JPH022534A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH022534A
JPH022534A JP14590688A JP14590688A JPH022534A JP H022534 A JPH022534 A JP H022534A JP 14590688 A JP14590688 A JP 14590688A JP 14590688 A JP14590688 A JP 14590688A JP H022534 A JPH022534 A JP H022534A
Authority
JP
Japan
Prior art keywords
formula
formulas
nonlinear optical
tables
mathematical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14590688A
Other languages
Japanese (ja)
Inventor
Hideji Ikeda
秀嗣 池田
Toshio Sakai
俊男 酒井
Yutaka Kawabe
豊 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP14590688A priority Critical patent/JPH022534A/en
Publication of JPH022534A publication Critical patent/JPH022534A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide an excellent nonlinear optical characteristic to the above material and to obtain the practicable microelement by using the org. nonlinear optical material consisting of a specific compd. CONSTITUTION:The org. nonlinear optical material consisting of the compd. expressed by the formula I is used. In the formula, R denotes an oxygen atom, electron-acceptive group or electron-donating group which is carotenal when R is the oxygen atom and is a carotenal deriv. when R is except the oxygen atom, i.e. the electron-acceptive group or electron-donating group. The nonlinear optical effect much better when the conventional org. nonlinear optical material is obtd. in this way and the practicable microelement is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はを機非線型光学材料に関し、詳しくは非線型光
学定数が大きく、光素子、光情報処理。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonlinear optical material, and more specifically, to a nonlinear optical material having a large nonlinear optical constant and used in optical devices and optical information processing.

光通信、光計測、光集積回路などの分野において有用な
有機非線型光学材料に関する。
This field relates to organic nonlinear optical materials useful in fields such as optical communications, optical measurement, and optical integrated circuits.

〔従来の技術及び発明が解決しようとする課題]一般に
、非線型光学材料は、光の電界の二乗あるいはそれ以上
の累乗に比例する非線型応答を示す材料であって、光高
調波発生、光整流、光混合。
[Prior art and problems to be solved by the invention] In general, nonlinear optical materials are materials that exhibit a nonlinear response that is proportional to the square of the electric field of light or a power higher than that, and are used to generate optical harmonics and Rectification, light mixing.

光パラメトリツク増幅、ポッケルス効果など様々な効果
をもたらすことから、近年、光コンピューターや光エレ
クトロニクスなどの各種素材としてン主目されている。
Due to its ability to produce various effects such as optical parametric amplification and the Pockels effect, it has recently been attracting attention as a material for various applications such as optical computers and optical electronics.

従来、このような非線型光学材料としては、主として無
機物、特に強誘電体が用いられてきた。
Conventionally, inorganic materials, particularly ferroelectric materials, have been used as such nonlinear optical materials.

しかし、このような無機系の非線型光学材料は、非線型
光学特性が充分でなく、また応答が遅いなどの問題があ
り、光情報処理や光集積回路などへの応用が困難である
However, such inorganic nonlinear optical materials have problems such as insufficient nonlinear optical properties and slow response, making it difficult to apply them to optical information processing, optical integrated circuits, and the like.

一方、近年に至って、有機系の非線型光学材料が多数開
発されてきている。しかしながら、加工性が悪いこと、
あるいは非線型光学特性が充分でないなどの理由により
、実用的な微小素子を得るには至っていないのが現状で
ある。
On the other hand, in recent years, many organic nonlinear optical materials have been developed. However, the processability is poor,
Alternatively, due to reasons such as insufficient nonlinear optical properties, it is currently not possible to obtain a practical microelement.

このような有機系材料の非線型光学特性を向上させるた
めに、様々な試みがなされてきている。
Various attempts have been made to improve the nonlinear optical properties of such organic materials.

例えば、先般、本発明者らのグループは天然物であるレ
チナールの誘導体を用いた非線型光学材料の開発に成功
している(特願昭62−174846号明細書)、また
、特開昭62−203136号公報には、共役鎖を有す
る共役アルカ−(ポリエン)−イレン架橋基(B)を介
して電子供与体(D)と電子受容体(A)を結合した式
 A−B−Dで表わされる非線型光学材料が開示されて
いるが、このものは非線型光学特性が未だ不充分である
For example, the group of the present inventors recently succeeded in developing a nonlinear optical material using a derivative of retinal, which is a natural product (Japanese Patent Application No. 174846/1984); Publication No. 203136 describes a formula A-B-D in which an electron donor (D) and an electron acceptor (A) are bonded via a conjugated alk(polyene)-ylene crosslinking group (B) having a conjugated chain. Although such nonlinear optical materials have been disclosed, their nonlinear optical properties are still insufficient.

本発明者らは、上記従来の有機系の非線型光学材料とは
全く異なる構造の化合物であって、しかも、すぐれた非
線型光学特性を有し、実用的に価値の高い有機非線型光
学材料を開発すべく鋭意研究を重ねた。
The present inventors have developed an organic nonlinear optical material that has a structure completely different from the above-mentioned conventional organic nonlinear optical materials, has excellent nonlinear optical properties, and has high practical value. We conducted extensive research to develop this.

〔課題を解決するための手段〕[Means to solve the problem]

その結果、カロチナールあるいはその誘導体が上記目的
に適う化合物であることを見出し、本発明を完成するに
至った。
As a result, the inventors discovered that carotinal or a derivative thereof is a compound suitable for the above-mentioned purpose, and completed the present invention.

すなわち本発明は、一般式 〔式中、Rは酸素原子、電子受容性基あるいは電子供与
性基を示す。〕 で表わされる化合物からなる有機非線型光学材料を提供
するものである。
That is, the present invention is directed to the general formula [wherein R represents an oxygen atom, an electron-accepting group, or an electron-donating group]. ] An organic nonlinear optical material comprising a compound represented by the following is provided.

上記一般式(1)で表わされる化合物は、Rが酸素原子
のときはカロチナールであり、Rが酸素原子以外、即ら
電子受容性基あるいは電子供与性基のときは、カロチナ
ール誘導体となる。ここで、電子受容性基としては、各
種のものがあるが、例えば C113・■ で表わされる基などをあげることができる。また、電子
供与性基としては、 で表わされる基などをあげることができる。
The compound represented by the above general formula (1) is carotinal when R is an oxygen atom, and is a carotinal derivative when R is other than an oxygen atom, that is, an electron-accepting group or an electron-donating group. Here, there are various types of electron-accepting groups, such as a group represented by C113.■. Furthermore, examples of the electron-donating group include groups represented by the following.

本発明の有機非線型光学材料を構成する上記−般式(1
)で表わされる力ロチナールあるいはその誘導体は、公
知の方法をはじめとして各種の方法によって製造するこ
とができる。特に、力ロチナール(上記一般式(I)の
Rが酸素原子のとき)は天然に産出するカロチノイドか
ら容易に誘導することができ、また市販のものを利用し
てもよい。
The above general formula (1) constituting the organic nonlinear optical material of the present invention
) or its derivatives can be produced by various methods including known methods. In particular, rotinal (when R in the above general formula (I) is an oxygen atom) can be easily derived from naturally occurring carotenoids, or commercially available carotenoids may be used.

一方、カロチナール誘導体(上記一般式(1)のRが電
子受容性基あるいは電子供与性基のとき)は、上記力ロ
チナールを原料にして、これに所望の置?A 8.を有
する化合物を反応させることによって得られる。
On the other hand, carotenal derivatives (when R in the above general formula (1) is an electron-accepting group or an electron-donating group) are prepared by using the above-mentioned carotinal as a raw material and adding a desired compound to the carotinal derivative. A 8. It is obtained by reacting a compound having

〔実施例] 次に、本発明を実施例および比較例によりさらに詳しく
説明する。
[Example] Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

合成例1 市販のβ−アポ−8′−力ロチナール(スイスFluk
a社製)Ig(2,4ミリモル)およびマロンニトリル
0.3g(4,8ミリモル)を、クロロホルムとメタノ
ールの等量混合溶媒10m1に溶かし、ピペリジン0.
17dを加えて室温で3時間放置した。生じた結晶を濾
別し、メタノールおよびクロロボルムより再結晶して青
紫色針状晶0.3g(収率27%)を得た。
Synthesis Example 1 Commercially available β-apo-8'-rotinal (Switzerland Fluk
Ig (manufactured by Company A) (2.4 mmol) and 0.3 g (4.8 mmol) of malonitrile were dissolved in 10 ml of a mixed solvent of equal amounts of chloroform and methanol, and 0.0 ml of piperidine was dissolved.
17d was added and left at room temperature for 3 hours. The resulting crystals were filtered and recrystallized from methanol and chloroborum to obtain 0.3 g (yield 27%) of blue-violet needle crystals.

このものの融点は197°Cであり、紫外−可視吸収ス
ペクトル(ジメチルスルホキシド(DMSO)溶媒)の
吸収極大波長λsexは560 nmであり、その波長
におけるモル吸光係数εは4.0X10’M−’cm−
’であった。また、プロトン核磁気共鳴(’H−NMT
?)(共鳴周波数60MHz、標準物質テトラメチルシ
ラン(TMS)、溶媒重クロロホルム(CD Cl 3
) )の結果は第1表のとおりであった。
The melting point of this substance is 197°C, the absorption maximum wavelength λsex of the ultraviolet-visible absorption spectrum (dimethyl sulfoxide (DMSO) solvent) is 560 nm, and the molar extinction coefficient ε at that wavelength is 4.0×10'M-'cm. −
'Met. In addition, proton nuclear magnetic resonance ('H-NMT)
? ) (resonance frequency 60 MHz, standard material tetramethylsilane (TMS), solvent deuterated chloroform (CD Cl 3
)) The results are shown in Table 1.

これらの結果から、ここで得られた青紫色針状晶は、下
記構造式で示されるカロチナール誘導体であることがわ
かる。
From these results, it can be seen that the blue-violet needle crystals obtained here are carotenal derivatives represented by the following structural formula.

第  1  表 合成例2 市販のβ−アポ−8′−力ロチナール1g(2,4ミリ
モル)およびシアノ酢酸エチル0.3g(2,4ミリモ
ル)を、テトラヒドロフラン(THF)20+ffiに
溶かし、ピペリジンo、1In1を加えて室温で3時間
放置した。等量のメタノールを加えて生じた結晶を濾別
し、メタノールおよびクロロホルムより再結晶して青紫
色粉末0.7g(収率57%)を得た。
Table 1 Synthesis Example 2 1 g (2.4 mmol) of commercially available β-apo-8'-rotinal and 0.3 g (2.4 mmol) of ethyl cyanoacetate were dissolved in 20+ffi of tetrahydrofuran (THF), and piperidine o, 1In1 was added and left at room temperature for 3 hours. Crystals formed by adding an equal amount of methanol were filtered and recrystallized from methanol and chloroform to obtain 0.7 g of blue-purple powder (yield: 57%).

このものの融点は124°Cであり、紫外−可視吸収ス
ペクトル(DMSO溶媒)の吸収極大波長λ、、、lは
540nmであり、その波長におけるモル吸光係数εは
7.9 X 10 ’ M−’cl’であった。
The melting point of this substance is 124°C, the absorption maximum wavelength λ,...l of the ultraviolet-visible absorption spectrum (DMSO solvent) is 540 nm, and the molar extinction coefficient ε at that wavelength is 7.9 X 10'M-' It was cl'.

また、’H−NMR(共鳴周波数60MHz、標準物質
TMS、溶媒CDCf、の結果は第2表のとおりであっ
た。
In addition, the results of 'H-NMR (resonance frequency 60 MHz, standard substance TMS, solvent CDCf) were as shown in Table 2.

これらの結果から、ここで得られた青紫色粉末は、次記
構造式で示されるカロチナール誘導体であることがわか
る。
From these results, it can be seen that the blue-purple powder obtained here is a carotinal derivative represented by the following structural formula.

第2表 モル)およびn−ブチルアミンO,ldを混合して50
〜60°Cで3時間攪拌した。得られた溶液に等量のメ
タノールを加えて生じた結晶を濾別し、メタノールおよ
びクロロホルムより再結晶して赤紫色粉末0.7g(収
率64%)を得た。
Table 2 mol) and n-butylamine O,ld were mixed and 50
Stirred at ~60°C for 3 hours. An equal amount of methanol was added to the resulting solution, and the resulting crystals were separated by filtration and recrystallized from methanol and chloroform to obtain 0.7 g (yield: 64%) of a reddish-purple powder.

このものの融点は145°Cであり、紫外−可視吸収ス
ペクトル(DMSO溶媒)の吸収極大波長λsagは5
20nmであり、その波長におけるモル吸光係数εは2
. OX I O’ M−’cm−’であった。
The melting point of this material is 145°C, and the absorption maximum wavelength λsag of the ultraviolet-visible absorption spectrum (DMSO solvent) is 5
20 nm, and the molar extinction coefficient ε at that wavelength is 2
.. It was OX I O'M-'cm-'.

また、’H−NMR(共鳴周波数60MHz、標準物質
TMS、溶媒CD Cl 2)の結果は第3表のとおり
であった。
Furthermore, the results of 'H-NMR (resonance frequency 60 MHz, standard substance TMS, solvent CD Cl 2 ) were as shown in Table 3.

これらの結果から、ここで得られた赤紫色粉末は、下記
構造式で示されるカロチナール誘導体であることがわか
る。
From these results, it can be seen that the reddish-purple powder obtained here is a carotinal derivative represented by the following structural formula.

合成例3 市販のβ−アポ−8′−力ロチナール1g(2,4ミリ
モル)、ニトロメタン3g(49ミリ第3表 次に、これら合成例1〜3で得られたカロチナール誘導
体の非線型光学効果の測定実験を実施例に示すが、それ
に先立って実施例で測定するμ。β(永久双極子モーメ
ントと二次の非線型光学定数の積)の意義について若干
の説明を加える。
Synthesis Example 3 Commercially available β-apo-8'-rotinal 1 g (2.4 mmol), nitromethane 3 g (49 mmol) Table 3 Next, the nonlinear optical effects of the carotenal derivatives obtained in Synthesis Examples 1 to 3 are A measurement experiment of is shown in the Examples, but prior to that, some explanation will be given about the significance of μ and β (the product of the permanent dipole moment and the second-order nonlinear optical constant) measured in the Examples.

一般に光が物質に入射すると、光の電界已によって、分
極Pが生じ、その関係は次式 2式% で表わされる。ここでχ1は感受率、χ2は二次の非線
型光学定数、χ、は三次の非線型光学定数である。
Generally, when light enters a substance, polarization P occurs due to the electric field of the light, and the relationship is expressed by the following equation 2. Here, χ1 is the susceptibility, χ2 is a second-order nonlinear optical constant, and χ is a third-order nonlinear optical constant.

上記関係式は巨視的な分極と電界の関係式であるが、分
子1個に対しても同様な式が成り立つと考えられる。つ
まり、有機分子の微視的分極μは次式で表わされる。
Although the above relational expression is a relational expression between macroscopic polarization and electric field, it is thought that a similar expression holds true for a single molecule. That is, the microscopic polarization μ of an organic molecule is expressed by the following equation.

μ=μ。+αE+βE”+7E″+・・・(式中、μ。μ=μ. +αE+βE"+7E"+... (in the formula, μ.

は永久双極子モーメンl−,Eは光による電界、αは分
極率、βは二次の非線型光学定数、γは三次の非線型光
学定数を示す。)ここで、非線型光学定数であるβ、γ
やχ2.χ3はそれぞれ関連があり、一つが大きいもの
は他の値も大きいと考えられる。また、これらβ、Tや
χ2.χ3等の非線型光学定数の大きいものほど大きな
非線型光学効果を発現するものである。しかも永久双極
子モーメントであるμ。は物質の違いによる差はそれほ
ど顕著でなく、はとんどの物質が3 X 10−”〜1
0 X 10−”esu程度である。
is the permanent dipole moment l-, E is the electric field due to light, α is the polarizability, β is the second-order nonlinear optical constant, and γ is the third-order nonlinear optical constant. ) where the nonlinear optical constants β, γ
and χ2. The χ3 values are related to each other, and it is considered that if one value is large, the other values are also large. Moreover, these β, T and χ2. The larger the nonlinear optical constant such as χ3, the greater the nonlinear optical effect. Moreover, μ is the permanent dipole moment. The difference due to different substances is not so remarkable, and most substances have a
It is about 0×10-”esu.

したがって、各物質のμ。βを測定して比較すれば、そ
の値の違いはβの値に起因するものと考えてよい。それ
故、μ。β値を測定すればその物質の非線型光学効果の
程度が直ちに判定できることとなる。
Therefore, μ of each substance. If β is measured and compared, the difference in the values can be considered to be due to the value of β. Therefore, μ. By measuring the β value, the degree of the nonlinear optical effect of the substance can be immediately determined.

実施例1〜3 合成例1〜3で得られたカロチナール誘導体のμ。βの
値を第1図に示すようにして測定した。
Examples 1-3 μ of the carotinal derivatives obtained in Synthesis Examples 1-3. The value of β was measured as shown in FIG.

即ち、第1図は試料の第二高調波(SHC;)の強度を
測定してμ。βを算出するために使用する装置のブロッ
ク図であり、まず試料(合成例で得られたカロチナール
誘導体)を1.1,2.2−テトラクロロエタン溶媒に
濃度0.01〜0.2重量%となるように溶解し、これ
を試料セル2に入れる。次にこの試料セルに高電圧パル
サー8により3X10bV/mの電界をパルス的に印加
した。
That is, FIG. 1 shows the intensity of the second harmonic (SHC) of the sample measured. It is a block diagram of the apparatus used to calculate β. First, a sample (carotenal derivative obtained in a synthesis example) is added to a 1.1,2.2-tetrachloroethane solvent at a concentration of 0.01 to 0.2% by weight. Dissolve it so that it becomes and put it into the sample cell 2. Next, an electric field of 3×10 bV/m was applied in pulses to this sample cell using a high voltage pulser 8.

光源はQスイッチYAGレーザーlの基本波ω(1,0
64μm)を用い、偏光面を電界と平行に入射した。発
生したSHGを分光器3で分けて受光器4に集め、ここ
で得られたM aker干渉縞のピーク強度と間隔のデ
ータを増幅器5.A/Dコンバーター6を通してコンピ
ューター7で処理し、μ。βを求めた。結果を第4表に
示す。
The light source is the fundamental wave ω(1,0
64 μm), and the polarization plane was incident parallel to the electric field. The generated SHG is separated by a spectrometer 3 and collected into a photoreceiver 4, and data on the peak intensity and interval of Maker interference fringes obtained here is sent to an amplifier 5. Processed by computer 7 through A/D converter 6, μ. β was calculated. The results are shown in Table 4.

なお、上述の実験方法は、C,C,Teng andA
、  F、 GariLo Phys、 Rev、 8
2 B、  6766゜(1983)に報告された方法
とほぼ同じものである。
The above experimental method is based on C, C, Teng and A.
, F. GariLo Phys, Rev. 8
2 B, 6766° (1983).

実施例4 市販のβ−アポ−8′−力ロチナールを用いたこと以外
は、実施例1〜3と同様にしてμ。βの値を測定した。
Example 4 [mu] was carried out in the same manner as in Examples 1 to 3, except that commercially available β-apo-8'-rotinal was used. The value of β was measured.

結果を第4表に示す。The results are shown in Table 4.

比較例1 上記実施例において、合成例で得られたカロチナール誘
導体の代わりに、2−メチル−4−ニトロアニリン(M
 N A)を用いたこと以外は、実施例と同様の換作を
行った。結果を第4表に示す。
Comparative Example 1 In the above example, 2-methyl-4-nitroaniline (M
The same cultivation as in Example was carried out except that NA) was used. The results are shown in Table 4.

(以下余白) 第4表 〔発明の効果〕 本発明の力ロチナールおよびその誘導体からなる非線型
光学材料は、これまでの有機系の非線型光学材料よりも
はるかに大きいμ。β値を有し、すぐれた非線型光学効
果、とりわけ大きなSHOの効果を発現する。
(Margin below) Table 4 [Effects of the Invention] The nonlinear optical material made of rotinal and its derivatives of the present invention has a much larger μ than conventional organic nonlinear optical materials. It has a β value and exhibits an excellent nonlinear optical effect, especially a large SHO effect.

したがって、本発明の非線型光学材料は、半導体レーザ
ー用の高調波発生器をはじめとするレーザー光源や演算
素子、光双安定素子、光変調器。
Therefore, the nonlinear optical material of the present invention can be used in laser light sources such as harmonic generators for semiconductor lasers, operational elements, optical bistable elements, and optical modulators.

光スィッチなどのデバイスとして、光通信、光情報処理
、光計測などに有効かつ幅広く利用できる。
It can be effectively and widely used as a device such as an optical switch in optical communication, optical information processing, optical measurement, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例および比較例で行った試料のμ。β値
を求める実験に用いた装置のブロック図である。 図中、1はQスイッチYAGレーザー、2は試料セル、
3は分光器、4は受光器、5は増幅器。 6はA/Dコンバーター、7はコンピューター8は高電
圧パルサーを示す。
FIG. 1 shows μ of the samples conducted in Examples and Comparative Examples. FIG. 2 is a block diagram of an apparatus used in an experiment to determine a β value. In the figure, 1 is a Q-switched YAG laser, 2 is a sample cell,
3 is a spectrometer, 4 is a photodetector, and 5 is an amplifier. 6 is an A/D converter, and 7 is a computer 8 is a high voltage pulser.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ 〔式中、Rは酸素原子、電子受容性基あるいは電子供与
性基を示す。〕 で表わされる化合物からなる有機非線型光学材料。
(1) General formula▲ Numerical formula, chemical formula, table, etc.▼ [In the formula, R represents an oxygen atom, an electron-accepting group, or an electron-donating group. ] An organic nonlinear optical material consisting of a compound represented by
(2)電子受容性基が、 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 式▲数式、化学式、表等があります▼あるいは式▲数式
、化学式、表等があります▼ で表わされる基であり、電子供与性基が 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 式▲数式、化学式、表等があります▼、式▲数式、化学
式、表等があります▼、 あるいは式▲数式、化学式、表等があります▼ で表わされる基である請求項1記載の有機非線型光学材
料。
(2) The electron-accepting group has the following formula: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ Mathematical formula, chemical formula , there are tables, etc. ▼, Formula ▲ there are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ there are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ there are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ mathematical formulas, chemical formulas, tables, etc. There are ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. Yes, it is a group represented by the formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or formula ▲ There are mathematical formulas, chemical formulas, tables, etc. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Formula ▲ The organic nonlinear optical material according to claim 1, which is a group represented by a mathematical formula, a chemical formula, a table, etc.▼, or a group represented by the formula ▲a mathematical formula, a chemical formula, a table, etc.▼.
JP14590688A 1988-06-15 1988-06-15 Organic nonlinear optical material Pending JPH022534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14590688A JPH022534A (en) 1988-06-15 1988-06-15 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14590688A JPH022534A (en) 1988-06-15 1988-06-15 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH022534A true JPH022534A (en) 1990-01-08

Family

ID=15395800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14590688A Pending JPH022534A (en) 1988-06-15 1988-06-15 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH022534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262841A (en) * 1991-10-16 1993-11-16 Tsi Incorporated Vacuum particle detector
CN111138703A (en) * 2019-12-30 2020-05-12 四川大学 Method for preparing linear polyene pigment by laser irradiation of polymer resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262841A (en) * 1991-10-16 1993-11-16 Tsi Incorporated Vacuum particle detector
CN111138703A (en) * 2019-12-30 2020-05-12 四川大学 Method for preparing linear polyene pigment by laser irradiation of polymer resin
CN111138703B (en) * 2019-12-30 2022-02-15 四川大学 Method for preparing linear polyene pigment by laser irradiation of polymer resin

Similar Documents

Publication Publication Date Title
US5670091A (en) Nonlinear optical materials with reduced aromaticity and bond length alternation
Alain et al. Elongated push–pull diphenylpolyenes for nonlinear optics: molecular engineering of quadratic and cubic optical nonlinearities via tuning of intramolecular charge transfer
JPH02288874A (en) Nonlinear, optically active thiophene compound, substance containing the same, and apparatus
Sindhusha et al. Crystal structure, spectroscopic characterization, mechanical, thermal and theoretical investigations on creatininium benzenesulfonate-A new organic NLO single crystal
Johnson et al. Process development and characterization of centrosymmetric semiorganic nonlinear optical crystal: 4-dimethylaminopyridine potassium chloride
Moolya et al. Synthesis, growth and characterization of nonlinear optical crystal: L-tyrosine hydrobromide
JPH022534A (en) Organic nonlinear optical material
JPH026486A (en) Organosilicon compound, and electrooptical material and device containing the same
JPH02179624A (en) Organic nonlinear optical material
JPH0197926A (en) Organic nonlinear optical material
JPH03164722A (en) Organic nonlinear optical material and method for converting wavelength of light with same
KR100454586B1 (en) 1,3,5-Tricyano-2,4,6-tris(vinyl)benzene Derivatives and Method for Preparing the Same
JPH0196628A (en) Organic nonlinear optical material
JPS62156628A (en) Orgranic non-linear optical material
Parvathy et al. Experimental and theoretical approach of novel third-order nonlinear optical single crystal: benzamide 5-chloro-2-hydroxybenzoic acid
JPH02179623A (en) Organic nonlinear optical material
JPH01105918A (en) Organic nonlinear optical material
JPH02118524A (en) Organic nonlinear optical material
JPH03131826A (en) Organic nonlinear optical material
Devi et al. Third-order NLO properties and optical limiting behavior of p-toluidinium 2, 4-dichlorobenzoate organic single crystal
JPH0311324A (en) Organic nonlinear optical material
JPH03134633A (en) Organic nonlinear optical material
KR100332495B1 (en) Octupolar Molecules for Nonlinear Optics and the Method Producing Thereof
Ruanwas Synthesis and characterization of pyridine and quinoline derivatives for non-linear optics applications
JPH01209430A (en) Organic nonlinear optical material