JPH0225313B2 - - Google Patents

Info

Publication number
JPH0225313B2
JPH0225313B2 JP55043951A JP4395180A JPH0225313B2 JP H0225313 B2 JPH0225313 B2 JP H0225313B2 JP 55043951 A JP55043951 A JP 55043951A JP 4395180 A JP4395180 A JP 4395180A JP H0225313 B2 JPH0225313 B2 JP H0225313B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
transfer
charge
section
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55043951A
Other languages
Japanese (ja)
Other versions
JPS56140773A (en
Inventor
Oomichi Tanaka
Yoshihiro Fujiwara
Makoto Fujimoto
Takao Chikamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4395180A priority Critical patent/JPS56140773A/en
Publication of JPS56140773A publication Critical patent/JPS56140773A/en
Publication of JPH0225313B2 publication Critical patent/JPH0225313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor
    • H04N3/1568Control of the image-sensor operation, e.g. image processing within the image-sensor for disturbance correction or prevention within the image-sensor, e.g. biasing, blooming, smearing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明は固体撮像素子の駆動方法に関するもの
であつて、小型化を図つた際に、電荷転送部の容
量が寸法的に制限が生じるために、光電変換部の
蓄積容量が前記の転送部容量より大になる場合が
生じ、正規の転送期間では転送し切れなかつた分
が次回の転送期間にも転送されて出力信号として
取り出され、これが移動している明るい被写体で
は残像となつて現われる現象を除去することを目
的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving a solid-state image sensor, and in order to reduce the size of a solid-state image sensor, the capacity of the charge transfer section is limited due to the size. The capacity may become larger than the above-mentioned transfer unit capacity, and the portion that could not be transferred during the regular transfer period is also transferred to the next transfer period and taken out as an output signal, which may be difficult to capture when shooting a bright moving subject. The purpose is to remove phenomena that appear as afterimages.

撮像管における残像は、主として容量性残像と
称するものであり、小信号時(低照度時)にビー
ムインピーダンスが高くなり、一回のビーム走査
では光導電膜の容量を充電しきれなかつた成分が
残像として発生するため、バイアスライト等によ
り、常に一定の照度を与えておくことで、前記の
ビームインピーダンスが高くなる部分を少なくし
て、残像を軽減しているが、固体撮像素子におい
ては、前記の電子ビームに換るものが、電荷転送
素子で構成されるため、フオトダイオード等で構
成されている光電変換部で発生した信号電荷を、
前記転送素子に読み込む速度で決まり、これは一
般には充分に問題のない程度である。
The afterimage in the image pickup tube is mainly called capacitive afterimage, and the beam impedance increases when the signal is small (low illumination), and the component that cannot fully charge the capacitance of the photoconductive film with one beam scan is generated. This occurs as an afterimage, so by always providing a constant illuminance using a bias light, etc., the portion where the beam impedance is high is reduced, and the afterimage is reduced. Since the electron beam is replaced by a charge transfer element, the signal charge generated in the photoelectric conversion unit, which is composed of a photodiode, etc.
It is determined by the speed at which data is read into the transfer element, and this is generally sufficient to cause no problems.

しかしながら、固体撮像素子では、第1図に示
す様に、光電変換部と、電荷転送部を同一基板上
に設置している。同図において、101はフオト
ダイオード等で構成された光電変換部、102は
CCD等で構成された垂直電荷転送ライン、10
3は前記光電変換部101で発生した信号電荷
を、前記垂直電荷転荷ライン102に読み出すた
めの読み出しゲート、104は前記垂直電荷転送
ライン102から転送されてきた電荷を出力信号
として直列に取り出すためのCCD等で構成され
た水平電荷転送ライン、105はフローテイング
ゲート等で構成された出力信号取り出し部であ
る。
However, in a solid-state image sensor, as shown in FIG. 1, a photoelectric conversion section and a charge transfer section are installed on the same substrate. In the figure, 101 is a photoelectric conversion unit composed of a photodiode, etc., and 102 is
Vertical charge transfer line composed of CCD etc., 10
3 is a readout gate for reading out the signal charges generated in the photoelectric conversion section 101 to the vertical charge transfer line 102, and 104 is for extracting the charges transferred from the vertical charge transfer line 102 in series as an output signal. A horizontal charge transfer line 105 is composed of a CCD or the like, and 105 is an output signal extraction section composed of a floating gate or the like.

第2図は、第1図のYY′における1つの素子の
断面図である。同図201はフオトダイオード
部、202は垂直転送部、202′は垂直転送用
ポリシリコンゲート電極、203は読み出しゲー
ト部、203′は読み出し用ポリシリコンゲート
電極、204はチヤンネルストツパである。この
様な固体撮像素子を、画素数を保つてチツプサイ
ズを小形化する時、製作可能な最少寸法の関係
で、各部の寸法制約を受ける。この中で、フオト
ダイオード部201については、この面積が狭く
なると、撮像素子としての感度が低下することに
なる。また、チヤンネルストツパ204は最初の
設計時点から、最少寸法で作られているため、感
度を犠性にせずチツプを小形化する場合は、その
しわよせが、垂直転送部202の寸法を少なくす
ることになる。この垂直転送部202の容量は、
前記の幾可学的寸法と、ウエル濃度等できまる
が、ウエル濃度には、プロセス技術での限界があ
り、したがつて感度を重視した場合は、転送部容
量が制限され、フオトダイオードで構成された光
電変換部201の蓄積容量に対して少なくなる。
この様になると、前述の様に、強い光により光電
変換された信号電荷は、一度に転送可能な容量よ
り多くなり、正規の転送期間では残留電荷を生
じ、これが次の転送期間で出力信号として取り出
されると、移動している被写体を撮像した場合
は、残像となつて現われる。
FIG. 2 is a cross-sectional view of one element at YY' in FIG. 201 is a photodiode section, 202 is a vertical transfer section, 202' is a polysilicon gate electrode for vertical transfer, 203 is a readout gate section, 203' is a polysilicon gate electrode for readout, and 204 is a channel stopper. When reducing the chip size of such a solid-state image sensor while maintaining the number of pixels, the size of each part is restricted due to the minimum size that can be manufactured. Among these, when the area of the photodiode section 201 becomes smaller, the sensitivity as an image sensor decreases. In addition, since the channel stopper 204 is made with the minimum dimensions from the initial design stage, its wrinkling reduces the dimensions of the vertical transfer section 202 when the chip is to be made smaller without sacrificing sensitivity. It turns out. The capacity of this vertical transfer section 202 is
It is determined by the above-mentioned geometric dimensions and well concentration, but there is a limit to the well concentration due to process technology. Therefore, if sensitivity is important, the transfer section capacity is limited and a photodiode is used. The storage capacity of the photoelectric conversion unit 201 is reduced.
In this case, as mentioned above, the signal charge photoelectrically converted by strong light becomes larger than the capacity that can be transferred at once, resulting in residual charge during the normal transfer period, which is used as an output signal during the next transfer period. When taken out, if a moving subject is imaged, it will appear as an afterimage.

この様な残留電荷成分に対応する余剰電荷を除
去するためには、第3図に示す様な波形の駆動パ
ルスで、第1図に示した固体撮像素子を動作させ
れば良い。第1図と第3図を使用して説明する
と、光電変換部101に強い光により発生し、蓄
積された信号電荷は、読み出しゲート103に、
固体撮像素子の垂直ブランキング期間に第3図a
に示す読み出しパルスを加えて、垂直転送ライン
102に読み出すのであるが、第3図aに示すパ
ルスφx1により、蓄積容量と、転送容量の差で生
じる残留電荷となる余剰分を、あらかじめ先に読
み出す。したがつてここのφx1の電圧E1は、前記
残留電荷となる分だけ読み出す様に調整されたも
のである。この様にして残留電荷となるはずであ
つた分のみ先に垂直転送ライン102に読み出
し、垂直転送パルス302の500KHzの部分で高
速で垂直方向に転送し、水平転送ライン104に
送り込む。この水平転送ライン104に送り込ま
れた残留電荷をCCD転送で転送してハキ出そう
とすると水平転送ライン104のクロツク周波数
は、正規の500/15.75倍となり、数100MHzとな
つて実際上は動作不可能である。したがつて、第
3図cに示すようにこの期間は、DC電圧E3を印
加して、水平転送ライン104を単にオーバーフ
ロードレインとして使用し、出力信号取り出し部
105より前記残留電荷となる余剰電荷成分をハ
キ出す。その後、垂直ブランキング期間内に生ず
る第3図aに示すφx2の読み出しパルスで、残つ
ている信号電荷を垂直転送部102に読み出し、
この信号電荷は第3図bに示す15.75KHzの垂直
転送パルスで1水平期間ごとに前記104の水平
転送ライン104に転送し、水平転送ライン10
4では、7.2MHzのクロツク信号で、高速で転送
して、出力信号を取り出し部105より、ビデオ
信号として取り出すものである。この結果、残像
のない、映像再生が可能となる。
In order to remove the surplus charge corresponding to such a residual charge component, the solid-state imaging device shown in FIG. 1 may be operated with a driving pulse having a waveform as shown in FIG. 3. To explain using FIGS. 1 and 3, signal charges generated and accumulated in the photoelectric conversion unit 101 by strong light are transferred to the readout gate 103.
Figure 3a during the vertical blanking period of the solid-state image sensor.
The read pulse shown in Fig. 3 is applied to read out data to the vertical transfer line 102. However, by the pulse φ read out. Therefore, the voltage E 1 of φ x1 here is adjusted so as to read out only the residual charge. In this way, only the residual charge that should have been read out to the vertical transfer line 102 is transferred at high speed in the vertical direction using the 500 KHz portion of the vertical transfer pulse 302, and sent to the horizontal transfer line 104. If an attempt is made to remove the residual charge sent to the horizontal transfer line 104 by transferring it by CCD transfer, the clock frequency of the horizontal transfer line 104 will become 500/15.75 times the normal value, reaching several 100 MHz, making it practically inoperable. It is possible. Therefore, during this period, as shown in FIG . Brush out the ingredients. Thereafter, the remaining signal charges are read out to the vertical transfer section 102 by a read pulse of φ x2 shown in FIG. 3a that occurs within the vertical blanking period, and
This signal charge is transferred to the 104 horizontal transfer lines 104 every horizontal period using a 15.75 KHz vertical transfer pulse shown in FIG.
4, the data is transferred at high speed using a 7.2 MHz clock signal, and the output signal is extracted from the extraction section 105 as a video signal. As a result, video reproduction without afterimages is possible.

この時、前記残留電荷となる成分が、転送容量
より大巾に多すぎて、1度の転送(垂直転送)で
は取り出せない場合は、φx1を数個使用して、電
圧E1を順次変化させる等を行なつて、数回に分
けてハキ出すことも可能である。
At this time, if the residual charge component is much larger than the transfer capacity and cannot be extracted in one transfer (vertical transfer), use several φ x1 and sequentially change the voltage E1 . It is also possible to do this in several batches by doing this.

また、第4図に示す様に、光電変換部をMOS
キヤパシタにより構成している場合について、他
の実施例を説明すると、同図aに示すようにφp
印加部分が光電変換用のMOSキヤパシタを構成
し、φT印加部分は、前記同様に垂直転送CCD部
であり、通常2相CCD構成となつている。φx
加部分は、光電変換された信号電荷を前記垂直転
送段に読み込むゲート部分である。この様な構成
の場合は、光電変換された信号電荷は、φPに電
圧E4が印加されておれば、同図bに示す様に、
その電圧に応じたポテンシヤルウエルに蓄積され
ている。この信号電荷は、読み込みゲートφx
電圧を加えると共に、φPの電位を第5図aに示
す様に、E4からE5に変化させると、φP1ポテンシ
ヤルウエルは第4図cの点線まで変化化し、信号
電荷の一部(余剰分)を垂直転送部に移動させ、
第5図bの500KHzの垂直転送パルスで高速転送
し水平転送段に転送する。水平転送段は、第5図
cに示す様に、水平転送段に電圧E3を印加し転
送されてきた信号電荷(余剰分)を水平のポテン
シヤルウエルを作つてここを通過させて出力端よ
り排出するものである。次に、φPにφP2を印加す
ると、この部分のポテンシヤルウエルは第4図c
の実線の様になり、残つた信号電荷を読み出し、
この信号電荷は、第5図bの垂直転送パルスと、
第5図cの水平転送パルスにより正規に転送され
て、ビデオ信号として取り出すものである。
In addition, as shown in Figure 4, the photoelectric conversion section is a MOS
To explain another example of the case where the capacitor is used, as shown in figure a, φp
The application part constitutes a MOS capacitor for photoelectric conversion, and the φ T application part is a vertical transfer CCD section as described above, and usually has a two-phase CCD configuration. The φ x application portion is a gate portion that reads photoelectrically converted signal charges into the vertical transfer stage. In the case of such a configuration, the photoelectrically converted signal charge becomes as shown in Figure b, if voltage E4 is applied to φP .
It is stored in a potential well corresponding to that voltage. When this signal charge applies a voltage to the read gate φ x and changes the potential of φ P from E 4 to E 5 as shown in FIG. A portion of the signal charge (surplus) is moved to the vertical transfer section,
The data is transferred at high speed using the 500KHz vertical transfer pulse shown in FIG. 5b and transferred to the horizontal transfer stage. As shown in Figure 5c, in the horizontal transfer stage, a voltage E3 is applied to the horizontal transfer stage, and the transferred signal charge (surplus) is passed through a horizontal potential well and sent from the output terminal. It is something that is discharged. Next, when φ P2 is applied to φ P , the potential well in this part becomes c
It looks like a solid line, and the remaining signal charge is read out,
This signal charge corresponds to the vertical transfer pulse in FIG. 5b,
The signal is normally transferred by the horizontal transfer pulse shown in FIG. 5c and taken out as a video signal.

この様に、光電変換部のポテンシヤルウエルを
制御しても、前実施例と同様に、余剰分のみを排
出することも可能である。
Even if the potential well of the photoelectric conversion section is controlled in this way, it is also possible to discharge only the surplus amount, as in the previous embodiment.

また光電変換部に光導電膜を積層した場合で
も、前記2実施例と同様に動作させればよい。
Further, even when a photoconductive film is laminated on the photoelectric conversion section, the same operation as in the above two embodiments is sufficient.

なお、前述の構成では、水平転送ラインをオー
バーフロードレインとして使用したが、垂直転送
されてきた残留電荷は、かならずしも出力端より
取り出す必要はなく、印加電圧をオフにしてポテ
ンシヤルウエルを消滅させることにより基板中に
吸収させることも可能である。
Note that in the above configuration, the horizontal transfer line is used as an overflow drain, but the residual charge that has been vertically transferred does not necessarily have to be taken out from the output terminal, but can be removed from the substrate by turning off the applied voltage and eliminating the potential well. It is also possible to absorb it into

以上の様に、本発明は、チップを小形化した
り、積層構造等感度向上を図つた場合の固体撮像
装置において、光電変換部の信号電荷蓄積容量
が、電荷転送素子の信号電荷転送容量より多くな
つた時に、その容量差に相当し、余剰電荷となる
成分を、予かじめ、垂直ブランキング期間に高速
で垂直転送して排除している。
As described above, the present invention provides a solid-state imaging device in which the chip is miniaturized or the sensitivity is improved by laminated structure, etc., in which the signal charge storage capacity of the photoelectric conversion section is larger than the signal charge transfer capacity of the charge transfer element. The component that corresponds to the capacitance difference and becomes surplus charge when the voltage decreases is eliminated in advance by vertically transferring it at high speed during the vertical blanking period.

したがつて本発明によれば、チツプを小形化
し、感度を上げようとした固体撮像素子におい
て、蓄積容量が、転送容量より多い時、正規の転
送では残留電荷として残り、残像となつて生じる
成分を除去することができる。
Therefore, according to the present invention, in a solid-state imaging device in which the chip is miniaturized and the sensitivity is increased, when the storage capacitance is larger than the transfer capacitance, the component that remains as residual charge during normal transfer and becomes an afterimage. can be removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は固体撮像素子の構成を示す図、第2図
は固体撮像素子の要部断面図、第3図a〜cは本
発明の一実施例を示す積層構造の固体撮像素子の
動作説明図、第4図a〜c、第5図a〜cは本発
明の他の実施例を示す動作説明図である。 101……光電変換部、102……垂直転送
部、103……読み出しゲート、104……水平
転送部、105……出力信号取り出し部。
FIG. 1 is a diagram showing the configuration of a solid-state image sensor, FIG. 2 is a cross-sectional view of a main part of the solid-state image sensor, and FIGS. 3 a to 3 c are explanations of the operation of a solid-state image sensor with a laminated structure showing an embodiment of the present invention. Figures 4a to 4c and 5a to 5c are operation explanatory diagrams showing other embodiments of the present invention. 101...Photoelectric conversion unit, 102...Vertical transfer unit, 103...Reading gate, 104...Horizontal transfer unit, 105...Output signal extraction unit.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の光電変換部と前記光電変換部で光電変
換された信号電荷を転送する電荷転送部とを有し
てなるCCD固体撮像素子の駆動方法において、
各フイールド毎に前記光電変換部で発生蓄積され
た信号電荷のうちの不要電荷部分を垂直ブランキ
ング期間に前記電荷転送部を介して高速で転送除
去し、同じ垂直ブランキング期間内に、前記光電
変換部に残つた信号電荷を取り出すことを特徴と
するCCD固体撮像素子の駆動方法。
1. A method for driving a CCD solid-state image sensor comprising a plurality of photoelectric conversion units and a charge transfer unit that transfers signal charges photoelectrically converted by the photoelectric conversion units,
An unnecessary charge portion of the signal charges generated and accumulated in the photoelectric conversion section for each field is transferred and removed at high speed via the charge transfer section during the vertical blanking period, and the photoelectric conversion section is transferred to the photoelectric conversion section within the same vertical blanking period. A method for driving a CCD solid-state image sensor, characterized by extracting signal charges remaining in a conversion section.
JP4395180A 1980-04-02 1980-04-02 Driving method of solid state pickup element Granted JPS56140773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4395180A JPS56140773A (en) 1980-04-02 1980-04-02 Driving method of solid state pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4395180A JPS56140773A (en) 1980-04-02 1980-04-02 Driving method of solid state pickup element

Publications (2)

Publication Number Publication Date
JPS56140773A JPS56140773A (en) 1981-11-04
JPH0225313B2 true JPH0225313B2 (en) 1990-06-01

Family

ID=12678006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4395180A Granted JPS56140773A (en) 1980-04-02 1980-04-02 Driving method of solid state pickup element

Country Status (1)

Country Link
JP (1) JPS56140773A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159793A (en) * 1980-05-12 1981-12-09 Tokyo Optical Method and device for driving storage effect type sensor
US4661830A (en) * 1983-07-06 1987-04-28 Matsushita Electric Industrial Co., Ltd. Solid state imager
JP2525781B2 (en) * 1986-09-11 1996-08-21 株式会社東芝 Driving method for solid-state imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496321A (en) * 1978-12-13 1979-07-30 Hitachi Ltd Driving method for solid state pickup device
JPS55163882A (en) * 1979-06-06 1980-12-20 Nec Corp System for driving charge transfer element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54169426U (en) * 1978-05-19 1979-11-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496321A (en) * 1978-12-13 1979-07-30 Hitachi Ltd Driving method for solid state pickup device
JPS55163882A (en) * 1979-06-06 1980-12-20 Nec Corp System for driving charge transfer element

Also Published As

Publication number Publication date
JPS56140773A (en) 1981-11-04

Similar Documents

Publication Publication Date Title
US7511275B2 (en) Semiconductor device, and control method and device for driving unit component of semiconductor device
EP1947842B1 (en) Image sensors with blooming reduction mechanisms
US7326904B2 (en) In-pixel kTC noise suppression using circuit techniques
US6624850B1 (en) Photogate active pixel sensor with high fill factor and correlated double sampling
JP4457134B2 (en) Method for obtaining a readout signal with a high dynamic range of a pixel structure based on CMOS and a pixel structure based on CMOS
US7352400B2 (en) Solid-state image pickup apparatus having a differential output
US5019702A (en) Photoelectric transducer apparatus having a plurality of transducer elements and a plurality of capacitor elements
JP2833729B2 (en) Solid-state imaging device
JPS5928772A (en) Driving method of solid-state image pickup device
US4914518A (en) Electronic still camera with a solid state image pickup whose output part is kept from being driven during a major part of the image pickup period
US6720592B1 (en) Apparatus for high sensitivity, low lag, high voltage swing in a pixel cell with an electronic shutter
JPH08205034A (en) Image sensor
JPH0225313B2 (en)
US8045028B1 (en) Six transistor (6T) pixel architecture
JP2000022118A (en) Image-pickup device
JPH04281681A (en) X-y address type solid-state image pickup device
JPH11191863A (en) Solid-state image pickup device, drive method for the solid-state image pickup device, solid-state image pickup element and drive method for the solid-state image pickup element
JP4336508B2 (en) Imaging device
JPH0590556A (en) Solid-state image pick-up element
CN112040156A (en) Global exposure image sensor circuit and control method thereof
US5225694A (en) One dimensional t.d.i operation solid-state imager
CN111147772A (en) Exposure method and circuit based on composite dielectric gate double-transistor photosensitive detector
JP3053721B2 (en) Solid-state imaging device
US6628332B1 (en) Interline transfer type imaging device suitable for producing high resolution still images
JP3393239B2 (en) Solid-state imaging device