A method for anaerobic treatment of wastewater, characterized in that the treated liquid is introduced into an ammonia diffusion reactor, the treated liquid is brought into contact with air to diffuse the ammonia in the liquid, and then the liquid is returned to the anaerobic reactor.
JP1073867A 1989-03-28 1989-03-28 Anaerobic treatment of waste water Pending JPH02253898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073867A JPH02253898A (en) 1989-03-28 1989-03-28 Anaerobic treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073867A JPH02253898A (en) 1989-03-28 1989-03-28 Anaerobic treatment of waste water

Publications (1)

Publication Number Publication Date
JPH02253898A true JPH02253898A (en) 1990-10-12

Family

ID=13530562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073867A Pending JPH02253898A (en) 1989-03-28 1989-03-28 Anaerobic treatment of waste water

Country Status (1)

Country Link
JP (1) JPH02253898A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178995A (en) * 1992-12-14 1994-06-28 Ebara Infilco Co Ltd Anaerobic digestion treatment of organic waste water
JP2002273489A (en) * 2001-03-21 2002-09-24 Mitsubishi Heavy Ind Ltd Treatment method of liquid organic waste and system for the same
JP2006000791A (en) * 2004-06-18 2006-01-05 Fuji Xerox Co Ltd Wastewater treatment method
JP2008100151A (en) * 2006-10-18 2008-05-01 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic waste water treatment device
JP2009522095A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2009522096A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2010006686A (en) * 2008-05-29 2010-01-14 National Agriculture & Food Research Organization Nitrogen extraction/fixation for methane-fermented/digested liquid, device therefor, product produced by the method, recovery method for the product and recovery system therefor
JP2011098344A (en) * 2010-12-24 2011-05-19 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic wastewater treatment apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178995A (en) * 1992-12-14 1994-06-28 Ebara Infilco Co Ltd Anaerobic digestion treatment of organic waste water
JP2002273489A (en) * 2001-03-21 2002-09-24 Mitsubishi Heavy Ind Ltd Treatment method of liquid organic waste and system for the same
JP4558231B2 (en) * 2001-03-21 2010-10-06 三菱重工環境・化学エンジニアリング株式会社 Method and system for treating liquid organic waste
JP2006000791A (en) * 2004-06-18 2006-01-05 Fuji Xerox Co Ltd Wastewater treatment method
JP4529554B2 (en) * 2004-06-18 2010-08-25 富士ゼロックス株式会社 Wastewater treatment method
JP2009522095A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2009522096A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
US8021552B2 (en) 2006-01-05 2011-09-20 Veolia Water Solutions & Technologies Support Process and reactor for anaerobic waste water purification
US8043506B2 (en) 2006-01-05 2011-10-25 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
JP2008100151A (en) * 2006-10-18 2008-05-01 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic waste water treatment device
JP2010006686A (en) * 2008-05-29 2010-01-14 National Agriculture & Food Research Organization Nitrogen extraction/fixation for methane-fermented/digested liquid, device therefor, product produced by the method, recovery method for the product and recovery system therefor
JP2011098344A (en) * 2010-12-24 2011-05-19 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic wastewater treatment apparatus

Similar Documents

Publication Publication Date Title
MY115443A (en) Apparatus and method for waste water treatment utilizing aerobic and anaerobic microorganisms
JPH02253898A (en) Anaerobic treatment of waste water
JP3275351B2 (en) Anaerobic treatment of organic wastewater
JP2009154131A (en) Apparatus for removing dissolved hydrogen sulfide in anaerobic treatment
JP2002292393A (en) Apparatus and method for methane fermentation
JP3234786B2 (en) Method and apparatus for treating sulfate-containing organic wastewater
JP2001038378A (en) Method and device for anaerobically treating organic waste water
JP2007190492A (en) Method and apparatus for treating nitrogen-containing wastewater
JP3959843B2 (en) Biological treatment method for organic drainage
KR100945055B1 (en) Process system of liquid food waste mandarin by-product and its process method
JPS6324000Y2 (en)
JPH07204682A (en) Anaerobic water treatment apparatus
JP2007190491A (en) Method and apparatus for treating nitrogen-containing wastewater
MY126466A (en) Apparatus for treating organic wastewater
JP3394157B2 (en) Method and apparatus for treating organic waste liquid
CN111886206A (en) Sludge discharge control device, water treatment system, and sludge discharge control method
JPH03249999A (en) Treatment of sludge
JP5329499B2 (en) Biological wastewater treatment equipment
KR20040013522A (en) Sewage and wastewater treatment process and facilities
JP3838628B2 (en) Organic wastewater treatment method and treatment apparatus
JP2000229298A (en) Anaerobic waste water treating system
JPH02203994A (en) Device for treating acid fermenter produced gas in two-phase methane fermentation apparatus
JPS6388099A (en) Pretreatment in methane fermenting method
JPS6372398A (en) Treatment of waste water
JPH0299198A (en) Solid-liquid separation in anaerobic biological treatment