JPH02251337A - Apparatus for continuously casting thin cast slab - Google Patents

Apparatus for continuously casting thin cast slab

Info

Publication number
JPH02251337A
JPH02251337A JP7022189A JP7022189A JPH02251337A JP H02251337 A JPH02251337 A JP H02251337A JP 7022189 A JP7022189 A JP 7022189A JP 7022189 A JP7022189 A JP 7022189A JP H02251337 A JPH02251337 A JP H02251337A
Authority
JP
Japan
Prior art keywords
mold
slab
cast slab
side walls
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7022189A
Other languages
Japanese (ja)
Inventor
Takaharu Nakajima
敬治 中島
Juichi Kawashima
河嶋 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7022189A priority Critical patent/JPH02251337A/en
Publication of JPH02251337A publication Critical patent/JPH02251337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To supply a thin cast slab having high quality at a low cost by arranging plural hourglass-shaped roll pairs, which constitute pressing curved surfaces so as to gradually squeeze distance between both bulged surfaces of the cast slab formed at the center parts of long side walls in a mold possible to use a submerged nozzle. CONSTITUTION:The both end opened mold 4 is formed with the long side walls 1 and both short side walls 2 inserted between them. Size of the short side wall 2 is made to the same as the aimed thickness of the thin cast slab and the center parts of the long side walls 1 are backward estranged as possible to use the submerged nozzle 3. The hourglass-shaped roll pairs 6 are arranged in the range of remaining unsolidified part in the cast slab drawn from the mold 4. The pressing curved surfaces on the roll pairs 6 are constituted so as to gradually squeeze the distance between both bulged surfaces of the cast slab formed at the center part of the long side walls 1 in the mold 4 from the inlet side toward the outlet direction. By this method, the thin cast slab having excellent surface characteristic and inner quality can be stably cast.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、品質の良好な金属薄鋳片を円滑に製造する
ための連続鋳造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a continuous casting apparatus for smoothly manufacturing thin metal slabs of good quality.

〈従来技術とその課題〉 近年、精錬技術や鋳造技術の著しい進歩により品質性状
の良好な鋳片の製造が容易化したことや省力・省エネル
ギーの思想の高まり等を背景として、熱間圧延を施すこ
となく溶湯から直接的かつ連続的に薄板材を製造しよう
との試みが、比較的融点の低い非鉄金属ばかりか鉄系金
属にまで行われるようになってきた。
<Conventional technology and its issues> In recent years, significant advances in refining technology and casting technology have made it easier to manufacture slabs with good quality properties, and against the backdrop of the growing awareness of labor and energy conservation, hot rolling has become increasingly popular. Attempts have been made to directly and continuously produce thin sheets from molten metal without any melting, and efforts have been made not only for non-ferrous metals with relatively low melting points, but also for ferrous metals.

そして、金属薄鋳片を連続的に鋳造する手段として、こ
れまで次のような方法が提案されている。
The following methods have been proposed as means for continuously casting thin metal slabs.

a)ベルト式壁面移動モールド(垂直又は水平)を用い
た連続鋳造法。
a) Continuous casting method using a belt-type wall moving mold (vertical or horizontal).

b)5M5(シヱレーマン・ジマーク)式と呼ばれる、
異形断面モールドを使用した連続鋳造法(特開昭60−
158955号公報、特開昭62−203651号公報
b) Called the 5M5 (Sielemann-Simark) formula,
Continuous casting method using irregular cross-section mold
158955, JP-A-62-203651.

特開昭62−203652号公報、特開昭62−220
249号公報参照)。なお、この3M3式連続鋳造法は
、第2図で示すように(第8図(a)は平面図であり、
゛第8図(b)及び第8図(チ)はそのB−B断面図の
それぞれ別の例を、第8図(C)はC−C断面図を示し
ている)、モールド長辺壁11内面が中央部で拡開して
注湯部12を構成し、かつ該長辺壁注湯部がモールド出
側へ下がるに従って絞られる逆三角形〔第8図(b)〕
又は長方形〔第8図(チ)〕の移行面13となった両端
開放モールドによって連続鋳造する点を特徴とするもの
である。
JP-A-62-203652, JP-A-62-220
(See Publication No. 249). This 3M3 type continuous casting method is as shown in Fig. 2 (Fig. 8 (a) is a plan view,
゛Figures 8(b) and 8(g) show different examples of the B-B sectional view, and Figure 8(C) shows the CC sectional view), mold long side wall 11 is an inverted triangle whose inner surface expands at the center to form the pouring part 12, and the long side wall pouring part narrows as it goes down toward the mold exit side [Fig. 8(b)]
Alternatively, it is characterized by continuous casting using a mold with both ends open, which forms the transition surface 13 of a rectangle (FIG. 8(H)).

しかしながら、このうちの“ベルト式壁面移動モールド
を使用する方法”には、ベルト冷却の困難さに伴うメン
テナンス費用やランニングコストが高いと言う問題に加
えて、この種のモールドでは配設に多大な困難を伴いが
ちな“浸漬ノズル”による注湯を行わないと場面変動が
太き(て品質を維持するのが難しいとの問題があった。
However, among these methods, "method using a belt-type wall moving mold" has the problem of high maintenance costs and running costs due to the difficulty of belt cooling. Unless pouring is done using a ``immersion nozzle,'' which tends to be difficult, there is a problem in that the scene changes widely (and it is difficult to maintain quality).

また、前記“SMS式連続鋳造法”には、漸次ではある
がモールド内で鋳片断面積を大きく減少させるためモー
ルド内面と鋳片表面との間に大きな摩擦力が生じ、この
摩擦抵抗によるモールド内面の摩耗が激しくてモールド
寿命が短くなるとの問題点が指摘される上、断面が漸次
縮小するモールド構造の故にモールドオシレーションに
よって湯面変動が増幅され、これが鋳片品質に悪影響を
及ぼすと言う問題の存在も認められた。
In addition, in the above-mentioned "SMS continuous casting method," the cross-sectional area of the slab is gradually but greatly reduced within the mold, so a large frictional force is generated between the inner surface of the mold and the surface of the slab, and this frictional resistance causes the inner surface of the mold to It has been pointed out that there is a problem in that the mold life is shortened due to severe wear, and because the mold structure has a gradually shrinking cross section, mold oscillations amplify fluctuations in the mold level, which has a negative impact on the quality of the slab. The existence of was also recognized.

このように、従来の薄鋳片連続鋳造法は、何れも十分に
満足できる品質の薄鋳片を良好な作業性の下で安定製造
すると言う観点からは未解決な問題が多く、その成果は
特に鉄系金属薄板材の工業的製造においては熱間圧延を
伴う従来法に代替し得るほどの域に達していないのが現
状であった。
As described above, the conventional continuous thin slab casting methods have many unresolved problems from the perspective of stably producing thin slabs of sufficiently satisfactory quality with good workability, and the results have not been In particular, in the industrial production of iron-based metal sheet materials, the current state has not reached the level where it can replace the conventional method involving hot rolling.

そこで、上記事情を鑑みた本発明者等は、先に、鋼等の
鉄系金属薄板材であっても品質劣化や作業性悪化を伴う
ことなく安定かつ低コストで連続鋳造することを目脂し
たところの、「幅方向中央域に浸漬ノズルが侵入し得る
だけの断面膨出部を確保したほかは目的とする薄鋳片厚
と同様でかつモールド入側から出側まで実質的に同様な
断面形状の両端開放モールドを使用して連続鋳造を行う
と共に、前記モールドから引き抜かれてくる鋳片の厚さ
方向膨出部を、該鋳片内に未凝固部が残存している間に
振動プレスで両側から厚み方向へ圧縮し順次所定厚さと
する薄鋳片の連続鋳造手段」の提案を行った(特願昭6
3−165395号)。
Therefore, in view of the above circumstances, the inventors of the present invention first attempted to continuously cast ferrous metal thin sheet materials such as steel at a stable and low cost without deterioration of quality or workability. ``Other than securing a cross-sectional bulge in the center area in the width direction that is large enough for the immersion nozzle to penetrate, the thickness of the thin slab is the same as the target, and the thickness is substantially the same from the mold entrance side to the mold exit side.'' Continuous casting is performed using a mold with a cross-sectional shape open at both ends, and the bulge in the thickness direction of the slab pulled from the mold is vibrated while the unsolidified portion remains within the slab. We proposed a method for continuous casting of thin slabs that is compressed in the thickness direction from both sides using a press to achieve a predetermined thickness.
3-165395).

ところが、この手段を仔細に検討すると、完全凝固が終
了する前の鋳片を振動プレスにて成形する前記手段には
、[鋳片とプレス面との間の摩擦・摩耗の十分な回避が
難しいことに起因した“引抜抵抗の増加″や“表証性状
の悪化”の懸念がある」との、実施に当って更に改善の
余地が認められる問題点が残存していることを認めざる
を得なかった。
However, when this method is examined in detail, it is found that the method of forming the slab before complete solidification using a vibrating press has the disadvantage that it is difficult to sufficiently avoid friction and wear between the slab and the pressing surface. It must be acknowledged that there are still issues with room for further improvement in implementation, such as concerns about ``increase in pull-out resistance'' and ``deterioration of display properties'' due to this. There wasn't.

〈課題を解決するための手段〉 このようなことから、本発明者等は、設備費等の面でも
格別に大きな負担を要することなく、しかもより円滑な
操業状態を確保し得る更に実用的な薄鋳片の連続鋳造手
段を確立すべ(、より広い観点に立った実験・検討を続
けたところ、「本発明者等が先に提案したのと同様に、
幅中央部に浸漬ノズルが侵入し得るだけの断面膨出部を
確保したほかは目的とする薄鋳片と同様でかつモールド
入側から出側まで実質的に同様な断面形状の両端開放モ
ールドを使用して連続的な鋳込みを行い、その際に該モ
ールドがら引き抜がれてくる鋳片の厚さ方向膨出部につ
いては、“振動プレス”ではなくて“鋳片引抜方向に行
くに従って徐々にロール面をストレート形状に近づけた
鼓形ロール群”を使用して鋳片内に未凝固部が未だ残存
している間に順次圧縮成形すれば、振動プレスを適用す
る場合に指摘された前記問題が十分に払拭されてしまう
」との知見を得るに至った。
<Means for Solving the Problems> Based on the above, the present inventors have developed a more practical method that can ensure smoother operating conditions without requiring a particularly large burden in terms of equipment costs, etc. As a result of continuing experiments and studies from a broader perspective, it was found that a means for continuous casting of thin cast slabs should be established.
A mold with both ends open, which is similar to the target thin slab except that a cross-sectional bulge large enough for the immersion nozzle to penetrate in the center of the width, and which has a substantially similar cross-sectional shape from the mold entry side to the mold exit side, is made. During continuous casting, the bulging part in the thickness direction of the slab that is pulled out of the mold is not a "vibration press", but a "gradual process in the direction of pulling out the slab". If compression molding is performed sequentially while the unsolidified part still remains in the slab using "a group of hourglass-shaped rolls with roll surfaces that are close to a straight shape," the problems mentioned above when using a vibrating press can be avoided. We have come to the conclusion that the problem has been sufficiently eliminated.

本発明は、上記知見等に基づいてなされたものであり、 「薄鋳片の連続鋳造装置を、例えば第1図(第1図fa
)は平面図、第1図(b)はそのA−A断面図である)
及び第2図で略示するように、長辺壁1,1に挟まれた
両短辺壁2,2の寸法が目的とする薄鋳片厚と実質的に
同じで、長辺壁の中央部における対向内面同士が浸漬ノ
ズル3の使用を可能とする分だけ後退離間(距離eだけ
離間)した横断面形状の両端開放モールド4と、該両端
開放モールド4がら引き抜かれた鋳片内に未凝固部が残
存する範囲内の位置に配置されたところの、前記モール
ド長辺壁中央部で形成された鋳片の両膨出面間の距離を
入側から出側方向にかけて漸次絞る如き押圧曲面5を構
成する複数の鼓形ロール群6とを有せしめた構造とした
点」 に特徴を有するものである。
The present invention has been made based on the above-mentioned findings, etc., and provides a continuous casting apparatus for thin slabs, for example, as shown in FIG.
) is a plan view, and FIG. 1(b) is its A-A sectional view)
As shown schematically in FIG. A mold 4 with both ends open in a cross-sectional shape in which the opposing inner surfaces in the section are set back and spaced apart (separated by a distance e) by an amount that allows the use of the immersion nozzle 3, and a cast slab pulled out from the mold 4 with both ends open has an unfinished material. A pressing curved surface 5 that gradually narrows the distance between both bulging surfaces of the slab formed at the center of the long side wall of the mold from the inlet side to the outlet side, which is disposed at a position within the range where the solidified portion remains. It is characterized by having a structure having a plurality of drum-shaped roll groups 6 constituting the roller.

なお、第2図において、符号7は溶湯、8は凝固シェル
、9はサポートロール、10は鼓形ロール組み込みセグ
メントである。
In FIG. 2, the reference numeral 7 is a molten metal, 8 is a solidified shell, 9 is a support roll, and 10 is a segment incorporating an hourglass roll.

ところで、本発明に係るモールドは、横断面における左
右短辺長は目的とする薄鋳片の厚さと同一で、長辺壁内
面の中央部付近は浸漬ノズルによる注湯を容易化するた
め上記短辺長よりも広い間隔となるように後退した横断
面形状の、所謂“変形断面”をもつものであるが、前記
第1図に略示した如く、そのモールド入側から出側にか
けての横断面形状は何れの部位をとっても実質的に同じ
形状とされている。
By the way, in the mold according to the present invention, the lengths of the left and right short sides in the cross section are the same as the thickness of the target thin slab, and the lengths of the short sides are the same as the thickness of the target thin slab, and the lengths of the short sides are the same in the vicinity of the center of the inner surface of the long side walls in order to facilitate pouring with an immersion nozzle. It has a so-called "deformed cross section" in which the cross section is receded so that the distance is wider than the side length, but as shown schematically in Fig. 1, the cross section from the mold entry side to the mold exit side is The shape is substantially the same in all parts.

勿論、ここで言う「実質的に同じ」とは、例えば前記第
8図で示した3M3式モールドのように断面形状がモー
ルド入側から出側へかけて目立って変化することがない
と言う意味であって、モールド入側から出側へかけて若
干断面が絞られた程度のものは「実質的に同じ」なる範
嗜に含まれることは言うまでもない。そして、上記の如
き入側から出側へかけて断面を若干程度絞ったモールド
は鋳片の収縮代に対して効果的に適合できることから、
むしろ積極的に採用されるべきものである。
Of course, "substantially the same" here means that the cross-sectional shape does not change noticeably from the mold entrance side to the mold exit side, as in the case of the 3M3 type mold shown in FIG. 8, for example. Needless to say, those in which the cross section is slightly narrowed from the mold entry side to the mold exit side are included in the category of "substantially the same". Furthermore, since a mold with a slightly narrowed cross section from the inlet side to the outlet side as described above can effectively accommodate the shrinkage allowance of the slab,
Rather, it should be actively adopted.

また、鼓形ロール群の配役位置は、鋳片の未凝固末端以
降の位置では鼓形ロール群での圧縮による成形効果が得
られなくなるが、それ以外のモールド直下から鋳片の未
凝固末端部までの間であれば何れの位置であっても良い
。従って、第2図で示す如くに直下に設置しても良いし
、第3図で示゛したようにモールドから多少離れた鋳片
の未凝固末端部に配置しても何ら差し支えない。
In addition, the casting position of the group of hourglass-shaped rolls is such that the forming effect due to compression by the group of hourglass-shaped rolls cannot be obtained at a position beyond the unsolidified end of the slab; It may be at any position between. Therefore, it may be placed directly below the mold as shown in FIG. 2, or it may be placed at the unsolidified end of the slab at some distance from the mold as shown in FIG. 3.

そして、鼓形ロール群のロール・ピッチは、鋳片バルジ
ングによる引抜抵抗(即ちロールと鋳片間の摩擦)を下
げるために250fl以下とするのが良い。
The roll pitch of the group of hourglass-shaped rolls is preferably 250 fl or less in order to reduce the pull-out resistance (that is, the friction between the roll and the slab) due to slab bulging.

更に、本発明に係る連続鋳造装置は鋼の薄鋳片製造に適
用した場合の便益が特に大きいが、鋼以外の非鉄金属材
料薄鋳片の製造にも適用し得ることは言うまでもない。
Furthermore, although the continuous casting apparatus according to the present invention is particularly beneficial when applied to the production of thin slabs of steel, it goes without saying that it can also be applied to the production of thin slabs of non-ferrous metal materials other than steel.

次に、前記第2図を参照しながら本発明に係る連続鋳造
装置を適用した薄鋳片の連続鋳造プロセス例を、その機
能と共に説明する。
Next, an example of a continuous casting process for thin slabs using the continuous casting apparatus according to the present invention will be described with reference to FIG. 2, together with its functions.

く機能〉 まず、本発明に係る両端開放モールド4は前述したよう
に一般的な厚鋳片連続鋳造用の浸漬ノズル3をそのまま
挿入することが可能なため、格別な手立てを講じること
なく通常通りに浸漬ノズル3によるモールド4への断気
注湯が実施される。
Function> First, as mentioned above, the double-end open mold 4 according to the present invention allows the general immersion nozzle 3 for continuous casting of thick slabs to be inserted as is, so it can be used as usual without any special measures. Then, the molten metal is poured into the mold 4 using the immersion nozzle 3 without air.

従って、注湯時の場面変動等が極めて少なく、それによ
る鋳片表面性状の悪化は簡単かつ効果的に防止される。
Therefore, there are extremely few changes in the scene during pouring, and deterioration of the surface properties of the slab due to this is easily and effectively prevented.

なお、第4図は、第2図のア、イ、つ、工、オで示した
各位置に対応する溶湯の凝固状況及び鋳片形状を示して
おり、第4図(7)は注湯されたモールド内湯面(モー
ルド横断面)の形状である。
In addition, Figure 4 shows the solidification status of the molten metal and the shape of the slab corresponding to each position indicated by A, A, T, Work, and O in Figure 2, and Figure 4 (7) shows the pouring condition. This is the shape of the mold surface (mold cross section).

そして、上記モールド4の内面には一般的な厚鋳片連続
鋳造用のものと同様に鋳片引抜方向へ向かって極端な形
状変化部が存在しないので、鋳片表面とモールド内面と
の摩擦状態に悪化を来たすことがなく、モールド内面の
摩耗が一般的な厚鋳片連続鋳造用のものと比較して激し
くなるようなことはない。
Since the inner surface of the mold 4 does not have any extreme shape changes in the direction of drawing the slab, similar to those for general continuous casting of thick slabs, the friction between the slab surface and the mold inner surface does not exist. This method does not cause any deterioration in the quality of the mold, and the wear on the mold inner surface does not become severe compared to those for general continuous casting of thick slabs.

モールド4から引き抜かれた直後の鋳片は第4図(イ)
で示すように内部に未凝固部を含んでいるが、このよう
な状態のうちに鋳片は鼓形ロール群6により厚み方向へ
圧縮される。圧縮される鋳片は内部に未凝固部を含んで
いる上、その圧縮部が鋳片幅方向中央部の膨出部に限ら
れるため、対向面距離が入側から出側方向にかけて漸次
絞られた押圧曲面5を構成している鼓形ロール群6で圧
縮されながら移動する(引抜かれる)ことで前記膨出部
の圧縮変形が非常に円滑になされ、無理なく所定の鋳片
厚みにまで形状が整えられる。
The slab immediately after being pulled out of mold 4 is shown in Figure 4 (a).
Although it contains an unsolidified portion inside as shown in , the slab is compressed in the thickness direction by the group of hourglass rolls 6 in this state. The slab to be compressed contains an unsolidified part inside, and the compressed part is limited to the bulge in the center of the slab in the width direction, so the distance between opposing surfaces is gradually narrowed from the input side to the exit side. By moving (pulling out) while being compressed by the drum-shaped roll group 6 that constitutes the pressing curved surface 5, the bulge is compressed and deformed very smoothly, and the slab is easily shaped to a predetermined thickness. will be arranged.

鼓形ロール群6によって形状と厚みが整えられた鋳片〔
第4図(1)〕は、その後そのまま冷却・凝固され、所
望の薄鋳片〔第4図(才)〕とされる。
A slab whose shape and thickness have been adjusted by the drum-shaped roll group 6 [
4(1)] is then cooled and solidified as it is to form the desired thin slab [FIG. 4(1)].

以上は、モールド4の直下に鼓形ロール群6を配設して
薄鋳片を連続鋳造する第2図に基づいた説明であるが、
第3図のようにモールド4から多少離間させて鼓形ロー
ル6を配設した場合も実質的に変わることがなく、その
際の各位置における溶湯の凝固状況及び鋳片形状は、第
3図中のア。
The above is an explanation based on FIG. 2 in which a group of drum-shaped rolls 6 is disposed directly below the mold 4 to continuously cast a thin slab.
Even if the drum-shaped roll 6 is arranged at some distance from the mold 4 as shown in Fig. 3, there is no substantial change in the solidification state of the molten metal and the shape of the slab at each position. A inside.

イ、つ、オの位置にも対応させて同記号で第4図に示し
た通りである。
The same symbols are used to correspond to the positions of A, T, and O as shown in FIG.

上述の説明からも明らかであるが、本発明に係る薄鋳片
連続鋳造装置の適用によって次のような効果が享受でき
る。
As is clear from the above description, the following effects can be enjoyed by applying the thin slab continuous casting apparatus according to the present invention.

(a)  通常の浸漬ノズルを使用した断気注湯が格別
な平文てを講じることなく極く普通に採用できる。
(a) Aerated pouring using a normal immersion nozzle can be used quite commonly without any special precautions.

(b)  モールド内では実質的に鋳片断面の変化がな
いのでオシレーションが加わっても場面変動が少な(、
またモールド内面と鋳片表面との間に格別に大きな摩擦
力が生じることもない。
(b) There is virtually no change in the cross section of the slab within the mold, so even if oscillation is applied, there will be little variation in the scene (,
Further, no particularly large frictional force is generated between the inner surface of the mold and the surface of the slab.

(C)  ロール・ピッチ250鰭以下の鼓形ロール群
で鋳片を圧縮するので鋳片バルジングによる引抜抵抗を
軽減でき、プレスで圧縮する場合のように格別に大きな
摩擦力が生じることもない。
(C) Since the slab is compressed by a group of hourglass-shaped rolls with a roll pitch of 250 fins or less, the pull-out resistance due to slab bulging can be reduced, and no particularly large frictional force is generated, unlike when compressing with a press.

(d)  完全凝固前の鋳片の圧縮をロール群によって
実施する場合、鋳片幅方向及び鋳造方向のシェル凝固界
面歪が0.3%以下となるように調整することにより、
鋳片の内部割れが抑えられる。
(d) When compressing the slab before complete solidification using a group of rolls, by adjusting the shell solidification interface strain in the slab width direction and casting direction to be 0.3% or less,
Internal cracking of slabs is suppressed.

(e)  従って、この薄鋳片の連続鋳造手段によれば
、通常の厚鋳片の連続鋳造時のような安定した鋳込み作
業を維持することができ、連続的に製造される鋳片は表
面性状や内質の良好な好ましい品質となる。
(e) Therefore, according to this continuous casting method for thin slabs, it is possible to maintain a stable casting operation similar to the continuous casting of ordinary thick slabs, and the continuously produced slabs have a surface It has a desirable quality with good properties and internal quality.

ところで、本発明を実施するに際しては、対向面距離を
モールド内面から出側方向にかけて漸次絞った押圧曲面
を構成する鼓形ロール群で順次鋳片の厚み成形を行う関
係上、ロール押圧曲面の適正形状の評価方法が問題とな
る。
By the way, when carrying out the present invention, the thickness of the slab is sequentially formed using a group of hourglass-shaped rolls that constitute a pressing curved surface whose facing surface distance is gradually narrowed from the inner surface of the mold toward the exit side. The problem is how to evaluate the shape.

こ′こで、その押圧曲面の適正形状の評価方法をまとめ
ると次のようになる。
Here, the evaluation method for the appropriate shape of the pressed curved surface is summarized as follows.

即ち、種々の実験データから判断すると、鼓形ロール群
での適正押圧量は各種因子を考慮して第5図で示すよう
に算出するのが妥当である。ここで、「凝固収縮」に関
しては、凝固シェルが点P(第2図参照)から点Q(第
2図参照)に至るまでの凝固収縮量に見合うように押圧
面形状を対応させ、凝固シェルに余分な応力を発生させ
ない条件とすることが重要である。
That is, judging from various experimental data, it is appropriate to calculate the appropriate amount of pressure for the drum-shaped roll group as shown in FIG. 5 in consideration of various factors. Here, regarding "solidification shrinkage", the shape of the pressing surface is adjusted to correspond to the amount of solidification shrinkage from point P (see Figure 2) to point Q (see Figure 2), and the solidified shell It is important to maintain conditions that do not generate excessive stress.

続いて、本発明を実施例によって説明する。Next, the present invention will be explained by examples.

〈実施例〉 まず、各部寸法が第6図で示される如き、両端開放モー
ルド4の下流に鼓形ロール群6を配設した連続鋳造設備
(モールド横断面の要部形状・寸法は第7図に示した)
を使用し、常法通りの浸漬ノズルによる注湯によって低
炭素アルミキルド鋼溶湯を鋳込むと共に、モールド4か
ら引き抜かれた直後の鋳片を鼓形ロール群6にて順次圧
縮して薄鋳片(厚さ:50+u)とした。
<Example> First, a continuous casting facility in which a group of drum-shaped rolls 6 is arranged downstream of a mold 4 with both ends open, the dimensions of each part as shown in FIG. It was shown to)
molten low carbon aluminum killed steel is cast by pouring with a conventional immersion nozzle, and the slab immediately after being pulled out of the mold 4 is sequentially compressed by a group of drum-shaped rolls 6 to form a thin slab ( Thickness: 50+u).

このときの薄鋳片連続鋳造条件は次の通りであった。The conditions for continuous casting of thin slabs at this time were as follows.

モールドオシレーション: 240cycl/min。Mold oscillation: 240cycle/min.

鋳造速度[Vc]  : 5 m/min。Casting speed [Vc]: 5 m/min.

鼓形ロール群全体による押圧曲面の曲率半径[R]  
:1660鶴。
Radius of curvature of the pressing curved surface by the whole group of drum-shaped rolls [R]
: 1660 cranes.

押圧面幅[a]  ;900mm。Pressing surface width [a]; 900 mm.

押圧面長[L]  ;800龍。Pressure surface length [L]: 800 dragons.

押圧量[b]  :25mm (片側につき〕。Pressure amount [b]: 25mm (per side).

なお、押圧局面鋳造方向入側点Pにおける凝固シェル厚
dは約4.98m、出側点Qにおける凝固シェル厚dは
9.4hnであり、点Pと点Qのシェル表面温度差は1
00℃であった。また、適正押圧量すの算出基準となる
第5図で示した各値は次の通りであった。
The solidified shell thickness d at the entry point P in the pressing phase casting direction is approximately 4.98 m, the solidified shell thickness d at the exit point Q is 9.4 hn, and the shell surface temperature difference between the points P and Q is 1.
It was 00℃. Further, the values shown in FIG. 5, which serve as the basis for calculating the appropriate pressing amount, were as follows.

自由凝固収縮量bO:21.1鰭。Free solidification contraction amount bO: 21.1 fin.

幅方向歪が0.3%以下となる押圧量Δb:d=4.9
8重墓のとき101.711m。
Pressure amount Δb: d = 4.9 for which strain in the width direction is 0.3% or less
101.711m when it is an 8-layered grave.

d =9.42Mのとき53.7mm。53.7mm when d = 9.42M.

幅方向に座屈を起こさない限界押圧量Δb′:d=4.
98龍のとき6.2B。
Limit pressure amount Δb' that does not cause buckling in the width direction: d=4.
98 dragon time 6.2B.

d=9.42mmのとき4 、2 mm。4, 2 mm when d=9.42 mm.

鋳造方向歪が0.3%以下となる押圧量Δb“:d =
4.981mのとき205 、5 wd =9.42鶴
のとき103.6鶴。
Pressure amount Δb" where the strain in the casting direction is 0.3% or less: d =
205 when 4.981m, 5 wd = 9.42 cranes and 103.6 cranes.

従って、これらに基づき適正押圧31bは25.3mm
と算出された。
Therefore, based on these, the appropriate pressing force 31b is 25.3 mm.
It was calculated that

そして、この試験の期間中、鋳造作業は極めて円滑に行
われ、表面状態及び内質とも非常に良好な薄鋳片の得ら
れることが確認された。
During the period of this test, it was confirmed that the casting operation was carried out extremely smoothly and that a thin slab with very good surface condition and internal quality was obtained.

また、これとは別に、モールドから多少離間させて鼓形
ロール群を配設した設備による同様条件の連続鋳造試験
も実施したが、上記とほぼ同様に良好な結果が得られた
Separately, a continuous casting test was also carried out under similar conditions using equipment in which a group of hourglass rolls were arranged at some distance from the mold, and almost the same good results as above were obtained.

く効果の総括〉 以上に説明した如く、この発明によれば、モールドの摩
耗やモールド冷却の困難さが伴わず、また付属設備とし
て簡単な鼓形ロール群を必要とするだけで表面性状並び
に内質の優れた薄鋳片を安定して鋳造し得る薄鋳片の連
続鋳造装置を提供することができ、高品質の薄鋳片をコ
スト安く供給することが可能となるなど、産業上極めて
有用な効果がもたらされる。
Summary of Effects> As explained above, according to the present invention, there is no need for mold wear or difficulty in cooling the mold, and only a simple drum-shaped roll group is required as an accessory equipment, and the surface texture and internal properties can be improved. It is extremely useful industrially, as it can provide a continuous thin slab casting device that can stably cast thin slabs of excellent quality, and it is possible to supply high quality thin slabs at a low cost. effect is brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る両端開放モールド例の説明図で
あり、第1図(a)は平面図を、そして第1図(b)は
第1図ta)のA−A断面図をそれぞれ示している。 第2図は、本発明に係る薄鋳片連続鋳造装置例の説明図
であり、第2図fb)は第2図(alにおける鼓形ロー
ルの形状例を示したものである。 第3図は、本発明に係る薄鋳片連続鋳造装置の側倒を示
したものである。 第4図は、本発明装置における各部位での溶湯凝固状況
及び鋳片形状を示した概念図であり、第4図(ア)乃至
第4図(才)はそれぞれ第2図又は第3図の相当部位に
対応する状態を示している。 第5図は、鼓形ロールでの適正押圧量を説明した図面で
ある。 第6図は、実施例で使用した薄鋳片連続鋳造装置の各部
寸法を示した概略図である。 第7図は、実施例で使用した薄鋳片連続鋳造装置におけ
る両端開放モールドの要部形状・寸法を説明した概略図
である。 第8図は、従来のSMS式薄鋳片連続鋳造法に適用され
るモールドの説明図であり、第8図(a)は平面図を、
第8図fb)及び第8図(b′)は第8図falにおけ
るB−B断面図のそれぞれ別の例を、そして第8図(C
,lは第8図(alにおけるC−C断面図を示している
。 図面において、 ■、11・・・長辺壁、   2・・・短辺壁。 3・・・浸漬ノズル、   4・・・両端開放モールド
。 5・・・押圧曲面、    6・・・鼓形ロール群。 7・・・溶湯、      8・・・凝固シェル9・・
・サポートロール。 IO・・・鼓形ロール組み込みセグメント。 12・・・注湯部、13・・・移行面。
FIG. 1 is an explanatory diagram of an example of a mold with both ends open according to the present invention, FIG. 1(a) is a plan view, and FIG. 1(b) is a sectional view taken along line AA in FIG. are shown respectively. FIG. 2 is an explanatory diagram of an example of a continuous cast thin slab casting apparatus according to the present invention, and FIG. 2 fb) shows an example of the shape of the hourglass roll in FIG. Figure 4 shows the thin slab continuous casting apparatus according to the present invention turned over on its side. Figure 4 is a conceptual diagram showing the molten metal solidification state and slab shape at each part in the apparatus of the present invention. Figures 4 (A) to 4 (S) show states corresponding to the corresponding parts in Figures 2 and 3, respectively. Figure 5 illustrates the appropriate amount of pressure with the drum-shaped roll. FIG. 6 is a schematic diagram showing the dimensions of each part of the thin slab continuous casting apparatus used in the examples. FIG. FIG. 8 is a schematic diagram illustrating the shape and dimensions of the main parts of a mold. FIG. 8 is an explanatory diagram of a mold applied to the conventional SMS type thin slab continuous casting method, and FIG. of,
Fig. 8fb) and Fig. 8(b') show different examples of the BB sectional view in Fig. 8fal, and Fig. 8(C
, l shows the C-C cross-sectional view in FIG.・Both ends open mold. 5... Pressing curved surface, 6... Drum-shaped roll group. 7... Molten metal, 8... Solidified shell 9...
・Support role. IO...Drum-shaped roll built-in segment. 12...Pouring part, 13...Transition surface.

Claims (1)

【特許請求の範囲】[Claims] 長辺壁に挟まれた両短辺壁の寸法が目的とする薄鋳片厚
と実質的に同じで、長辺壁の中央部における対向内面同
士が浸漬ノズルの使用を可能とする分だけ後退離間した
横断面形状の両端開放モールドと、該両端開放モールド
から引き抜かれた鋳片内に未凝固部が残存する範囲内の
位置に配置されたところの、前記モールド長辺壁中央部
で形成された鋳片の両膨出面間の距離を入側から出側方
向にかけて漸次絞る如き押圧曲面を構成する複数の鼓形
ロール群とを有して成ることを特徴とする、薄鋳片の連
続鋳造装置。
The dimensions of both short walls sandwiched between the long walls are substantially the same as the desired thin slab thickness, and the opposing inner surfaces at the center of the long walls are set back by an amount that allows the use of an immersion nozzle. It is formed by a mold with a spaced cross-sectional shape that is open at both ends, and a central part of the long side wall of the mold, which is placed within a range where an unsolidified part remains in the slab pulled out from the mold with open ends. Continuous casting of a thin slab, characterized by comprising a plurality of drum-shaped roll groups forming a pressing curved surface such that the distance between both bulging surfaces of the slab is gradually narrowed from the entry side to the exit side. Device.
JP7022189A 1989-03-22 1989-03-22 Apparatus for continuously casting thin cast slab Pending JPH02251337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7022189A JPH02251337A (en) 1989-03-22 1989-03-22 Apparatus for continuously casting thin cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7022189A JPH02251337A (en) 1989-03-22 1989-03-22 Apparatus for continuously casting thin cast slab

Publications (1)

Publication Number Publication Date
JPH02251337A true JPH02251337A (en) 1990-10-09

Family

ID=13425277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7022189A Pending JPH02251337A (en) 1989-03-22 1989-03-22 Apparatus for continuously casting thin cast slab

Country Status (1)

Country Link
JP (1) JPH02251337A (en)

Similar Documents

Publication Publication Date Title
JPS59199151A (en) Continuous casting device for thin billet
JPH02251337A (en) Apparatus for continuously casting thin cast slab
JPH08238550A (en) Method for continuously casting steel
JPH0215858A (en) Method and device for continuously casting cast strip
JP3275835B2 (en) Continuous casting method and continuous casting machine
WO2016162906A1 (en) Method for manufacturing slab using continuous casting machine
JPS6021150A (en) Production of billet having high quality
JP3093533B2 (en) Continuous casting of thin cast slab
JPH1080752A (en) Mold for continuous casting
JPH03198964A (en) Method and apparatus for executing rolling reduction to strand in continuous casting
US3580325A (en) Continuous casting machine for slabs
JPH02263551A (en) Method and apparatus for continuously casting cast strip
JP2949711B2 (en) Continuous casting roll for unsolidification reduction
JP2888071B2 (en) Thin slab continuous casting method
JPH10328711A (en) Method for continuously casting steel
JPH09225598A (en) Production of hot-rolled thin steel sheet
JPH038860B2 (en)
JP3499911B2 (en) Continuous casting method
JP3114679B2 (en) Continuous casting method
WO2023140865A1 (en) Method for continuous casting
JP3228242B2 (en) Continuous casting equipment
JPS63126651A (en) Belt type continuous casting method
JPH0390259A (en) Continuous casting method
JPH0899155A (en) Continuous casting method
JPH091292A (en) Method for continuously casting thin cast slab