JPH02250957A - Supplying method for vapor deposition material - Google Patents

Supplying method for vapor deposition material

Info

Publication number
JPH02250957A
JPH02250957A JP7082789A JP7082789A JPH02250957A JP H02250957 A JPH02250957 A JP H02250957A JP 7082789 A JP7082789 A JP 7082789A JP 7082789 A JP7082789 A JP 7082789A JP H02250957 A JPH02250957 A JP H02250957A
Authority
JP
Japan
Prior art keywords
tip
vapor deposition
deposition material
crucible
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7082789A
Other languages
Japanese (ja)
Inventor
Isamu Inoue
勇 井上
Hirozo Takegawa
武川 博三
Ryutaro Akutagawa
竜太郎 芥川
Hidenobu Shintaku
秀信 新宅
Kayoko Kodama
児玉 佳代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7082789A priority Critical patent/JPH02250957A/en
Publication of JPH02250957A publication Critical patent/JPH02250957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film which is small in the difference of component content in the facial direction on a substrate by heating the tip part of a rod material at the temp. not higher than m.p. of this rod material before the tip of the rod material transferred toward a crucible is brought into contact with the liquid surface of the melted vapor deposition material in the crucible. CONSTITUTION:While a rod material 3 is continuously sent to the direction shown in an arrow A similarly heretofore, the tip 5 thereof is heated by the electron beams 7 so that the tip 5 is regulated to the temp. not higher than m.p. of the rod material 3. When the tip 5 touches the liquid surface 4, slight quantity of heat and heat of dissolution are only taken until m.p. and the temp. drop of the liquid surface is made small because the temp. of the tip 5 has been already raised by heating. Thereby lowering of evaporating velocity is made small and therefore decrease of film thickness in the passing film formation is made small and uniformity of film thickness is enhanced. Further even in the case of forming the film of vapor deposition material contg. a plurality of components having mutually different vapor pressure, supply of the material can be realized which is capable of film formation good in uniformity of component content in the facial direction of a thin film 9. Therefore the good quality film formation is enabled in a range over a long time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板に膜を形成する際に蒸着材料を被加熱位
置に供給する蒸着材料供給方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for supplying a vapor deposition material to a heated position when forming a film on a substrate.

従来の技術 例えば長尺フィルム上へ薄膜を形成してコンデンサや磁
気テープ等の素材となる機能性フィルムなどを、真空蒸
着などによって作成するためには長時間に亘って大量の
蒸気を発生させる必要がある。そのだめには蒸発るつぼ
などの被加熱位置において蒸着材料を連続的に供給する
ことが必要となってくる。その一つに例えば日本学術振
興会網rK91F!ハンドブック」(昭和68年発行、
オーム社刊、第105頁)に示されているように蒸着材
料を線材にしてるつぼへ供給する方法がある。
Conventional technology For example, in order to create a functional film that is used as a material for capacitors, magnetic tape, etc. by forming a thin film on a long film by vacuum evaporation, it is necessary to generate a large amount of steam over a long period of time. There is. To achieve this, it is necessary to continuously supply the vapor deposition material at a heated position such as an evaporation crucible. One example is the Japan Society for the Promotion of Science network rK91F! Handbook” (published in 1988,
There is a method of supplying the vapor deposition material to a crucible in the form of a wire, as shown in Ohmsha, p. 105).

この方法は蒸着材料がAt、Ni、Cuのように延性材
料であれば容易に線材化して適用できるがCrのような
脆性材料では線材化は極めて困難である。また脆性材料
でなくとも例えば磁性膜材料であるCo−Cr合金ある
いはCo −Cr −N’ i合金のような硬質の材料
は線材化できないことはないが加工性がよくないため、
加工費が高価になり、実用的ではない。
This method can be applied easily if the vapor deposition material is a ductile material such as At, Ni, or Cu, but it is extremely difficult to convert a brittle material such as Cr into a wire. In addition, even if it is not a brittle material, hard materials such as Co-Cr alloy or Co-Cr-N'i alloy, which are magnetic film materials, cannot be made into wire rods, but processability is not good.
Processing costs are high and it is not practical.

したがってこのような材料は棒材で供給することになる
。棒材で材料供給する場合の課題を第6図〜第11図を
用いて説明する。第5図において、1はるつぼ2に収納
された蒸着材料で図示しない例えば公知の電子ビーム加
熱手段により加熱され溶融している。加熱溶融による蒸
発によってるつぼ2内の蒸着材料1が減少しないように
補なって長時間に亘って薄膜を形成するために、棒状供
給用蒸着材料(以下棒材と略す)3が図示しない例えば
公知の回転ローラにはさんで駆動する手段によシ一定速
度で矢印入方向に溶融した蒸着材料1の液面4に向って
送られる。
Therefore, such materials will be supplied in bars. Problems in supplying materials in the form of bars will be explained using FIGS. 6 to 11. In FIG. 5, reference numeral 1 denotes a vapor deposition material stored in a crucible 2, which is heated and melted by, for example, a known electron beam heating means (not shown). In order to prevent the vapor deposition material 1 in the crucible 2 from decreasing due to evaporation due to heating and melting and to form a thin film over a long period of time, a rod-shaped supply vapor deposition material (hereinafter abbreviated as a bar material) 3 is provided with a well-known material (not shown), for example, in order to form a thin film over a long period of time. It is sent toward the liquid level 4 of the melted vapor deposition material 1 in the direction of the arrow at a constant speed by a means driven by being sandwiched between rotating rollers.

棒材3の先端6が液面4に接した後の先端5の挙動を第
6図〜第9図に基づいて説明する。
The behavior of the tip 5 of the bar 3 after it comes into contact with the liquid level 4 will be explained based on FIGS. 6 to 9.

第6図は棒材3の先端6が液面に接した瞬間の図でこの
瞬間を状a−とする。この状態aにおいて先端5は液面
4から熱を吸収して溶融を始め、溶液6となって第7図
に示す状態すの矢印Bのように蒸着材料1の溶液に溶け
こむ。この時矢印Bと逆方向に熱が先端6に伝わシ先端
6の溶融が進む。溶融が進むにつれて液面4と棒材3の
先端6の距離tが長くなるので液面4からの熱が先端6
に伝わりにくくなり、第8図の状態0のように先先端6
の溶融量が減少して前記溶液6の量が少なくなる。そう
するとますます先端6は溶融しにくくなってついには第
9図の状fidのように溶融が停止する。
FIG. 6 shows the moment when the tip 6 of the bar 3 comes into contact with the liquid surface, and this moment is defined as state a-. In this state a, the tip 5 absorbs heat from the liquid surface 4 and begins to melt, becoming a solution 6 and melting into the solution of the vapor deposition material 1 as indicated by arrow B in the state shown in FIG. At this time, heat is transmitted to the tip 6 in the direction opposite to arrow B, and the tip 6 melts. As the melting progresses, the distance t between the liquid level 4 and the tip 6 of the bar 3 increases, so the heat from the liquid level 4 is transferred to the tip 6.
As shown in state 0 in Figure 8, the tip 6 becomes difficult to transmit.
The amount of melted solution 6 decreases, and the amount of the solution 6 decreases. As a result, it becomes increasingly difficult for the tip 6 to melt, and the melting finally stops as shown in the figure fid in FIG.

この間棒材3は前記矢印入方向に連続して送られている
がその速さよりも状fiaから状態dまでの先端6の溶
融速度の方が速いので状態dのようにスキマDが生じる
ことになる。そして時間が経過するにつれてスキマDが
小さくなって状態aとなり、順次以上のサイクルが返復
されることになる。すなわち棒材3の送りは連続であっ
ても液面4への棒材の供給は間欠的なものとなる。先端
6が液面4に溶は込んでいる間は液面4から熱を奪うの
で液面4の温度が低下する。そうすると蒸発速度が低下
することになシ、蒸発速度は第10図に示すように時間
経過とともに周期的に変動することになる。
During this time, the bar 3 is being fed continuously in the direction indicated by the arrow, but the melting speed of the tip 6 from the state fia to the state d is faster than that, so a gap D is generated as in the state d. Become. Then, as time passes, the gap D becomes smaller and becomes state a, and the above cycles are repeated one after another. In other words, even if the rod 3 is continuously fed, the rod is supplied to the liquid level 4 intermittently. While the tip 6 is melting into the liquid level 4, heat is taken away from the liquid level 4, so the temperature of the liquid level 4 decreases. In this case, the evaporation rate will not decrease, but the evaporation rate will fluctuate periodically with the passage of time as shown in FIG.

状Baの距離りは棒材の径が太くなるほど大きくなる。The distance of shape Ba increases as the diameter of the bar increases.

その理由は前記溶液6を略円筒状とした場合(円筒表面
積/円筒容積)が小さくなるので液面4から先端6へ溶
液6を通って伝わる熱量に対して円筒表面から輻射で逃
げる熱量の割合が少なくなってより長く溶融するためで
ある。したがって棒材の径が大きくなると第10図の周
期P及び蒸発速度の変動幅F共に大きくなる。蒸発速度
が変動するとるつぼ2の上方を図示しない基板やフィル
ム等を移動させながら蒸着するいわゆる通過成膜する時
に通過方向の膜厚の変動が発生するという大きな問題が
あった。
The reason for this is that when the solution 6 is made into a substantially cylindrical shape, (cylindrical surface area/cylindrical volume) becomes smaller, so the ratio of the amount of heat radiating away from the cylindrical surface to the amount of heat transmitted from the liquid surface 4 to the tip 6 through the solution 6. This is because the melting time is reduced and the melting time is longer. Therefore, as the diameter of the rod increases, both the period P and the fluctuation width F of the evaporation rate in FIG. 10 increase. If the evaporation rate fluctuates, there is a big problem in that the film thickness in the passing direction changes during so-called pass-through film deposition, in which a substrate, film, etc. (not shown) is evaporated while moving above the crucible 2.

この課題に対応するために従来は棒材を溶融した後るつ
ぼへ供給するという第11図に示す方法が用いられるこ
とがある。第6図と同一構成要素は同番号にて説明する
In order to deal with this problem, conventionally a method shown in FIG. 11 has been used in which the bar material is melted and then fed to a crucible. Components that are the same as those in FIG. 6 will be described using the same numbers.

第11図において棒材3の先端5に公知の電子ビーム7
を照射して溶融し、その溶液6を液面に供給すると液面
4の温度が前例のように低下しないので蒸発速度が変動
することはない。したがってるつは2の上方で基板已に
紙面に垂直方向に通過成膜しても薄膜9の膜厚が変動す
ることはない。
In FIG. 11, a known electron beam 7 is attached to the tip 5 of the bar 3.
When the liquid is irradiated and melted and the solution 6 is supplied to the liquid surface, the temperature of the liquid surface 4 does not drop as in the previous example, so the evaporation rate does not fluctuate. Therefore, even if the film is formed above the substrate 2 in a direction perpendicular to the plane of the paper, the thickness of the thin film 9 will not change.

しかしながら蒸着材料1が蒸気圧が相異なる成分から成
る例えば磁性膜材料であるCo−Cr 合金が得られる
時の薄膜材料1のCr含有量をLとするとT)Lである
。また液面4から発生する蒸気のCr含有量はTに等し
い。したがって蒸発した量だけCr含有量Tの材料を供
給してやればるつぼ2内の薄膜材料1の量を一定に保ち
つつCr含有量Tの薄膜を連続して蒸着できることにな
る。
However, if the Cr content of the thin film material 1 is L when the vapor deposition material 1 is a Co--Cr alloy which is a magnetic film material made of components having different vapor pressures, then T)L. Further, the Cr content of the steam generated from the liquid level 4 is equal to T. Therefore, by supplying the evaporated amount of the material with the Cr content T, it is possible to continuously deposit the thin film with the Cr content T while keeping the amount of the thin film material 1 in the crucible 2 constant.

発明が解決しようとする課題 しかしながら第11図の構成では電子ビーム7で溶融さ
れた溶液6のCr含有量はTで套るから溶液6から発生
する蒸気のCr含有量はTよりも多くなる。そうすると
基板8の向って右方に形成される薄膜9のCx含有量は
溶液6に近いので多くなり、左方に形成される薄膜9の
Cr含有量はその逆に少なくなるため、基板8の全幅に
亘って一定組成の薄膜9が形成できないという大きな問
題があった。
Problems to be Solved by the Invention However, in the configuration shown in FIG. 11, the Cr content of the solution 6 melted by the electron beam 7 is T, so the Cr content of the vapor generated from the solution 6 is greater than T. Then, the Cx content of the thin film 9 formed on the right side of the substrate 8 increases because it is close to the solution 6, and the Cr content of the thin film 9 formed on the left side conversely decreases. There was a major problem in that a thin film 9 having a constant composition could not be formed over the entire width.

そこで、本発明は真空蒸着する際に蒸着速度変動が小さ
く、また蒸気圧が相異なる複数の成分から成る薄膜を形
成する場合にも基板上にその面方向に成分の含有量差の
小さい薄膜を形成できる蒸着材料供給方法を提供するこ
とを目的とするものである。
Therefore, the present invention provides a thin film that has small variations in deposition rate during vacuum deposition, and also has small differences in component content in the plane direction on a substrate even when forming a thin film consisting of multiple components with different vapor pressures. The purpose of the present invention is to provide a method for supplying a vapor deposition material that can be formed.

課題を解決するための手段 そして上記課題を解決するため本発明は、棒材をるつぼ
に向って移送し、その棒材の先端が前記るつぼ内で溶融
された蒸着材料の液面に接する前に、前記先端部を棒材
の融点以下の温度に加熱することを特徴とするものであ
る。
Means for Solving the Problems And in order to solve the above problems, the present invention transports a bar toward a crucible, and before the tip of the bar comes into contact with the liquid surface of the melted vapor deposition material in the crucible. , the tip is heated to a temperature below the melting point of the bar.

作   用 本発明は上記した方法により、先端部が溶融された蒸着
材料の液面に接した時にその液面から奪う熱量を従来に
比較して小さくすることができる。
Function The present invention can reduce the amount of heat taken from the liquid surface of the melted vapor deposition material when the tip comes into contact with the liquid surface compared to the conventional method.

そうすると液面の温度低下が小さくなるので蒸発速度の
低下も小さくなる。その結果、通過成膜における膜厚の
減少が小さくなるので膜厚の均一性を向上させることが
できる。
In this case, the drop in temperature of the liquid surface becomes smaller, so the drop in evaporation rate also becomes smaller. As a result, the decrease in film thickness during pass-through film formation is reduced, so that the uniformity of film thickness can be improved.

また棒材が相異なる蒸気圧の複数の成分から構成されて
いる場合においても、従来のように棒材の先端部から蒸
気圧の高い成分が蒸着材料の液面からよシも高濃度で蒸
発することがなくなシ、液面に接してから溶融して蒸着
材料の溶液に拡散した後に蒸発するので、基板に形成さ
れた薄膜の面方向の成分の含有量の均一性を向上させる
ことができる。
Furthermore, even when the rod is composed of multiple components with different vapor pressures, the components with higher vapor pressure evaporate from the tip of the rod at a higher concentration than from the liquid surface of the deposition material, as in the case of conventional methods. Instead, it melts after coming into contact with the liquid surface, diffuses into the solution of the vapor deposition material, and then evaporates, which improves the uniformity of the component content in the plane direction of the thin film formed on the substrate. can.

実施例 以下、本発明の第1実施例を添付図面に基づいて説明す
る。第1図は本実施例を示す図で、従来と同一構成要素
は従来例と同一番号で示すものである。
Embodiment Hereinafter, a first embodiment of the present invention will be described based on the accompanying drawings. FIG. 1 is a diagram showing this embodiment, in which the same components as in the conventional example are indicated by the same numbers as in the conventional example.

第1図において、従来と同様に棒材3を矢印入方向に連
続的に送シつつその先端6を電子ビーム7にて加熱する
ものである。但しその加熱は先端6が棒材3の融点以下
の温度になるよう行なうものである。
In FIG. 1, the bar 3 is continuously fed in the direction of the arrow and its tip 6 is heated with an electron beam 7, as in the conventional method. However, the heating is performed so that the temperature of the tip 6 is lower than the melting point of the bar 3.

そうすると先端6が液面4に接すると先端6はすでに加
熱されて温度が上っているので融点までちと少し温度上
昇するため熱量と融解熱を奪うだけであるから液面の温
度低下は小さい。したがって蒸発速度の低下も小さくな
るので通過成膜における膜厚の減少が小さくなり膜厚の
均一性を向上させることができる。
Then, when the tip 6 comes into contact with the liquid surface 4, the tip 6 has already been heated and the temperature has risen, so the temperature rises a little to the melting point, so the temperature drop in the liquid surface is small because the amount of heat and the heat of fusion are only taken away. Therefore, since the decrease in the evaporation rate is also reduced, the decrease in film thickness during pass film formation is reduced, and the uniformity of the film thickness can be improved.

また第2図に示すように先端5が液面4に接すると先端
5は融けて溶液6となる。棒材3が前記した蒸気圧の相
異なる成分から成る例えばCOとCrの合金である場合
、前記したように溶液6中のcrの含有量は蒸着材料1
の溶液のそれよりも多いが溶液6は蒸着材料1中に矢印
Eに示すように拡散して薄められる。したがって溶液6
から直接蒸発するCx含有量の多い蒸気の発生は少なく
なるので、第1図において基板8に形成される薄膜9の
向って右側の部分のCx含有量の増加を抑制することが
でき、薄膜の幅方向の成分の含有量の均一性を向上させ
ることができる。
Further, as shown in FIG. 2, when the tip 5 comes into contact with the liquid surface 4, the tip 5 melts and becomes a solution 6. If the rod 3 is made of an alloy of CO and Cr, which has different vapor pressures as described above, the content of Cr in the solution 6 is equal to that of the vapor deposition material 1, as described above.
Although the amount of the solution 6 is larger than that of the solution 6, the solution 6 diffuses into the vapor deposition material 1 as shown by the arrow E and is diluted. Therefore solution 6
Since the generation of vapor with a high Cx content that evaporates directly from the substrate is reduced, it is possible to suppress an increase in the Cx content on the right side of the thin film 9 formed on the substrate 8 in FIG. The uniformity of the component content in the width direction can be improved.

次に本発明の第2実施例について説明する。Next, a second embodiment of the present invention will be described.

第1図においてるつぼ20寸法曹が大きくなると、Cr
の含有量の多い溶液6が蒸着材料1の左方まで十分拡散
しにくくなって蒸着材料1の右方と左方のCIの含有量
の差が大きくなる。そのため薄膜9の右方と左方のCr
含有量の差が許容値を越えるような場合はるつぼ2の左
方からも棒材を供給すればよい。しかしながらこの場合
は左方の棒材を加熱する電子ビームも必要となり、液面
4の加熱も電子ビームで行なうとすれば合計3台の電子
ビームガンが必要となる。
In Fig. 1, as the size of the crucible becomes larger, Cr
It becomes difficult for the solution 6 containing a large amount of CI to diffuse sufficiently to the left side of the vapor deposition material 1, and the difference in CI content between the right side and the left side of the vapor deposition material 1 becomes large. Therefore, the Cr on the right and left sides of the thin film 9
If the difference in content exceeds the allowable value, the bar may be fed from the left side of the crucible 2 as well. However, in this case, an electron beam is also required to heat the left bar, and if the liquid surface 4 is also heated with an electron beam, a total of three electron beam guns are required.

ここで1台の電子ビームガンで例えば左右の棒材と液面
を加熱する構成を前記と同一構成要素は同一番号にて第
3図において説明する。
Here, a configuration in which one electron beam gun heats, for example, left and right rods and a liquid surface will be described with reference to FIG. 3, where the same components as described above are designated by the same numbers.

1oは電子ビームガンのフィラメントである。1o is the filament of the electron beam gun.

電子ビーム7を加速するだめの電極や偏向するだめの公
知の手段は省略しである。11は図示しない偏向手段に
より偏向された電子ビーム7の照射軌跡で、黒塗シの太
線で示してあり、1台の電子ビームガンで左右の棒材3
と液面4を加熱するための偏向方法に特徴を有するもの
である。第3図にるつぼ2等の構成要素と位置を対応さ
せて記したグラフは、時間と共に変化する電子ビーム7
の照射位置を示すものであり、角度θが照射位置の移動
速度を表わすことになり0が大きいほど移動速度が大き
く加熱されにくいことになる。
Known means for accelerating the electron beam 7 and deflecting it are omitted. Reference numeral 11 indicates the irradiation locus of the electron beam 7 deflected by a deflection means (not shown), which is shown by a thick black line.
It is characterized by the deflection method for heating the liquid surface 4. The graph shown in FIG. 3, which shows the correspondence between the constituent elements such as the crucible 2 and their positions, shows the electron beam 7 that changes over time.
The angle θ represents the moving speed of the irradiating position, and the larger 0 is, the faster the moving speed is and the less likely it is to be heated.

液面4上の照射軌跡11−1の両端部Q−R間はO−0
間よりも移動速度を小さくしであるのは両端部をより強
く加熱して、図示しないがるつぼ2の上方に配した基板
のるつぼ2の長手方向の膜厚分布をより均一にするだめ
のものである。
The distance between both ends Q-R of the irradiation trajectory 11-1 on the liquid level 4 is O-0.
The reason why the moving speed is lower than that between the crucibles 2 and 3 is to heat both ends more strongly to make the film thickness distribution in the longitudinal direction of the crucible 2 of the substrate placed above the crucible 2 more uniform (not shown). It is.

R−3間は液面4がほとんど加熱されないように最大速
度としである。またO−0間、S−0間はそれぞれ所要
の蒸発速度及び加熱温度が得られるように速度を設定す
ればよい。
Between R-3, the maximum speed is set so that the liquid level 4 is hardly heated. Further, the speeds between O-0 and S-0 may be set so as to obtain the required evaporation rate and heating temperature, respectively.

以上の電子ビームの偏向によって1台の電子ビムガンで
目的を達することができ経済性を向上させることができ
る。
By deflecting the electron beam as described above, the purpose can be achieved with one electron beam gun, and economical efficiency can be improved.

さらにるつぼ2の第1図の寸法Wが大きくなった場合は
棒材3をるつは2の中央部にも配置すればよい。
Furthermore, if the dimension W of the crucible 2 in FIG. 1 becomes larger, the bar 3 may also be placed in the center of the crucible 2.

るつぼ2の中央部に配置した棒材3の近傍の電子ビーム
の偏向方法の一例を本発明の第3実施例として第3図と
同一構成要素は同一番号にて第4図に示す。
An example of a method for deflecting an electron beam in the vicinity of a bar 3 placed in the center of the crucible 2 is shown in FIG. 4 as a third embodiment of the present invention, with the same components as in FIG. 3 designated by the same numbers.

11−3はるつぼ中央部に配置した棒材3へのv−oo
−v間の電子ビームの照射軌跡である。
11-3 v-oo to the bar 3 placed in the center of the crucible
This is the irradiation trajectory of the electron beam between -v.

前記と同様に照射位置の移動速度は所要の加熱温度が得
られるよう設定される。R−00−R間は液面4がほと
んど加熱されないことになるがO0位置上方の膜厚が不
足することがないように前記の場合と同様にQ−R間が
Q−0間よシも強く加熱されるように設定される。
Similarly to the above, the moving speed of the irradiation position is set so as to obtain the required heating temperature. Between R-00-R, the liquid level 4 will hardly be heated, but in order to prevent the film thickness above the O0 position from being insufficient, the distance between Q-R and Q-0 is similar to the above case. Set to heat up strongly.

したがってるつぼ2の長さにあまシ制限を受けることな
く本発明を実施することができる。
Therefore, the present invention can be practiced without any restrictions on the length of the crucible 2.

以上の実施例では、加熱手段に電子ビームを用いた例に
ついて説明してきたが、本発明はそれに限るものではな
くヒータ加熱や誘導加熱等の他の加熱手段を用いてもよ
い。
Although the above embodiments have been described using an electron beam as the heating means, the present invention is not limited thereto, and other heating means such as heater heating or induction heating may be used.

発明の効果 本発明は上記した方法により、通過成膜時の通過方向の
膜厚の均一性が良好でしかも相異なる蒸気圧の複数の成
分を含む蒸着材料の成膜においても薄膜の面方向の成分
の含有量の均一性の良好な成膜を可能とする材料供給を
、実現することができる。
Effects of the Invention The present invention uses the above-described method to achieve good film thickness uniformity in the passing direction during pass-through film formation, and also to achieve good film thickness uniformity in the in-plane direction of the thin film even when forming a vapor deposition material containing multiple components with different vapor pressures. It is possible to realize material supply that enables film formation with good uniformity of component content.

したがって長時間に亘って良好な品質の成膜が可能とな
る。
Therefore, it is possible to form a film with good quality over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1.第2実施例における蒸着材料供
給方法を断面で示す正面図、第2図は第1図の要部拡大
図、第3図、第4図は本発明の第3実施例における蒸着
材料供給方法を斜視図で示す説明図、第6図は従来の蒸
着材料供給方法の一例を断面で示す正面図、第6図、第
7図、第8図。 第9図は第1図の要部を拡大して示す説明図、第10図
は従来の蒸着材料供給方法における蒸着速度の経時変化
を示すグラフ、第11図は従来の蒸着材料供給方法のそ
の他の例を断面で示す正面図である。 1・・・・・・蒸着材料、2・・・・・・るつぼ、3・
・・・・・棒材、7・・・・・・電子ビーム、8・・・
・・・基板、9・・・・・・薄膜。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第 図 第 図 第 図 第 図 状怨α 纂 図 第 図 状態す 集 図 第 区 第10図 第1 1図 ?
FIG. 1 shows the first embodiment of the present invention. A front view showing a cross section of the vapor deposition material supply method in the second embodiment, FIG. 2 is an enlarged view of the main part of FIG. 1, and FIGS. 3 and 4 show the vapor deposition material supply method in the third embodiment of the present invention. An explanatory diagram shown in a perspective view, FIG. 6 is a front view, FIG. 6, FIG. 7, and FIG. 8 are cross-sectional views showing an example of a conventional vapor deposition material supply method. Figure 9 is an explanatory diagram showing an enlarged main part of Figure 1, Figure 10 is a graph showing changes over time in the deposition rate in the conventional vapor deposition material supply method, and Figure 11 is a graph showing other aspects of the conventional deposition material supply method. It is a front view showing an example in section. 1... Vapor deposition material, 2... Crucible, 3.
... Bar material, 7 ... Electron beam, 8 ...
... Substrate, 9... Thin film. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (2)

【特許請求の範囲】[Claims] (1)るつぼに収納された蒸着材料を加熱して溶融し、
その蒸着材料から発生する蒸気を基板に付着せしめて薄
膜を形成する際に、棒状供給用蒸着材料を前記るつぼに
向って移送し、前記棒状供給用蒸着材料の先端が前記る
つぼ内で溶融された蒸着材料の液面に接する前に、前記
先端部を棒状供給用蒸着材料の融点以下の温度に加熱す
ることを特徴とする蒸着材料供給方法。
(1) Heat and melt the vapor deposition material stored in the crucible,
When the vapor generated from the vapor deposition material is attached to the substrate to form a thin film, the rod-shaped vapor deposition material for supply is transferred toward the crucible, and the tip of the rod-shaped vapor deposition material for supply is melted in the crucible. A method for supplying vapor deposition material, characterized in that the tip portion is heated to a temperature below the melting point of the rod-shaped supply vapor deposition material before coming into contact with the liquid surface of the vapor deposition material.
(2)るつぼに収納された蒸着材料と棒状供給材料の先
端部とにそれぞれ所要の割合で電子ビームを偏向照射す
ることを特徴とする請求項1記載の蒸着材料供給方法。
(2) The method for supplying vapor deposition material according to claim 1, characterized in that the electron beam is deflected and irradiated onto the vapor deposition material stored in the crucible and the tip of the rod-shaped supply material at respective required ratios.
JP7082789A 1989-03-23 1989-03-23 Supplying method for vapor deposition material Pending JPH02250957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082789A JPH02250957A (en) 1989-03-23 1989-03-23 Supplying method for vapor deposition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082789A JPH02250957A (en) 1989-03-23 1989-03-23 Supplying method for vapor deposition material

Publications (1)

Publication Number Publication Date
JPH02250957A true JPH02250957A (en) 1990-10-08

Family

ID=13442801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082789A Pending JPH02250957A (en) 1989-03-23 1989-03-23 Supplying method for vapor deposition material

Country Status (1)

Country Link
JP (1) JPH02250957A (en)

Similar Documents

Publication Publication Date Title
US3303320A (en) Vapor-coating apparatus
DE4106579A1 (en) METHOD AND DEVICE FOR VACUUM EVAPORATION
JPH02250957A (en) Supplying method for vapor deposition material
US20030118726A1 (en) Film vapor deposition method
JPH0827568A (en) Vapor generating method and device therefor
JP3172588B2 (en) Raw metal melting method in vacuum deposition
US3488214A (en) Evaporant material control for vapor deposition apparatus
JPH0313566A (en) Production of thin film
US5122392A (en) Method and apparatus for manufacturing magnetic recording medium
JPH04191364A (en) Method and device for ion plating
JPH0633228A (en) Vacuum deposition device
JPH06192823A (en) Vacuum evaporation device
JP2502653B2 (en) Metal thin film manufacturing equipment
JP3091577B2 (en) Method of controlling film thickness in vacuum deposition
JPH0617239A (en) Raw material metal supplying method for vacuum vapor deposition
JPH06299336A (en) Crucible of evaporating source for vacuum deposition
JP2005179770A (en) Patterned deposition source unit and deposition method using the same
JPS6046367A (en) Vapor deposition apparatus
JPS6044392B2 (en) Electron beam evaporation equipment
JPH09143695A (en) Continuous vacuum deposition device having moving type evaporating source
JPS59111241A (en) Beam scanning apparatus of heater
JPH01275747A (en) Manufacture of thin metallic film
JPS58136774A (en) Vapor source for vapor deposition by electron beam heating
JPH05339718A (en) Vacuum vapor deposition device
JPS5887269A (en) Vapor source device