JPH02253557A - Manufacture of hydrogen storage battery - Google Patents

Manufacture of hydrogen storage battery

Info

Publication number
JPH02253557A
JPH02253557A JP1073445A JP7344589A JPH02253557A JP H02253557 A JPH02253557 A JP H02253557A JP 1073445 A JP1073445 A JP 1073445A JP 7344589 A JP7344589 A JP 7344589A JP H02253557 A JPH02253557 A JP H02253557A
Authority
JP
Japan
Prior art keywords
mixture
hydrogen storage
plating
binder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1073445A
Other languages
Japanese (ja)
Inventor
Takashi Mizuno
隆司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP1073445A priority Critical patent/JPH02253557A/en
Publication of JPH02253557A publication Critical patent/JPH02253557A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the capacity and discharge performance of a hydrogen storage electrode by mixing hydrogen storage alloy powder and binder powder, plating the mixture immediately or after crushing, then preparing pasty material for filling into a porous metal substrate. CONSTITUTION:A suitable amount of a fiber forming powdery binder such as PTFE is uniformly mixed with hydrogen storage alloy powder to form a porous mixture having many spaces between fibers. Electroless plating of conductive metal such as copper and nickel is conducted to this mixture immediately or after crushing. It is preferable that the surface of the binder is partially plated as well as the whole surface of the alloy and the total amount of plating is limited to 5-25% of the mixture. This mixture is added to a viscous solution such as CNC solution to form a pasty material, and it is filled in a porous metal substrate, then they are dried and baked to prepare a negative plate. Since conductivity and filled amount are increased, capacity can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム電池に用いられる水素吸蔵電極の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a hydrogen storage electrode used in a lithium battery.

〔従来の技術〕[Conventional technology]

従来のリチウム電池用水素吸蔵電極は、水素吸蔵合金粉
と結着剤を直ちに粘性剤液に添加し混練して調整したペ
ーストを、多孔性金属基板に充填塗着し乾燥、焼成して
製造されている式のものがある。この場合、導電性を高
めるため、1粉をその混練時に添加することが行われて
いる。
Conventional hydrogen storage electrodes for lithium batteries are manufactured by immediately adding hydrogen storage alloy powder and a binder to a viscous agent solution, kneading the prepared paste, filling it onto a porous metal substrate, and then drying and baking it. There is a formula that In this case, in order to improve conductivity, one powder is added during kneading.

ス、該水素吸蔵合金粉の活性化、水素吸蔵、放出特性の
向上、電解液に対する化学的安定性の向上、合金粒子の
崩壊、脱落の防止のため、該水素吸蔵合金粉に無電解メ
ッキ処理を行い、メッキ被覆したマイクロカプセル化水
素吸蔵合金を予め作製し、これに結着剤と粘性剤液とを
添加混練して調整したスラリーを、多孔性金属基板に充
填塗着して水素吸蔵電極を製造することも提案されてい
る(特開昭61−64069号)。
In order to activate the hydrogen storage alloy powder, improve its hydrogen storage and release properties, improve its chemical stability against electrolytes, and prevent alloy particles from collapsing and falling off, the hydrogen storage alloy powder is subjected to electroless plating. A micro-encapsulated hydrogen storage alloy coated with plating was prepared in advance, and a binder and a viscosity agent liquid were added to the slurry, which was prepared by kneading, and then filled and applied onto a porous metal substrate to form a hydrogen storage electrode. It has also been proposed to produce (Japanese Patent Application Laid-Open No. 61-64069).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来公知の製造法は、いずれも、結着剤としてP
TFEを使用する場合、その表面にメッキ被覆を有する
と否とに拘らず、前記のスラリ−調整時の混練により繊
維化したPTFBが該合金粉粒表面に絡み且つ合金粉粒
子間に介在するので導電性を阻害する。その混練時にN
i粉を導電性として添加混合しても、全体に亘り均一に
分散しに<−1極板として均一な導電性向上が得難い等
の不都合を有する。
In all of the above conventionally known production methods, P is used as a binder.
When using TFE, regardless of whether or not it has a plating coating on its surface, the PTFB fiberized by kneading during slurry preparation will be entwined with the surface of the alloy powder particles and interposed between the alloy powder particles. inhibits conductivity. During the kneading, N
Even if i powder is added and mixed to make it conductive, there are disadvantages such as it is difficult to uniformly improve the conductivity as it is uniformly dispersed throughout the entire plate as a <-1 polar plate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、従来の前記不都合を解消し、均一な導電性の
向上が確実に得られ、放電特性の増大した水素吸蔵電極
の製造法を提供するもので、水素吸蔵合金粉と結着剤粉
とを混合して混合物を調整し、該混合物を、直ちに或い
は粉砕処理後、無電解メッキ処理を施し、得られるメッ
キ処理混合物に、粘性剤液を添加、混練して調整したペ
ーストを、多孔性金属基板に充填塗着することを特徴と
する。
The present invention solves the above-mentioned conventional disadvantages, and provides a method for manufacturing a hydrogen storage electrode that reliably improves uniform conductivity and has increased discharge characteristics. The mixture is subjected to electroless plating immediately or after pulverization, and a viscous agent liquid is added to the resulting plating mixture and kneaded to prepare a paste. It is characterized by filling and coating on a metal substrate.

〔作 用〕[For production]

水素吸蔵合金粉と結着剤粉との混合により、水素吸蔵合
金粉のマス中に結着剤粉が均一に且つ合金粒子に部分的
に付着した混合物が得られる。この場合、繊維化性結着
剤粉を使用する場合は、混合作用により繊維化して合金
粒子に絡み着き、且つ全体として繊維間に無数の空隙を
生じ易い。
By mixing the hydrogen storage alloy powder and the binder powder, a mixture is obtained in which the binder powder is uniformly adhered to the alloy particles in the mass of the hydrogen storage alloy powder. In this case, when a fibrous binder powder is used, it becomes fibrous due to the mixing action and becomes entangled with the alloy particles, and is likely to cause numerous voids between the fibers as a whole.

かiる混合物をそのま1無電解メッキ浴に漬け、無電解
メッキ処理を行うときは、合金粒子の表面のうち、該結
着剤で被覆されない部分はメッキが析出生成するが、そ
のメッキ析出は、該合金粒子の表面を部分的に被覆し或
いは合金粒子間に介在する結着剤の表面までも被覆する
ように大きく生成することができる。繊維化結着剤を使
用した場合は、特に繊維間に無数の空隙を生じ、これを
通してメッキ浴が流通し易くなり、混合物全体に亘り均
一なメッキが混在すること−なる。又、前記の混合物を
粉砕処理した場合は、特に結着剤繊維と合金粉との混合
物の集団塊は粉砕されて、短繊維と合金の微細粉とが均
一に混ざった粉砕物が得られる。か−る粉砕処理混合物
に、メッキ処理を行うときは、これをメッキ処理すると
きは、更に緻密なメッキ被覆が得られる。このようにし
て得られたメッキ処理混合物を粘性剤液で練りペースト
を調整するときは、該結着剤を被覆しているメッキはペ
ースト全体に均−且つ微細に分散する。而してかhるペ
ーストを多孔性金属基板中に充填するので、導電性の向
上した、従って又、放電特性の良い正極が得られる。こ
の場合、前記のように粉砕処理することにより、結着剤
の繊維は粉砕されているので、そのペーストの該基板へ
の充填量は増大し容量の増大をもたらす。
When the mixture is immersed in an electroless plating bath and subjected to electroless plating treatment, plating will precipitate on the surface of the alloy particles that are not covered with the binder. can be formed so large that it partially covers the surface of the alloy particles or even covers the surface of the binder interposed between the alloy particles. When a fibrous binder is used, in particular, numerous voids are created between the fibers, through which the plating bath can easily flow, resulting in uniform plating throughout the mixture. In addition, when the above-mentioned mixture is pulverized, the mass of the mixture of binder fibers and alloy powder is pulverized to obtain a pulverized product in which short fibers and fine alloy powder are uniformly mixed. When such a pulverized mixture is plated, a more dense plating coating can be obtained. When preparing a paste by kneading the plating mixture thus obtained with a viscosity agent liquid, the plating covering the binder is uniformly and finely dispersed throughout the paste. Since the paste is then filled into the porous metal substrate, a positive electrode with improved conductivity and, therefore, good discharge characteristics can be obtained. In this case, since the fibers of the binder are pulverized by the pulverization treatment as described above, the amount of the paste filled into the substrate increases, resulting in an increase in capacity.

〔実施例〕〔Example〕

次に本発明の詳細な説明する。 Next, the present invention will be explained in detail.

従来公知の各種の水素吸蔵合金粉から所望のものを撰択
し、たとえば、LaN!<、y Al。、jから成る水
素吸蔵合金粉を原料とし、これに結着剤粉、好ましくは
、繊維化性結着剤粉を、例えば、PTFEを適量添加し
、撹拌機などにより良く撹拌し均一な混合物を得る。か
くして、この撹拌により該結着剤粉の大部分が繊維化し
、合金粉マス全体に均一に混在し、且つ合金粒子表面に
部分的に絡みついた而も繊維間に無数の空隙を有する全
体に亘リボーラスな混合物が得られる。かする多孔性混
合物を直ちにメッキ処理するか、粉砕処理する。好まし
くは、該混合物を粉砕機(ミル)により粉砕して、その
いくつもの集団塊を粉砕して更に細かい微細な繊維とす
ると共に合金粉粒子を更に微細化した粉砕処理混合物を
調整する。このようにして得られた未粉砕混合物又は粉
砕混合物につき、公知の任意の無電解メッキ処理を施す
A desired one is selected from various conventionally known hydrogen storage alloy powders, such as LaN! <,y Al. , j is used as a raw material, an appropriate amount of a binder powder, preferably a fibrous binder powder, such as PTFE, is added thereto, and the mixture is thoroughly stirred using a stirrer or the like to form a uniform mixture. obtain. As a result of this stirring, most of the binder powder is turned into fibers, which are uniformly mixed throughout the alloy powder mass, and which are partially entwined with the surfaces of the alloy particles, but have countless voids between the fibers. A ribolus mixture is obtained. The porous mixture is immediately plated or ground. Preferably, the mixture is pulverized by a pulverizer (mill) to prepare a pulverized mixture in which the several aggregates are pulverized into finer fibers and the alloy powder particles are further refined. The unpulverized mixture or the pulverized mixture thus obtained is subjected to any known electroless plating treatment.

例えば、最も導電性の良い銅によるメッキ処理を施す例
につき説明する。銅量外にニッケルその他の適当な導電
性の良い金属のメッキ処理を行うてもよいことは勿論で
ある。
For example, an example will be described in which plating is performed using copper, which has the highest conductivity. Of course, in addition to copper, plating with nickel or other suitable metal with good conductivity may be performed.

無電解銅メッキは処理は、例えば、奥野製薬工業株式会
社製のMAC−Zooグリディッグ、MAC−200コ
ンデイシヨナー、及びMAC−500(IFIメッキ液
)を順次使用する。
For electroless copper plating, for example, MAC-Zoo gridig, MAC-200 conditioner, and MAC-500 (IFI plating solution) manufactured by Okuno Pharmaceutical Co., Ltd. are sequentially used.

先ず、例えば、上記の粉砕処理混合物をかごなどの多孔
性容器に収容して、該MAC−100に浸漬して、ブリ
デイツプ処理をし、次でMAC−200に浸漬して、こ
れら混合物中の合金粉マスの各粒子の表面に無電解銅メ
ッキの析出を助長する活性被膜を形成し、次で、これを
MAC−500のメッキ液浴に浸漬してその合金粉表面
に銅メッキを析出生成せしめるばかりでなく、その生成
メッキを生長させて、該合金粒子表面を部分的に被覆し
ている結着剤の表面を被覆した状態に恰もメッキされた
かのような状態にメッキ処理される。か−るメッキ処理
における各段階の処理液は、無数の繊維間の空隙を通し
て混合物の内部まで流通拡散する。従って、その生成鋼
メッキは、全体に亘り均一にメッキが混在したメッキ処
理混合物が得られる。
First, for example, the above-mentioned pulverized mixture is placed in a porous container such as a basket, and immersed in the MAC-100 for briding treatment, and then immersed in MAC-200 to remove the alloy in the mixture. An active film that promotes the deposition of electroless copper plating is formed on the surface of each particle of the powder mass, and then this is immersed in a plating solution bath of MAC-500 to precipitate copper plating on the surface of the alloy powder. Not only that, but the resulting plating is allowed to grow, and the surface of the binder that partially covers the surface of the alloy particles is plated, as if it were plated. The processing liquid at each stage of the plating process flows and diffuses into the mixture through the numerous gaps between the fibers. Therefore, the resulting steel plating is a plating mixture in which plating is uniformly mixed throughout.

メッキの全体量は、全体の混合物の5〜25%が好まし
い。
The total amount of plating is preferably 5-25% of the total mixture.

このようにして得られたメッキ処理混合物を、CMCな
との粘性剤を水などで溶解して調整した粘性剤液に添加
し、混練しペーストを調整し、これを多孔性金属基板、
例えば、発泡金属基板に充填塗着しな、この場合、粉砕
処理した混合物を使用したペーストの充填は、未粉砕混
合物を使用したペーストに比し、容易且つ迅速に充填が
でき、且つその充填量も増大することが認められた。
The plating treatment mixture thus obtained is added to a viscosity agent solution prepared by dissolving a viscosity agent such as CMC in water, etc., and kneaded to prepare a paste.
For example, when filling and coating a foamed metal substrate, filling a paste using a pulverized mixture can be done more easily and quickly than using a paste using an unpulverized mixture, and the amount of filling can be reduced. It was also observed that there was an increase in

次でかするペースト充填多孔基板を乾燥し、焼成するこ
とにより本発明に係る正極板(以下A極板と称する)を
得た。比叡のため、従来法により同じ水素吸蔵合金粉と
PTFEと同じ粘性剤液とを同じ割合で配合し、混練し
て調整したペーストを同じ多孔基板に充填塗着し、以下
同様にして乾燥、焼成して従来の正極板(以下B極板と
称する)を製造した。更に、予め、同じ水素吸蔵合金粉
を同じ方法で銅メッキしたものを作製し、該メッキ被覆
水素吸蔵合金と該PTFE結着刑と同じ粘性剤液とを同
じ割合で配合し、充分混練してPTFEの繊維化を充分
行った調整ペーストを、同じ多孔基板に充填塗着し、以
下同様にして乾燥、焼成してマイクロカプセル化水素吸
蔵合金型正極板(以下C極板と称する)を製造した。
The paste-filled porous substrate prepared next was dried and fired to obtain a positive electrode plate (hereinafter referred to as A electrode plate) according to the present invention. For Hiei, the same hydrogen storage alloy powder and PTFE and the same viscosity agent liquid were mixed in the same proportions using the conventional method, and the prepared paste was filled and applied to the same porous substrate, and then dried and fired in the same manner. A conventional positive electrode plate (hereinafter referred to as B electrode plate) was manufactured in this manner. Furthermore, the same hydrogen-absorbing alloy powder was prepared in advance with copper plating using the same method, and the plating-coated hydrogen-absorbing alloy and the same viscous agent liquid as the PTFE binder were mixed in the same proportions and thoroughly kneaded. A prepared paste in which PTFE had been sufficiently fiberized was filled and applied onto the same porous substrate, dried and fired in the same manner to produce a microencapsulated hydrogen storage alloy type positive electrode plate (hereinafter referred to as C electrode plate). .

かくして、A極板、B極板及びC極板を夫々使用し、常
法に従いリチウムな池A、B、Cを夫々作製し、これら
電池につき初期容量試験を行った。
Thus, using the A, B, and C plates, lithium batteries A, B, and C were prepared according to a conventional method, and an initial capacity test was conducted on these batteries.

該初期容量試験は、電流密度を2 、51AaJに設定
し、放電終止電位を−0,75V vst(t / H
t Oまでとし容量を求めた。
In the initial capacity test, the current density was set at 2.51 AaJ, and the discharge end potential was set at -0.75 V vst (t/H
The capacity was determined up to tO.

その結果を下記表1に示す。The results are shown in Table 1 below.

表1 上記表1から明らかなように、本発明に係るA極板を使
用した電池Aは、従来の夫々のB極板、C極板を使用し
た電池B、Cに比し、容量が増大することが認められた
。このことは、単に水素吸蔵合金粉粒子のみをメッキ処
理した正極Cを使用する場合に比し、本発明のように、
水素吸蔵合金粉を結着剤と共存させた混合物にメッキ処
理することにより初期容量の大きい極板、従って又電池
をもたらすことが判った。
Table 1 As is clear from Table 1 above, battery A using the A electrode plate according to the present invention has an increased capacity compared to batteries B and C using the conventional B and C electrode plates, respectively. It was approved to do so. This means that compared to the case of using a positive electrode C in which only hydrogen storage alloy powder particles are plated, as in the present invention,
It has been found that plating a mixture of hydrogen storage alloy powder in coexistence with a binder yields a plate and therefore a battery with a high initial capacity.

更に、上記のA、B、Cの各電池につき放電試験を行っ
た。該放電試験は、放電々流密度を夫々5.10.15
.20.2511Aa&に設定し、その夫々にライて一
〇、75Vvs)Ig/HrOまで放電した。
Furthermore, a discharge test was conducted on each of the batteries A, B, and C described above. In the discharge test, the discharge current density was 5, 10, and 15, respectively.
.. The voltage was set at 20.2511Aa&, and discharged to 10.75V vs) Ig/HrO.

充電々流密度は51A−に統一し、充電量は130%と
した。
The charging current density was unified to 51A-, and the charging amount was set to 130%.

その試験結果を第1図に示す、第1図から明らかなよう
に、充電々流が大きい程、容量の低下率に違いが見られ
、本発明により製造したA極板を使用した電池Aは、従
来法により製造したB[!板、C極板を使用した電池B
、Cに比し、その容量低下率は小さいことが認められた
。このことは、本発明のものが導電性の低下が最も小さ
いことに起因するものと解される。
The test results are shown in Fig. 1.As is clear from Fig. 1, the larger the charging current, the different the rate of decrease in capacity. , B [! Battery B using plate, C plate
, C was found to have a smaller capacity reduction rate. This is understood to be due to the fact that the material of the present invention exhibits the smallest decrease in conductivity.

〔発明の効果〕〔Effect of the invention〕

このように本発明によるときは、水素吸蔵合金粉と結着
剤粉とを混合したものを、直ちに、或いは粉砕処理後、
メッキ処理を施し、メッキ処理混合物を、多孔性金属基
板に対する充填用ペーストとしたので、従来法による水
素吸蔵電極に比し電池の容量差に放電特性などの優れた
水素吸蔵電極を得ることができる効果をもたらす。
According to the present invention, the mixture of hydrogen storage alloy powder and binder powder is mixed immediately or after pulverization.
Since the plating treatment was performed and the plating treatment mixture was used as a paste for filling the porous metal substrate, it was possible to obtain a hydrogen storage electrode with superior battery capacity differences and discharge characteristics compared to hydrogen storage electrodes made using conventional methods. bring about an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による電極を使用した電池と従来法に
よる電極を使用した電池の放電特性の比較グラフを示す
。 A・・・本法電極の放電特性 特許出願人    古河電池株式会社 手続補正書(0引 平成1年3月28日
FIG. 1 shows a comparison graph of the discharge characteristics of a battery using an electrode according to the present invention and a battery using a conventional electrode. A...Discharge characteristics of the electrode according to the present method Patent applicant Furukawa Battery Co., Ltd. Procedural amendment (0 citation March 28, 1999)

Claims (1)

【特許請求の範囲】 1、水素吸蔵合金粉と結着剤粉とを混合して混合物を調
整し、該混合物を、直ちに或いは粉砕処理後、無電解メ
ッキ処理を施し、得られるメッキ処理混合物に、粘性剤
液を添加、混練して調整したペーストを、多孔性金属基
板に充填塗着することを特徴とする水素吸蔵電極の製造
法。 2、結着剤粉は、繊維化性結着剤である請求項1に記載
の水素吸蔵電極の製造法。
[Claims] 1. A mixture is prepared by mixing a hydrogen storage alloy powder and a binder powder, and the mixture is subjected to an electroless plating treatment immediately or after pulverization treatment, and the resulting plating treatment mixture is A method for producing a hydrogen storage electrode, which comprises filling and applying a paste prepared by adding and kneading a viscous agent liquid onto a porous metal substrate. 2. The method for producing a hydrogen storage electrode according to claim 1, wherein the binder powder is a fibrous binder.
JP1073445A 1989-03-24 1989-03-24 Manufacture of hydrogen storage battery Pending JPH02253557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073445A JPH02253557A (en) 1989-03-24 1989-03-24 Manufacture of hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073445A JPH02253557A (en) 1989-03-24 1989-03-24 Manufacture of hydrogen storage battery

Publications (1)

Publication Number Publication Date
JPH02253557A true JPH02253557A (en) 1990-10-12

Family

ID=13518435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073445A Pending JPH02253557A (en) 1989-03-24 1989-03-24 Manufacture of hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH02253557A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725983A4 (en) * 1993-10-08 1999-11-10 Electro Energy Inc Bipolar electrochemical battery of stacked wafer cells
US6503658B1 (en) 2001-07-11 2003-01-07 Electro Energy, Inc. Bipolar electrochemical battery of stacked wafer cells
KR100427505B1 (en) * 2001-09-18 2004-04-30 에너그린(주) Fabrication method of negative electrode for use in nickel/methal hydryde secondary battery
KR100816817B1 (en) * 2007-01-10 2008-03-26 에너그린(주) Negative plate for nickel/metal hydride secondary battery and fabrication method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725983A4 (en) * 1993-10-08 1999-11-10 Electro Energy Inc Bipolar electrochemical battery of stacked wafer cells
US6503658B1 (en) 2001-07-11 2003-01-07 Electro Energy, Inc. Bipolar electrochemical battery of stacked wafer cells
US6887620B2 (en) 2001-07-11 2005-05-03 Electro Energy, Inc. Bipolar electrochemical battery of stacked wafer cells
KR100427505B1 (en) * 2001-09-18 2004-04-30 에너그린(주) Fabrication method of negative electrode for use in nickel/methal hydryde secondary battery
KR100816817B1 (en) * 2007-01-10 2008-03-26 에너그린(주) Negative plate for nickel/metal hydride secondary battery and fabrication method thereof

Similar Documents

Publication Publication Date Title
JP3249326B2 (en) Nickel active material for alkaline storage battery and method for producing the same
JPH02253557A (en) Manufacture of hydrogen storage battery
JP3489396B2 (en) Metal-coated nickel hydroxide for positive electrode material and method for producing the same
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JP7049187B2 (en) Method for manufacturing paste for manufacturing electrodes for power storage devices
JP2000048814A (en) Positive electrode plate for lead-acid battery
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP2628013B2 (en) Conductive material for hydrogen storage alloy electrode and method for producing the same
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JPH09320583A (en) Nickel electrode
JP2918560B2 (en) Manufacturing method of hydrogen storage electrode
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JP2000048812A (en) Positive electrode plate for lead-acid battery
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JPH09147849A (en) Negative electrode for paste-type alkaline storage battery and its manufacture
JP3955175B2 (en) Non-sintered nickel positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2918559B2 (en) Manufacturing method of hydrogen storage electrode
JPS6134861A (en) Manufacture of sintered substrate for alkaline storage battery
JP2002184405A (en) Non-sintered nickel positive electrode for alkaline storage battery, its manufacturing method and alkaline storage battery using the same
JPH08203522A (en) Nickel active substance for alkaline battery and manufacture thereof
JPS6123707A (en) Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury
JPH01241755A (en) Manufacture of hydrogen storage alloy electrode
JPH03147258A (en) Paste type nickel electrode for alkaline storage battery
JPH04262367A (en) Hydrogen storage electrode
JP3249324B2 (en) Nickel active material for alkaline storage battery and its manufacturing method