JPH0224832B2 - - Google Patents

Info

Publication number
JPH0224832B2
JPH0224832B2 JP55076128A JP7612880A JPH0224832B2 JP H0224832 B2 JPH0224832 B2 JP H0224832B2 JP 55076128 A JP55076128 A JP 55076128A JP 7612880 A JP7612880 A JP 7612880A JP H0224832 B2 JPH0224832 B2 JP H0224832B2
Authority
JP
Japan
Prior art keywords
group
reaction
compound
lower alkyl
penem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55076128A
Other languages
Japanese (ja)
Other versions
JPS572291A (en
Inventor
Eiji Ooki
Sadao Oida
Akira Yoshida
Teruo Hayashi
Shinichi Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP7612880A priority Critical patent/JPS572291A/en
Priority to FR8111191A priority patent/FR2483924A1/en
Priority to NL8102736A priority patent/NL8102736A/en
Priority to CH3723/81A priority patent/CH651037A5/en
Priority to DE19813122523 priority patent/DE3122523A1/en
Priority to ES502828A priority patent/ES8300769A1/en
Priority to US06/271,010 priority patent/US4395418A/en
Priority to IT67783/81A priority patent/IT1144602B/en
Priority to GB8117447A priority patent/GB2078220B/en
Priority to BE0/205047A priority patent/BE889151A/en
Publication of JPS572291A publication Critical patent/JPS572291A/en
Publication of JPH0224832B2 publication Critical patent/JPH0224832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/06Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D205/08Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams
    • C07D205/09Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams with a sulfur atom directly attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D499/88Compounds with a double bond between positions 2 and 3 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/568Four-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式 を有する新規なペネム−3−カルボン酸誘導体及
びその薬理上許容される塩並びにその製法に関す
るものである。 上記式中、R1は1−ヒドロキシ低級アルキル
基、1−アシルオキシ低級アルキル基、1−アル
キルスルホニルオキシ低級アルキル基、1−アリ
ールスルホニルオキシ低級アルキル基または1−
トリアルキルシリルオキシ低級アルキル基を示
し、R2は水素原子または低級アルキル基を示し、
R3は水素原子、アミノ基の保護基または式
The present invention is based on the general formula The present invention relates to a novel penem-3-carboxylic acid derivative having the following, a pharmacologically acceptable salt thereof, and a method for producing the same. In the above formula, R 1 is a 1-hydroxy lower alkyl group, a 1-acyloxy lower alkyl group, a 1-alkylsulfonyloxy lower alkyl group, a 1-arylsulfonyloxy lower alkyl group, or a 1-
represents a trialkylsilyloxy lower alkyl group, R 2 represents a hydrogen atom or a lower alkyl group,
R 3 is a hydrogen atom, a protecting group for an amino group, or a formula

【式】基 (式中、R5およびR6は同一または異なつて水
素原子または低級アルキル基を示す。) を示し、Aは分枝鎖状の低級アルキレン基を示
し、R4は水素原子またはカルボキシル基の保護
基を示す。 前記一般式(1)において、R1は好適には例えば
ヒドロキシメチル、1−ヒドロキシエチル、1−
ヒドロキシプロピル、1−ヒドロキシ−1−メチ
ルエチル、1−ヒドロキシブチルのようなヒドロ
キシ低級アルキル基;例えばアセトキシメチル、
1−アセトキシエチル、1−プロピオニルオキシ
エチル、1−ブチリルオキシエチル、1−イソブ
チリルオキシエチル、1−アセトキシプロピル、
1−アセトキシ−1−メチルエチル、1−アセト
キシブチルのような低級脂肪族アシルオキシ低級
アルキル基若しくは例えばベンジルオキシカルボ
ニルオキシメチル、1−ベンジルオキシカルボニ
ルオキシエチル、1−(P−ニトロベンジルオキ
シカルボニルオキシ)エチル、1−(P−ニトロ
ベンジルオキシカルボニルオキシ)プロピル、1
−(P−ニトロベンジルオキシカルボニルオキシ)
−1−メチルエチル、1−(P−ニトロベンジル
オキシカルボニルオキシ)ブチルのようなアラル
キルオキシカルボニルオキシ低級アルキル基等の
アシルオキシ低級アルキル基;例えばメタンスル
ホニルオキシエチル、1−メタンスルホニルオキ
シエチル,1−プロパンスルホニルオキシエチ
ル、1−メタンスルホニルオキシプロピル、1−
エタンスルホニルオキシプロピル、1−メタンス
ルホニルオキシ−1メチルエチル、1−メタンス
ルホニルオキシブチルのような低級アルキルスル
ホニルオキシ低級アルキル基;例えばベンゼンス
ルホニルオキシメチル、1−ベンゼンスルホニル
オキシエチル、1−(P−トルエンスルホニルオ
キシ)エチル、1−ベンゼンスルホニルオキシプ
ロピル、1−ベンゼンスルホニルオキシ−1−メ
チルエチル、1−ベンゼンスルホニルオキシブチ
ルのようなアリールスルホニルオキシ低級アルキ
ル基または例えばトリメチルシリルオキシメチ
ル、1−トリメチルシリルオキシエチル、1−
tert−ブチルジメチルシリルオキシエチル、1−
tert−ブチルジメチルシリルオキシプロピル、1
−tert−ブチルジメチルシリルオキシ−1−メチ
ルエチル、1−tert−ブチルジメチルシリルオキ
シブチルのようなトリアルキルシリルオキシ低級
アルキル基であり、R2は好適には水素原子また
は例えばメチル、エチル、n−プロピル、イソプ
ロピル、n−ブチル、イソブチルのような直鎖状
若しくは分枝鎖状の低級アルキル基であり、R3
は好適には水素原子、例えばベンジルオキシカル
ボニル,P−ニトロベンジルオキシカルボニルの
ようなアラルキルオキシカルボニル基または式
[Formula] represents a group (wherein R 5 and R 6 are the same or different and represent a hydrogen atom or a lower alkyl group), A represents a branched lower alkylene group, and R 4 represents a hydrogen atom or a lower alkyl group. Indicates a carboxyl group protecting group. In the general formula (1), R 1 is preferably, for example, hydroxymethyl, 1-hydroxyethyl, 1-
Hydroxy lower alkyl groups such as hydroxypropyl, 1-hydroxy-1-methylethyl, 1-hydroxybutyl; e.g. acetoxymethyl,
1-acetoxyethyl, 1-propionyloxyethyl, 1-butyryloxyethyl, 1-isobutyryloxyethyl, 1-acetoxypropyl,
Lower aliphatic acyloxy lower alkyl groups such as 1-acetoxy-1-methylethyl, 1-acetoxybutyl or e.g. benzyloxycarbonyloxymethyl, 1-benzyloxycarbonyloxyethyl, 1-(P-nitrobenzyloxycarbonyloxy) Ethyl, 1-(P-nitrobenzyloxycarbonyloxy)propyl, 1
-(P-nitrobenzyloxycarbonyloxy)
-Acyloxy lower alkyl groups such as aralkyloxycarbonyloxy lower alkyl groups such as 1-methylethyl, 1-(P-nitrobenzyloxycarbonyloxy)butyl; e.g. methanesulfonyloxyethyl, 1-methanesulfonyloxyethyl, 1- Propanesulfonyloxyethyl, 1-methanesulfonyloxypropyl, 1-
Lower alkylsulfonyloxy lower alkyl groups such as ethanesulfonyloxypropyl, 1-methanesulfonyloxy-1methylethyl, 1-methanesulfonyloxybutyl; e.g. benzenesulfonyloxymethyl, 1-benzenesulfonyloxyethyl, 1-(P- arylsulfonyloxy lower alkyl groups such as toluenesulfonyloxy)ethyl, 1-benzenesulfonyloxypropyl, 1-benzenesulfonyloxy-1-methylethyl, 1-benzenesulfonyloxybutyl or e.g. trimethylsilyloxymethyl, 1-trimethylsilyloxyethyl , 1-
tert-butyldimethylsilyloxyethyl, 1-
tert-butyldimethylsilyloxypropyl, 1
-tert-butyldimethylsilyloxy-1-methylethyl, trialkylsilyloxy lower alkyl group such as 1-tert-butyldimethylsilyloxybutyl, R 2 is preferably a hydrogen atom or e.g. methyl, ethyl, n - a linear or branched lower alkyl group such as propyl, isopropyl, n-butyl, isobutyl, and R 3
is preferably a hydrogen atom, an aralkyloxycarbonyl group such as benzyloxycarbonyl, P-nitrobenzyloxycarbonyl, or a formula

【式】基 (式中、R5およびR6は同一または異なつて水
素原子または例えばメチル、エチル、n−プロピ
ル、イソプロピルのような低級アルキル基を示
す。) であり、Aは好適には例えば1−メチルエチレ
ン、1−エチルエチレン、1−プロピルエチレ
ン、1−イソプロピルエチレン、1−ブチルエチ
レン、2−メチルエチレン、2−エチルエチレ
ン、2−プロピルエチレン、2−イソプロピルエ
チレン、2−ブチルエチレン、1−メチルトリメ
チレン、1−エチルトリメチレン、1−プロピル
トリメチレン、1−イソプロピルトリメチレン、
1−ブチルトリメチレン、2−メチルトリメチレ
ン、2−エチルトリメチレン、2−プロピルトリ
メチレン、2−イソプロピルトリメチレン、2−
ブチルトリメチレン、3−メチルトリメチレン、
3−エチルトリメチレン、3−プロピルトリメチ
レン、3−イソプロピルトリメチレン、3−ブチ
ルトリメチレン、1−メチルテトラメチレン、1
−エチルテトラメチレン、2−メチルテトラメチ
レン、2−エチルテトラメチレン、3−メチルテ
トラメチレン、3−エチルテトラメチレン、4−
メチルテトラメチレン、4−エチルテトラメチレ
ン、1,1−ジメチルエチレン、1,1−ジエチ
ルエチレン、2,2−ジメチルエチレン、2,2
−ジエチルエチレン、1,1−ジメチルトリメチ
レン、1,1−ジエチルトリメチレン、2,2ジ
メチルトリメチレン、2,2−ジエチルトリメチ
レン、3,3−ジメチルトリメチレン、3,3−
ジエチルトリメチレン、1,2−ジメチルトリメ
チレン、1,3−ジメチルトリメチレン、2,3
−ジメチルトリメチレン、1,1−ジメチルテト
ラメチレン、1,1−ジエチルテトラメチレン、
2,2−ジメチルテトラメチレン、2,2−ジメ
チルテトラメチレン、3,3−ジメチルテトラメ
チレン、3,3−ジエチルテトラメチレン、4,
4−ジメチルテトラメチレン、4,4−ジエチル
テトラメチレン、1,2−ジメチルテトラメチレ
ン、1,2−ジエチルテトラメチレン、1,3−
ジメチルテトラメチレン、1,3−ジエチルテト
ラメチレン、2,3−ジメチルテトラメチレン、
1,4−ジメチルテトラメチレン、2,4−ジメ
チルテトラメチレン、3,4−ジメチルテトラメ
チレン、1,4−ジエチルテトラメチレンのよう
な分枝鎖状の低級アルキレン基であり、R4は好
適には水素原子;例えばメチル、エチル、n−プ
ロピル、イソプロピル、n−ブチル、イソブチ
ル、tert−ブチルのような直鎖状若しくは分枝鎖
状の低級アルキル基;例えば2−ヨードエチル、
2,2−ジブロモエチル、2,2,2−トリクロ
ロエチルのようなハロゲノ低級アルキル基;例え
ばメトキシメチル、エトキシメチル、n−プロポ
キシメチル、イソプロポキシメチル、n−ブトキ
シメチル、イソブトキシメチルのような低級アル
コキシメチル基;例えばアセトキシメチル、プロ
ピオニルオキシメチル、n−ブチリルオキシメチ
ル、イソブチリルオキシメチル、ピバロイルオキ
シエチルのような低級脂肪族アシルオキシメチル
基;例えば1−メトキシカルボニルオキシエチ
ル、1−エトキシカルボニルオキシエチル、1−
n−プロポキシカルボニルオキシエチル、1−イ
ソプロポキシカルボニルオキシエチル、1−n−
ブトキシカルボニルオキシエチル,1−イソブト
キシカルボニルオキシエチルのような1−低級ア
ルコキシカルボニルオキシエチル基;例えばベン
ジル、P−メトキシベンジル、0−ニトロベンジ
ル、P−ニトロベンジルのようなアラルキル基;
ベンズヒドリル基またはフタリジル基である。 さらに、前記一般式(1)における特に好適な化合
物としては、R1が1−ヒドロキシエチル基であ
り、R2が水素原子であり、R3が水素原子、ホル
ムイミドイル基またはアセトイミドイル基であ
り、Aが1−メチルエチレン、2−メチルエチレ
ン、1−エチルエチレン、2−エチルエチレン、
1,1−ジメチルエチレン、2,2−ジメチルエ
チレン、1,2−ジメチルエチレン、1−メチル
トリメチレン、2−メチルトリメチレン、3−メ
チルトリメチレン、1−エチルトリメチレン、2
−エチルトリメチレン、3−エチルトリメチレ
ン、1,1−ジメチルトリメチレン、2,2−ジ
メチルトリメチレン、3,3−ジメチルトリメチ
レン、1,3−ジメチルトリメチレン、2,3−
ジメチルトリメチレン、1−メチルテトラメチレ
ン、2−メチルテトラメチレン、3−メチルテト
ラメチレン、4−メチルテトラメチレン、1−エ
チルテトラメチレン、2−エチルテトラメチレ
ン、3−エチルテトラメチレン、4−エチルテト
ラメチレン、1,1−ジメチルテトラメチレン、
1,2ジメチルテトラメチレン、1,3−ジメチ
ルテトラメチレン、2,3−ジメチルテトラメチ
レン、1,4−ジメチルテトラメチレン、2,4
−ジメチルテトラメチレン、3,4−ジメチルテ
トラメチレンのような炭素鎖に1乃至2個のメチ
ル若しくはエチル分枝を有するエチレン基、トリ
メチレン基またはテトラメチレン基であり、R4
が水素原子またはピバロイルオキシメチル基であ
る化合物をあげることができる。 なお、前記一般式(1)を有する化合物においては
不斉炭素原子に基く光学異性体および立体異性体
が存在し、これらの異性体がすべて単一の式で示
されているが、これによつて本発明の記載の範囲
は限定されるものではない。しかしながら、好適
には5位の炭素原子がペニシリン類と同一配位す
なわちR配位を有する化合物を選択することがで
きる。 また、前記一般式(1)において、R4が水素原子
であるカルボン酸化合物は必要に応じて薬理上許
容される塩の形にすることができる。そのような
塩としては、リチウム、ナトリウム、カリウム、
カルシウム、マグネシウムのような無機金属の塩
あるいはアンモニウム、シクロヘキシルアンモニ
ウム、ジイソプロピルアンモニウム、トリエチル
アンモニウムのようなアンモニウム塩類をあげる
ことができるが、好適にはナトリウム塩およびカ
リウム塩である。 本発明の前記一般式(1)を有する化合物は、ペニ
シリン環の2位と3位の間に二重結合が存在する
ペネム誘導体に属し、その2位にアミノ置換アル
キルメルカプト基を有する新規な化合物の一群で
あり、これらの化合物は優れた抗菌活性を表わし
医薬として有用な化合物であるか、あるいはそれ
らの活性を表わす化合物の重要合成中間体であ
る。 本発明によつて得られる前記一般式(1)を有する
化合物としては例えば以下に記載する化合物があ
げられる。 (1) 2−(2−アミノ−1−メチルエチルチオ)−
6−(1−ヒドロキシエチル)ペネム−3−カ
ルボン酸およびそのナトリウム塩若しくはカリ
ウム塩。 (2) 2−〔2−(P−ニトロベンジル)オキシカル
ボニルアミノ−1−メチルエチルチオ〕−6−
(1−tert−ブチルジメチルシリルオキシエチ
ル)ペネム−3−カルボン酸P−ニトロベンジ
ルエステル。 (3) 2−(2−アミノプロピルチオ)−6−(1−
ヒドロキシエチル)ペネム−3−カルボン酸お
よびそのナトリウム塩若しくはカリウム塩。 (4) 2−〔2−(P−ニトロベンジル)オキシカル
ボニルアミノプロピルチオ〕−6−(1−tert−
ブチルジメチルシリルオキシエチル)ペネム−
3−カルボン酸P−ニトロベンジルエステル。 (5) 2−(2−アミノ−1−エチルエチルチオ)−
6−(1−ヒドロキシエチル)ペネム−3−カ
ルボン酸およびそのナトリウム塩若しくはカリ
ウム塩。 (6) 2−(2−アミノブチルチオ)−6−(1−ヒ
ドロキシエチル)ペネム−3−カルボン酸およ
びそのナトリウム塩若しくはカリウム塩。 (7) 2−(2−アミノ−1,1−ジメチルエチル
チオ)−6−(1−ヒドロキシエチル)ペネム−
3−カルボン酸およびそのナトリウム塩若しく
はカリウム塩。 (8) 2−(2−アミノ−2−メチルプロピルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸およびそのナトリウム塩若しくはカ
リウム塩若しくはカリウム塩。 (9) 2−(2−アミノ−1,2−ジメチルエチル
チオ)−6−(1−ヒドロキシエチル)ペネム−
3−カルボン酸およびそのナトリウム塩若しく
はカリウム塩。 (10) 2−(3−アミノ−1−メチルプロピルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸およびそのナトリウム塩若しくはカ
リウム塩。 (11) 2−(3−アミノ−2−メチルプロピルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸およびそのナトリウム塩若しくはカ
リウム塩。 (12) 2−(3−アミノブチルチオ)−6−(1−ヒ
ドロキシエチル)ペネム−3−カルボン酸およ
びそのナトリウム塩若しくはカリウム塩。 (13) 2−(3−アミノ−1,1−ジメチルプロ
ピルチオ)−6−(1−ヒドロキシエチル)ペネ
ム−3−カルボン酸およびそのナトリウム塩若
しくはカリウム塩。 (14) 2−(3−アミノ−2,2−ジメチルプロ
ピルチオ)−6−(1−ヒドロキシエチル)ペネ
ム−3−カルボン酸およびそのナトリウム塩若
しくはカリウム塩。 (15) 2−(3−アミノ−3−メチルブチルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸およびそのナトリウム塩若しくはカ
リウム塩。 (16) 2−(3−アミノ−1−メチルブチルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸およびそのナトリウム塩若しくはカ
リウム塩。 (17) 2−(4−アミノ−1−メチルブチルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸およびそのナトリウム塩若しくはカ
リウム塩。 (18) 2−(4−アミノ−2−メチルブチルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸およびそのナトリウム塩若しくはカ
リウム塩。 (19) 2−(4−アミノ−1−メチルペンチルチ
オ)−6−(1−ヒドロキシエチル)ペネム−3
−カルボン酸およびそのナトリウム塩若しくは
カリウム塩。 (20) 2−(2−ホルムイミドイルアミノ−1−
メチルエチルチオ)−6−(1−ヒドロキシエチ
ル)ペネム−3−カルボン酸およびそのナトリ
ウム塩若しくはカリウム塩。 (21) 2−(2−アセトイミドイルアミノ−1−
メチルエチルチオ)−6−(1−ヒドロキシエチ
ル)ペネム−3−カルボン酸およびそのナトリ
ウム塩若しくはカリウム塩。 (22) 2−(2−ホルムイミドイルアミノプロピ
ルチオ)−6−(1−ヒドロキシエチル)ペネム
−3−カルボン酸およびそのナトリウム塩若し
くはカリウム塩。 (23) 2−(2−アセトイミドイルアミノプロピ
ルチオ)−6−(1−ヒドロキシエチル)ペネム
−3−カルボン酸およびそのナトリウム塩若し
くはカリウム塩。 (24) 2−(2−ホルムイミドイルアミノ−1−
エチルエチルチオ)−6−(1−ヒドロキシエチ
ル)ペネム−3−カルボン酸およびそのナトリ
ウム塩若しくはカリウム塩。 (25) 2−(3−ホルムイミドイルアミノ−1−
メチルプロピルチオ)−6−(1−ヒドロキシエ
チル)ペネム−3−カルボン酸およびそのナト
リウム塩若しくはカリウム塩。 (26) 2−(4−ホルムイミドイルアミノ−1−
メチルブチルチオ)−6−(1−ヒドロキシエチ
ル)ペネム−3−カルボン酸およびそのナトリ
ウム塩若しくはカリウム塩。 (27) 2−(2−アミノ−1−メチルエチルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸ピバロイルオキシメチルエステル。 (28) 2−(2−アミノプロピルチオ)−6−(1
−ヒドロキシエチル)ペネム−3−カルボン酸
ピバロイルオキシメチルエステル。 (29) 2−(3−アミノ−1−メチルプロピルチ
オ)−6−(1−ヒドロキシエチル)ペネム−3
−カルボン酸ピバロイルオキシメチルエステ
ル。 (30) 2−(4−アミノ−1−メチルブチルチオ)
−6−(1−ヒドロキシエチル)ペネム−3−
カルボン酸ピバロイルオキシメチルエステル。 本例示化合物においては上述したように立体異
性体が存在するが、それらの異性体のうちで好適
なものとしては、(5R,6S)配位あるいは(5R,
6R)配位を有する化合物並びに6位置換基が1
−ヒドロキシエチル基または1−tert−ブチルジ
メチルシリルオキシエチル基である場合にはその
配位がR配位である化合物をあげることができ
る。 本発明による新規化合物(1)は以下に示す方法に
よつて製造することができる。 上記式中、R1,R2,R3,R4およびAは前述し
たものと同意義を示し、R7は1−アシルオキシ
低級アルキル基、1−アルキルスルホニルオキシ
低級アルキル基、1−アリールスルホニルオキシ
低級アルキル基または1−トリアルキルシリルオ
キシ低級アルキル基を示し、R8はアミノ基の保
護基、好適にはベンジルオキシカルボニル、P−
ニトロベンジルオキシカルボニルのようなアラル
キルオキシカルボニル基を示し、R9はカルボキ
シル基の保護基を示し、ここでR7およびR9にお
ける各置換基は前述したR1およびR4における対
応する基に一致するものを含む。Xはアセトキ
シ、プロピオニルオキシ、ベンゾイルオキシのよ
うなアシルオキシ基、メタンスルホニル、エタン
スルホニルのようなアルキルスルホニル基または
ベンゼンスルホニル、P−トルエンスルホニルの
ようなアリールスルホニル基を示し、Yは塩素、
臭素、ヨウ素のようなハロゲン原子を示し、Z
はトリ−n−ブチルホスホニオのようなトリ低級
アルキルホスホニオ基若しくはトリフエニルホス
ホニオのようなアリールホスホニオなどの三置換
ホスホニオ基またはリチウム若しくはナトリウム
イオンを伴なつたジメチルホスホノ基のような陽
イオンを伴なつたジエステル化ホスホノ基を示
す。 第1工程は一般式(3)を有する化合物を製造する
工程で、一般式(2)を有する化合物を一般式 (式中、R2,R8およびAは前述したものと同
意義を示し、Mはナトリウム、カリウムなどのア
ルカリ金属原子を示す。) を有するトリチオ炭酸エステルアルカリ金属塩と
反応させる工程である。 本工程の反応を実施するにあたつて、原料とし
て用いられる前記一般式(8)を有するトリオチオ炭
酸エステルアルカリ金属塩は、常法に従つて一般
(式中、R2,R8およびAは前述したものと同
意義を示す。)を有するメルカプタン化合物、二
硫酸炭素および水酸化ナトリウム、水酸化カリウ
ムなどのアルカリ金属水酸化物若しくはナトリウ
ムメトキシド、ナトリウムエトキシド、カリウム
エトキシドなどのアルカリ金属アルコキシドを用
いて生成させることができる。 反応は前記一般式(2)を有する化合物を溶剤の存
在下で1乃至1.5モル量の上記のようにして得ら
れる前記一般式(8)を有する化合物と接触させるこ
とによつて達成される。反応に使用される溶剤と
しては本反応に関与しないものであれば特に限定
はないが、例えば水、メタノール、エタノール、
n−プロパノールのようなアルコール類、アセト
ン、メチルエチルケトンのようなケント類、ジメ
チルホルムアミド、ジメチルアセトアミドのよう
なジアルキル脂肪酸アミド類並びにこれらの有機
溶剤と水との混合溶剤が好適である。反応温度は
特に限定はないが、通常0乃至50℃で好適に行な
われる。反応に要する時間は主に原料化合物の種
類、反応温度などによつて異なるが、約10分間乃
至2時間である。 反応終了後、本工程の目的化合物(3)は常法に従
つて反応混合物から採取される。例えば反応混合
物に酔酸エチルのような水と混和しない有機溶剤
および水を加え、有機溶剤層を分取して水で洗浄
し、乾燥剤で乾燥した後、有機溶剤層より溶剤を
留去することによつて得ることができる。 このようにして得られた目的化合物は、必要な
らば常法例えば再結晶法、分取用薄層クロマトグ
ラフイー、カラムクロマトグラフイーなどによつ
てさらに精製することができる。 第2工程は一般式(4)を有する化合物を製造する
工程で、一般式(3)を有する化合物に一般式 OHC−COOR9 (10) (式中、R9は前述したものと同意義を示す。)
を有するグリオキシル酸エステル誘導体を付加反
応させる工程である。 本工程の反応を実施するにあたつて、反応は前
記一般式(3)を有する化合物を溶剤の存在下で前記
一般式(10)を有する化合物と接触させることによつ
て達成される。反応に使用される溶剤としては本
反応に関与しないものであれば特に限定はない
が、テトラヒドロフラン、ジオキサンのようなエ
ーテル類、ベンゼン、トルエンのような芳香族炭
化水素数、ジメチルホルムアミド、ジメチルアセ
トアミドのようなジアルキル脂肪酸アミド類並び
にこれらの有機溶剤の混合溶剤が好適である。本
付加反応は塩基の存在下で促進されることがある
が、その目的のために使用される塩基としては、
例えばトリエチルアミン、ジイソプロピルエチル
アミン、ピリジンのような有機塩基あるいはケイ
酸ナトリウムアルミニウム分子ふるいなどをあげ
ることができる。反応温度は特に限定はなく、通
常は室温乃至100℃付近であるが、上記の塩基を
使用する場合は室温付近で、使用しない場合には
溶剤の還流温度付近に加熱して行なうのが好適で
あり、必要ならば窒素のような不活性ガスのふん
囲気中で行なうことができる。反応に要する時間
は主に原料化合物の種類、反応温度などによつて
異なるが、約1乃至6時間である。 反応終了後、本工程の目的化合物(4)は常法に従
つて反応混合物から採取される。例えば反応混合
物を必要ならば不溶物を別して後、水洗、乾燥
し溶剤および過剰の試薬を留去することによつて
得ることができる。 このようにして得られた目的化合物は、必要な
らば常法、例えば再結晶法、分取用薄層クロマト
グラフイー、カラムクロマトグラフイーなどによ
つてさらに精製することができる。 第3工程は一般式(5)を有する化合物を製造する
工程で、一般式(4)を有する化合物をハロゲン化す
る工程である。 本工程の反応を実施するにあたつて、反応は前
記一般式(4)を有する化合物を溶剤の存在下でハロ
ゲン化剤と接触させることによつて達成される。
反応に使用されるハロゲン化剤としては特に限定
はないが、塩化チオニル、臭化チオニルのような
ハロゲン化チオニル、オキシ塩化リンのようなオ
キシハロゲン化リン、五塩化リン、五臭化リンの
ようなハロゲン化リンまたはオキサリルクロリド
のようなオキサリルハライドが好適なものとして
あげることができる。本反応は塩基の存在下で好
適に実施されるが、その目的のために使用される
塩基としてはトリエチルアミン、ジイソプロピル
エチルアミン、ピリジンまたはルチジンのような
有機塩基が好適である。反応に使用される溶剤と
しては本反応に関与しないものであれば特に限定
はないが、テトラヒドロフラン、ジオキサンのよ
うなエーテル類が好適である。反応温度は特に限
定はないが、副反応を抑えるために比較的低温が
望ましく、−15℃乃至室温付近で行なうのが好適
であり、必要ならば窒素のような不活性ガスのふ
ん囲気中で行なうことができる。反応に要する時
間は主に原料化合物の種類、反応温度などによつ
て異なるが、約10乃至30分間である。 反応終了後、本工程の目的化合物(5)は常法に従
つて反応混合物から採取される。例えば反応混合
物より溶剤および過剰の試薬を留去することによ
つて得ることができる。通常、得られた目的化合
物はさらに精製することなしに次の工程の反応に
使用される。 なお、このようにして得られる目的化合物(5)に
おいて、置換基Yで表わされるハロゲン原子を公
知の方法によつて他のハロゲン原子に変換するこ
とができる。例えば相当する塩素化合物をエーテ
ルのような有機溶剤中で臭化リチウム、ヨウ化カ
リウムのような無機の臭化物塩またはヨウ化物塩
で処理することによつて、臭素化合物またはヨウ
素化合物にすることができる。 第4工程は一般式(6)を有する化合物を製造する
工程で、一般式(5)を有する化合物をリン−イリド
化合物に変換する工程である。 本工程の反応を実施するにあたつて、反応は前
記一般式(5)を有する化合物を溶剤の存在下でホス
フイン化合物若しくは亜リン酸エステル化合物お
よび塩基と接触させることによつて達成される。
反応に使用されるホスフイン化合物としては、ト
リ−n−ブチルホスフインのようなトリ低級アル
キルホスフインまたはトリフエニルホスフインの
ようなトリアリールホスフインなどがあげられ、
亜リン酸エステル化合物としては、亜リン酸トリ
エチルエステルのような亜リン酸トリ低級アルキ
ルエステルまたは亜リン酸ジメチルエステルナト
リウム塩のような亜リン酸ジ低級アルキルエステ
ルアルカリ金属塩などを好適な試薬としてあげる
ことができる。使用される塩基としては、ホスフ
イン化合物を用いる場合にはトリエチルアミン、
ジイソプロピルエチルアミン、ピリジン、2,6
−ルチジンのような有機塩基が好適であり、亜リ
ン酸エステル化合物を用いる場合には水素化ナト
リウムのようなアルカリ金属水素化合物あるいは
n−ブチルリチウムのような低級アルキルリチウ
ム化合物が好適である。反応に使用される溶剤と
しては本反応に関与しないものであれば特に限定
はないが、例えばヘキサン、シクロヘキサンのよ
うな脂肪族炭化水素類、テトラヒドロフラン、ジ
オキサンのようなエーテル類、ベンゼン、トルエ
ンのような芳香族炭化水素類、ジメチルホルミア
ミド、ジメチルアセトアミドのようなジアルキル
脂肪酸アミド類が好適である。反応温度は特に限
定はないが、通常30乃至100℃で行なうのが好適
であり、必要ならば窒素のような不活性ガスのふ
ん囲気中で行なうことができる。反応に要する時
間は主に原料化合物の種類、反応温度などによつ
て異なるが、約1乃至50時間である。 反応終了後、本工程の目的化合物(6)は常法に従
つて反応混合物から採取される。例えば反応混合
物に酢酸エチルのような水と混和しない有機溶剤
および水を加え、有機溶剤層を分取して水で洗浄
し、乾燥剤で乾燥した後、有機溶剤層より溶剤を
留去することによつて得ることができる。 このようにして得られた目的化合物は、必要な
らば常法例えば再結晶法、分取用薄層クロマトグ
ラフイー、カラムクロマトグラフイーなどによつ
て精製することができる。 第5工程は一般式(7)を有するペネム−3−カル
ボン酸誘導体を製造する工程で、一般式(6)を有す
る化合物を加熱、閉環反応させる工程である。 本工程の反応を実施するにあたつて、反応は前
記一般式(6)を有する化合物を溶剤の存在下または
不存在下で加熱することによつて達成される。反
応に使用される溶剤としては特に限定はないが、
ジオキサンのようなエーテル類、ベンゼン、トル
エン、キシレンのような芳香族炭化水素類が好適
である。加熱反応温度には特に限定はないが、通
常は100乃至200℃で行なうのが好適であり、必要
ならば溶剤の存在下においては窒素、アルゴンの
ような不活性ガスのふん囲気中で、また溶剤の不
存在下においては減圧下の反応容器中で行なうこ
とができる。反応に要する時間は主に原料化合物
の種類、反応温度などによつて異なるが、約5乃
至12時間である。 反応終了後、本工程の目的化合物(7)は常法に従
つて反応混合物から採取される。例えば反応混合
物より減圧下で溶剤を留去して後、残留物に酢酸
エチル−ヘキサン混合溶剤を加えて析出物を別
し、液より溶剤を留去することによつて得るこ
とができる。 このようにして得られた化合物(7)は、必要なら
ば常法例えば再結晶法、分取用薄層クロマトグラ
フイー、カラムクロマトグラフイーなどによつて
さらに精製することができる。 第6工程は本発明の目的化合物である一般式(1)
を有するペネム−3−カルボン酸誘導体を製造す
る工程で、所望に応じて一般式(7)を有する化合物
をカルボキシル基の保護基R9の除去反応並びに
R7およびR8に含まれるそれぞれ対応する保護基
を除去して水酸基およびアミノ基若しくは低級ア
ルキルアミノ基を復元する反応、さらに得られた
化合物のR2−NH−基を式
[Formula] group (wherein R 5 and R 6 are the same or different and represent a hydrogen atom or a lower alkyl group such as methyl, ethyl, n-propyl, isopropyl, etc.), and A is preferably, for example, 1-methylethylene, 1-ethylethylene, 1-propylethylene, 1-isopropylethylene, 1-butylethylene, 2-methylethylene, 2-ethylethylene, 2-propylethylene, 2-isopropylethylene, 2-butylethylene, 1-methyltrimethylene, 1-ethyltrimethylene, 1-propyltrimethylene, 1-isopropyltrimethylene,
1-Butyltrimethylene, 2-methyltrimethylene, 2-ethyltrimethylene, 2-propyltrimethylene, 2-isopropyltrimethylene, 2-
Butyltrimethylene, 3-methyltrimethylene,
3-ethyltrimethylene, 3-propyltrimethylene, 3-isopropyltrimethylene, 3-butyltrimethylene, 1-methyltetramethylene, 1
-Ethyltetramethylene, 2-methyltetramethylene, 2-ethyltetramethylene, 3-methyltetramethylene, 3-ethyltetramethylene, 4-
Methyltetramethylene, 4-ethyltetramethylene, 1,1-dimethylethylene, 1,1-diethylethylene, 2,2-dimethylethylene, 2,2
-diethylethylene, 1,1-dimethyltrimethylene, 1,1-diethyltrimethylene, 2,2dimethyltrimethylene, 2,2-diethyltrimethylene, 3,3-dimethyltrimethylene, 3,3-
Diethyltrimethylene, 1,2-dimethyltrimethylene, 1,3-dimethyltrimethylene, 2,3
-dimethyltrimethylene, 1,1-dimethyltetramethylene, 1,1-diethyltetramethylene,
2,2-dimethyltetramethylene, 2,2-dimethyltetramethylene, 3,3-dimethyltetramethylene, 3,3-diethyltetramethylene, 4,
4-dimethyltetramethylene, 4,4-diethyltetramethylene, 1,2-dimethyltetramethylene, 1,2-diethyltetramethylene, 1,3-
Dimethyltetramethylene, 1,3-diethyltetramethylene, 2,3-dimethyltetramethylene,
A branched lower alkylene group such as 1,4-dimethyltetramethylene, 2,4-dimethyltetramethylene, 3,4-dimethyltetramethylene, 1,4-diethyltetramethylene, and R 4 is preferably is a hydrogen atom; for example, a linear or branched lower alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl; for example, 2-iodoethyl,
Halogeno lower alkyl groups such as 2,2-dibromoethyl, 2,2,2-trichloroethyl; e.g. methoxymethyl, ethoxymethyl, n-propoxymethyl, isopropoxymethyl, n-butoxymethyl, isobutoxymethyl Lower alkoxymethyl groups; for example, lower aliphatic acyloxymethyl groups such as acetoxymethyl, propionyloxymethyl, n-butyryloxymethyl, isobutyryloxymethyl, pivaloyloxyethyl; for example, 1-methoxycarbonyloxyethyl, 1 -ethoxycarbonyloxyethyl, 1-
n-propoxycarbonyloxyethyl, 1-isopropoxycarbonyloxyethyl, 1-n-
1-lower alkoxycarbonyloxyethyl groups such as butoxycarbonyloxyethyl, 1-isobutoxycarbonyloxyethyl; aralkyl groups such as benzyl, P-methoxybenzyl, 0-nitrobenzyl, P-nitrobenzyl;
It is a benzhydryl group or a phthalidyl group. Furthermore, as a particularly preferred compound in the general formula (1), R 1 is a 1-hydroxyethyl group, R 2 is a hydrogen atom, and R 3 is a hydrogen atom, a formimidoyl group, or an acetimidoyl group. and A is 1-methylethylene, 2-methylethylene, 1-ethylethylene, 2-ethylethylene,
1,1-dimethylethylene, 2,2-dimethylethylene, 1,2-dimethylethylene, 1-methyltrimethylene, 2-methyltrimethylene, 3-methyltrimethylene, 1-ethyltrimethylene, 2
-Ethyltrimethylene, 3-ethyltrimethylene, 1,1-dimethyltrimethylene, 2,2-dimethyltrimethylene, 3,3-dimethyltrimethylene, 1,3-dimethyltrimethylene, 2,3-
Dimethyltrimethylene, 1-methyltetramethylene, 2-methyltetramethylene, 3-methyltetramethylene, 4-methyltetramethylene, 1-ethyltetramethylene, 2-ethyltetramethylene, 3-ethyltetramethylene, 4-ethyltetra methylene, 1,1-dimethyltetramethylene,
1,2 dimethyltetramethylene, 1,3-dimethyltetramethylene, 2,3-dimethyltetramethylene, 1,4-dimethyltetramethylene, 2,4
- An ethylene group, trimethylene group or tetramethylene group having 1 or 2 methyl or ethyl branches in the carbon chain, such as dimethyltetramethylene, 3,4-dimethyltetramethylene, R 4
is a hydrogen atom or a pivaloyloxymethyl group. In addition, in the compound having the above general formula (1), there are optical isomers and stereoisomers based on asymmetric carbon atoms, and all of these isomers are represented by a single formula, but this However, the scope of the present invention is not limited. However, it is preferable to select a compound in which the carbon atom at position 5 has the same coordination as that of penicillins, that is, the R coordination. Furthermore, in the general formula (1), the carboxylic acid compound in which R 4 is a hydrogen atom can be made into a pharmacologically acceptable salt form, if necessary. Such salts include lithium, sodium, potassium,
Examples include salts of inorganic metals such as calcium and magnesium, and ammonium salts such as ammonium, cyclohexylammonium, diisopropylammonium, and triethylammonium, but sodium salts and potassium salts are preferred. The compound having the general formula (1) of the present invention belongs to penem derivatives in which a double bond exists between the 2- and 3-positions of the penicillin ring, and is a novel compound having an amino-substituted alkylmercapto group at the 2-position. They are a group of compounds that exhibit excellent antibacterial activity and are useful as pharmaceuticals, or are important synthetic intermediates for compounds that exhibit these activities. Examples of the compound having the general formula (1) obtained by the present invention include the compounds described below. (1) 2-(2-amino-1-methylethylthio)-
6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium salt or potassium salt. (2) 2-[2-(P-nitrobenzyl)oxycarbonylamino-1-methylethylthio]-6-
(1-tert-butyldimethylsilyloxyethyl)penem-3-carboxylic acid P-nitrobenzyl ester. (3) 2-(2-aminopropylthio)-6-(1-
(hydroxyethyl) penem-3-carboxylic acid and its sodium or potassium salt. (4) 2-[2-(P-nitrobenzyl)oxycarbonylaminopropylthio]-6-(1-tert-
butyldimethylsilyloxyethyl) penem-
3-Carboxylic acid P-nitrobenzyl ester. (5) 2-(2-amino-1-ethylethylthio)-
6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium salt or potassium salt. (6) 2-(2-aminobutylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium or potassium salt. (7) 2-(2-amino-1,1-dimethylethylthio)-6-(1-hydroxyethyl)penem-
3-carboxylic acid and its sodium or potassium salt. (8) 2-(2-amino-2-methylpropylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acids and their sodium or potassium salts. (9) 2-(2-amino-1,2-dimethylethylthio)-6-(1-hydroxyethyl)penem-
3-carboxylic acid and its sodium or potassium salt. (10) 2-(3-amino-1-methylpropylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acids and their sodium or potassium salts. (11) 2-(3-amino-2-methylpropylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acids and their sodium or potassium salts. (12) 2-(3-aminobutylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium or potassium salt. (13) 2-(3-amino-1,1-dimethylpropylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium salt or potassium salt. (14) 2-(3-amino-2,2-dimethylpropylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium salt or potassium salt. (15) 2-(3-amino-3-methylbutylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acids and their sodium or potassium salts. (16) 2-(3-amino-1-methylbutylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acids and their sodium or potassium salts. (17) 2-(4-amino-1-methylbutylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acids and their sodium or potassium salts. (18) 2-(4-amino-2-methylbutylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acids and their sodium or potassium salts. (19) 2-(4-amino-1-methylpentylthio)-6-(1-hydroxyethyl)penem-3
- Carboxylic acids and their sodium or potassium salts. (20) 2-(2-formimidoylamino-1-
Methylethylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium or potassium salt. (21) 2-(2-acetimidoylamino-1-
Methylethylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium or potassium salt. (22) 2-(2-formimidoylaminopropylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium or potassium salt. (23) 2-(2-acetimidoylaminopropylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium salt or potassium salt. (24) 2-(2-formimidoylamino-1-
Ethylethylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium or potassium salt. (25) 2-(3-formimidoylamino-1-
Methylpropylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium or potassium salt. (26) 2-(4-formimidoylamino-1-
Methylbutylthio)-6-(1-hydroxyethyl)penem-3-carboxylic acid and its sodium or potassium salt. (27) 2-(2-amino-1-methylethylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acid pivaloyloxymethyl ester. (28) 2-(2-aminopropylthio)-6-(1
-hydroxyethyl)penem-3-carboxylic acid pivaloyloxymethyl ester. (29) 2-(3-amino-1-methylpropylthio)-6-(1-hydroxyethyl)penem-3
-Carboxylic acid pivaloyloxymethyl ester. (30) 2-(4-amino-1-methylbutylthio)
-6-(1-hydroxyethyl)penem-3-
Carboxylic acid pivaloyloxymethyl ester. As mentioned above, this exemplified compound has stereoisomers, and among these isomers, preferred are the (5R, 6S) coordination or the (5R, 6S) coordination.
6R) Compounds with coordination and the substituent at the 6-position is 1
-Hydroxyethyl group or 1-tert-butyldimethylsilyloxyethyl group, examples include compounds whose coordination is R coordination. The novel compound (1) according to the present invention can be produced by the method shown below. In the above formula, R 1 , R 2 , R 3 , R 4 and A have the same meanings as described above, and R 7 is a 1-acyloxy lower alkyl group, 1-alkylsulfonyloxy lower alkyl group, 1-arylsulfonyl It represents an oxy lower alkyl group or a 1-trialkylsilyloxy lower alkyl group, and R 8 is a protecting group for an amino group, preferably benzyloxycarbonyl, P-
Denotes an aralkyloxycarbonyl group such as nitrobenzyloxycarbonyl, where R 9 represents a protecting group for the carboxyl group, where each substituent in R 7 and R 9 corresponds to the corresponding group in R 1 and R 4 described above. Including those who do. X represents an acyloxy group such as acetoxy, propionyloxy, benzoyloxy, an alkylsulfonyl group such as methanesulfonyl or ethanesulfonyl, or an arylsulfonyl group such as benzenesulfonyl or P-toluenesulfonyl; Y represents chlorine;
Indicates a halogen atom such as bromine, iodine, Z
is a tri-lower alkylphosphonio group such as tri-n-butylphosphonio or a trisubstituted phosphonio group such as an arylphosphonio group such as triphenylphosphonio, or a cation such as a dimethylphosphonio group with a lithium or sodium ion. shows a diesterified phosphono group with The first step is the step of producing a compound having the general formula (3), in which the compound having the general formula (2) is converted into a compound having the general formula (3). (In the formula, R 2 , R 8 and A have the same meaning as described above, and M represents an alkali metal atom such as sodium or potassium.) This is a step of reacting with a trithiocarbonate alkali metal salt having the following formula. In carrying out the reaction of this step, the triothiocarbonate alkali metal salt having the general formula (8) used as a raw material is prepared using the general formula (8) according to a conventional method. (wherein R 2 , R 8 and A have the same meanings as defined above), carbon disulfate and alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, or sodium methoxide; It can be produced using alkali metal alkoxides such as sodium ethoxide and potassium ethoxide. The reaction is achieved by contacting the compound having the general formula (2) with 1 to 1.5 molar amount of the compound having the general formula (8) obtained as described above in the presence of a solvent. The solvent used in the reaction is not particularly limited as long as it does not participate in this reaction, but examples include water, methanol, ethanol,
Alcohols such as n-propanol, acetone, Kents such as methyl ethyl ketone, dialkyl fatty acid amides such as dimethylformamide and dimethylacetamide, and mixed solvents of these organic solvents and water are suitable. Although the reaction temperature is not particularly limited, it is usually suitably carried out at 0 to 50°C. The time required for the reaction varies mainly depending on the type of raw material compound, reaction temperature, etc., but is approximately 10 minutes to 2 hours. After the reaction is completed, the target compound (3) of this step is collected from the reaction mixture according to a conventional method. For example, a water-immiscible organic solvent such as ethyl acetate and water are added to the reaction mixture, the organic solvent layer is separated, washed with water, dried with a desiccant, and then the solvent is distilled off from the organic solvent layer. It can be obtained by The target compound thus obtained can be further purified, if necessary, by conventional methods such as recrystallization, preparative thin layer chromatography, column chromatography, etc. The second step is a step of producing a compound having the general formula (4), in which the compound having the general formula (3) is added to the compound having the general formula OHC-COOR 9 (10) (wherein R 9 has the same meaning as above). show.)
This is a step in which a glyoxylic acid ester derivative having the following is subjected to an addition reaction. In carrying out the reaction of this step, the reaction is achieved by bringing the compound having the general formula (3) into contact with the compound having the general formula (10) in the presence of a solvent. The solvent used in the reaction is not particularly limited as long as it does not participate in this reaction, but examples include ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as benzene and toluene, and dimethylformamide and dimethylacetamide. Dialkyl fatty acid amides such as these and mixed solvents of these organic solvents are suitable. This addition reaction may be promoted in the presence of a base, but the bases used for this purpose include:
Examples include organic bases such as triethylamine, diisopropylethylamine, pyridine, and sodium aluminum silicate molecular sieves. The reaction temperature is not particularly limited and is usually between room temperature and around 100°C, but if the above base is used, it is preferable to heat it around room temperature, and when it is not used, it is preferably heated around the reflux temperature of the solvent. If necessary, it can be carried out under an atmosphere of an inert gas such as nitrogen. The time required for the reaction varies mainly depending on the type of raw material compound, reaction temperature, etc., but is approximately 1 to 6 hours. After the reaction is completed, the target compound (4) of this step is collected from the reaction mixture according to a conventional method. For example, it can be obtained by removing insoluble matter from the reaction mixture if necessary, washing with water, drying, and distilling off the solvent and excess reagents. The target compound thus obtained can be further purified, if necessary, by conventional methods such as recrystallization, preparative thin layer chromatography, column chromatography, etc. The third step is a step of producing a compound having general formula (5), and is a step of halogenating a compound having general formula (4). In carrying out the reaction of this step, the reaction is achieved by bringing the compound having the general formula (4) into contact with a halogenating agent in the presence of a solvent.
There are no particular limitations on the halogenating agent used in the reaction, but thionyl halides such as thionyl chloride and thionyl bromide, phosphorus oxyhalides such as phosphorus oxychloride, phosphorus pentachloride, and phosphorus pentabromide may be used. Preferred examples include phosphorus halides or oxalyl halides such as oxalyl chloride. This reaction is preferably carried out in the presence of a base, and the base used for this purpose is preferably an organic base such as triethylamine, diisopropylethylamine, pyridine or lutidine. The solvent used in the reaction is not particularly limited as long as it does not participate in this reaction, but ethers such as tetrahydrofuran and dioxane are suitable. The reaction temperature is not particularly limited, but a relatively low temperature is desirable in order to suppress side reactions, preferably around -15°C or room temperature, and if necessary, in an atmosphere of an inert gas such as nitrogen. can be done. The time required for the reaction varies mainly depending on the type of raw material compound, reaction temperature, etc., but is approximately 10 to 30 minutes. After the reaction is completed, the target compound (5) of this step is collected from the reaction mixture according to a conventional method. For example, it can be obtained by distilling off the solvent and excess reagent from the reaction mixture. Usually, the obtained target compound is used in the next reaction step without further purification. In addition, in the target compound (5) thus obtained, the halogen atom represented by the substituent Y can be converted to another halogen atom by a known method. For example, the corresponding chlorine compound can be converted into a bromine or iodine compound by treatment with an inorganic bromide or iodide salt such as lithium bromide or potassium iodide in an organic solvent such as ether. . The fourth step is a step of producing a compound having general formula (6), and a step of converting a compound having general formula (5) into a phosphorus-ylide compound. In carrying out the reaction of this step, the reaction is achieved by bringing the compound having the general formula (5) into contact with a phosphine compound or phosphite compound and a base in the presence of a solvent.
Examples of the phosphine compound used in the reaction include tri-lower alkylphosphine such as tri-n-butylphosphine or triarylphosphine such as triphenylphosphine;
Suitable reagents for the phosphite compound include phosphite tri-lower alkyl esters such as phosphite triethyl ester or phosphite di-lower alkyl ester alkali metal salts such as phosphite dimethyl ester sodium salt. I can give it to you. The base used is triethylamine when using a phosphine compound,
Diisopropylethylamine, pyridine, 2,6
An organic base such as -lutidine is preferred, and when a phosphite compound is used, an alkali metal hydride such as sodium hydride or a lower alkyllithium compound such as n-butyllithium is preferred. The solvent used in the reaction is not particularly limited as long as it does not participate in this reaction, but examples include aliphatic hydrocarbons such as hexane and cyclohexane, ethers such as tetrahydrofuran and dioxane, benzene, and toluene. aromatic hydrocarbons, and dialkyl fatty acid amides such as dimethylformamide and dimethylacetamide. The reaction temperature is not particularly limited, but it is usually suitably carried out at 30 to 100°C, and if necessary, it can be carried out in an atmosphere of an inert gas such as nitrogen. The time required for the reaction varies mainly depending on the type of raw material compound, reaction temperature, etc., but is approximately 1 to 50 hours. After the reaction is completed, the target compound (6) of this step is collected from the reaction mixture according to a conventional method. For example, a water-immiscible organic solvent such as ethyl acetate and water are added to the reaction mixture, the organic solvent layer is separated, washed with water, dried with a desiccant, and then the solvent is distilled off from the organic solvent layer. It can be obtained by The target compound thus obtained can be purified, if necessary, by conventional methods such as recrystallization, preparative thin layer chromatography, column chromatography, etc. The fifth step is a step of producing a penem-3-carboxylic acid derivative having general formula (7), and is a step of heating a compound having general formula (6) to cause a ring-closing reaction. In carrying out the reaction of this step, the reaction is achieved by heating the compound having the general formula (6) in the presence or absence of a solvent. There are no particular limitations on the solvent used in the reaction, but
Ethers such as dioxane, aromatic hydrocarbons such as benzene, toluene, xylene are preferred. There are no particular limitations on the heating reaction temperature, but it is usually preferable to carry out the reaction at 100 to 200°C, and if necessary, in the presence of a solvent, in an atmosphere of an inert gas such as nitrogen or argon, or In the absence of a solvent, the reaction can be carried out in a reaction vessel under reduced pressure. The time required for the reaction varies mainly depending on the type of raw material compound, reaction temperature, etc., but is approximately 5 to 12 hours. After the reaction is completed, the target compound (7) of this step is collected from the reaction mixture according to a conventional method. For example, it can be obtained by distilling off the solvent from the reaction mixture under reduced pressure, adding a mixed solvent of ethyl acetate and hexane to the residue to separate the precipitate, and then distilling off the solvent from the liquid. Compound (7) thus obtained can be further purified, if necessary, by conventional methods such as recrystallization, preparative thin layer chromatography, column chromatography, etc. The sixth step is the compound of general formula (1) which is the object compound of the present invention.
In the step of producing a penem-3-carboxylic acid derivative having the formula (7), the compound having the general formula (7) is optionally subjected to a reaction for removing the protecting group R9 of the carboxyl group and
A reaction in which the corresponding protecting groups contained in R 7 and R 8 are removed to restore the hydroxyl group and amino group or lower alkylamino group, and the R 2 -NH- group of the obtained compound is converted to the formula

【式】基 (式中、R2,R5およびR6は前述したものと同
意義を示す。) に変換する反応を適宜組合せて実施する工程から
なつている。 すなわち、前記一般式(7)を有する化合物は常法
に従つてカルボキシル基の保護基R9の除去処理
を行なつてカルボン酸誘導体に変換することがで
きる。保護基の除去はその種類によつて異なる
が、一般にこの分野の技術で知られている方法に
よつて除去される。好適には反応は前記一般式(7)
を有する化合物のうちの置換基R9がハロゲノア
ルキル基、アラルキル基、ベンズヒドリル基など
の還元処理によつて除去し得る保護基である化合
物を還元剤と接触させることによつて達成され
る。本反応に使用される還元剤としてはカルボキ
シル基の保護基が例えば2,2−ジブロモエチ
ル,2,2,2−トリクロロエチルのようなハロ
ゲノアルキル基である場合には亜鉛および酢酸が
好適であり、保護基が例えばベンジル、P−ニト
ロベンジルのようなアラルキル基またはベンズヒ
ドリル基である場合には水素およびパラジウム−
炭素のような接触還元触媒または硫化ナトリウム
若しくは硫化カリウムのようなアルカリ金属硫化
物が好適である。反応は溶剤の存在下で行なわ
れ、使用される溶剤としては本反応に関与しない
ものであれば特に限定はないが、メタノール、エ
タノールのようなアルコール類、テトラヒドロフ
ラン、ジオキサンのようなエーテル類、酢酸のよ
うな脂肪酸およびこれらの有機溶剤と水との混合
溶剤が好適である。反応温度は通常0℃乃至室温
付近であり、反応時間は原料化合物および還元剤
の種類によつて異なるが、通常は5分間乃至12時
間である。 反応終了後、カルボキシル基の保護基の除去反
応の目的化合物は常法に従つて反応混合物から採
取される。例えば反応混合物より析出した不溶物
を去して後、有機溶剤層を水洗、乾燥し溶剤を
留去することによつて得ることができる。 このようにして得られた目的化合物は、必要な
らば常法例えば再結晶法、分取用薄層クロマトグ
ラフイー、カラムクロマトグラフイーなどによつ
て精製することができる。 また、化合物(7)において置換基R7がアシルオ
キシ低級アルキル基、トリアルキルシリルオキシ
低級アルキル基であり、置換基R8がアミノ基若
しくは低級アルキルアミノ基の保護基である時に
は所望に応じて、以下に記載するように常法に従
つてそれぞれの保護基を除去して対応する水酸基
またはアミノ基若しくは低級アルキルアミノ基で
ある化合物に変換することができ、さらにこのよ
うにして得られた化合物を上述したカルボキシル
基の保護基R9の除去反応に付することもできる。 すなわち、前記一般式(1)を有する化合物のう
ち、置換基R1がヒドロキシ低級アルキル基を表
わす化合物を製造する反応は、一般式(7)を有する
化合物のうちのR7がアシルオキシ低級アルキル
基あるいはトリアルキルシリルオキシ低級アルキ
ル基を表わす化合物より水酸基のアシルあるいは
トリアルキルシリル保護基を除去することによつ
て達成される。R7が1−アセトキシエチルのよ
うな低級脂肪族アシルオキシ低級アルキル基であ
る場合には、反応は相当する化合物(7)を水性溶剤
の存在下で塩基で処理することにより実施するこ
とができる。使用される溶剤としては通常の加水
分解反応に使用される溶剤であれば特に限定はな
いが、水あるいは水とメタノール、エタノール、
n−プロパノールのようなアルコール類若しくは
テトラヒドロフラン、ジオキサンのようなエーテ
ル類などの有機溶剤との混合溶剤が好適である。
また、使用される塩基としては化合物の他の部
分、特にβ−ラクタム環に影響を与えないもので
あれば特に限定はないが、好適には炭酸ナトリウ
ム、炭酸カリウムのようなアルカリ金属炭酸塩を
用いて行なわれる。反応温度は特に限定はない
が、副反応を抑制するために0℃乃至室温付近が
好適である。反応に要する時間は原料化合物の種
類および反応温度などによつて異なるが、通常は
1乃至6時間である。 さらに、上記の置換基R7が1−ベンジルオキ
シカルボニルオキシエチルあるいは1−(P−ニ
トロベンジルオキシカルボニルオキシ)エチルの
ようなアラルキルオキシカルボニルオキシ低級ア
ルキル基である場合には、反応は相当する化合物
(7)を還元剤と接触させることによつて実施するこ
とができる。本反応に使用される還元剤の種類お
よび反応条件は前述したカルボキシル基の保護基
R9であるアラルキル基を除去する場合と同様で
あり、従つてカルボキシル基の保護基R9も同時
に除去することができる。 また、上記の置換基R7が1−tert−ブチルジメ
チルシリルオキシエチルのようなトリ低級アルキ
ルシリルオキシ低級アルキル基である場合には、
反応は相当する化合物(7)をフツ化テトラブチルア
ンモニウムで処理することにより実施することが
できる。使用される溶剤としては特に限定はない
が、テトラヒドロフラン、ジオキサンのようなエ
ーテル類が好適である。反応は室温付近において
10乃至18時間処理することによつて好適に行なわ
れる。 前記一般式(1)を有する化合物のうち、置換基
R3が水素原子を表わすアミノ若しくは低級アル
キルアミノ化合物を製造する反応は、一般式(7)を
有する化合物のうちのR8がアミノ基の保護基で
あるベンジルオキシカルボニルあるいはP−ニト
ロベンジルオキシカルボニルのようなアラルキル
オキシカルボニル基を表わす化合物よりこれらの
保護基を還元反応によつて除去することによつて
達成される。本還元反応に使用される還元剤の種
類および反応条件は前述したカルボキシル基の保
護基R9のアラルキル基を除去する場合と同様で
あり、従つてこのような場合には両保護基を同時
に除去することができる。 前記一般式(1)を有する化合物のうち、置換基
R3
It consists of a process of carrying out an appropriate combination of reactions for converting into the group [Formula] (wherein R 2 , R 5 and R 6 have the same meanings as described above). That is, the compound having the general formula (7) can be converted into a carboxylic acid derivative by removing the protecting group R 9 of the carboxyl group according to a conventional method. Removal of the protecting group varies depending on the type of protecting group, but is generally removed by methods known in the art. Preferably, the reaction is performed according to the general formula (7)
This can be achieved by contacting a compound having a reducing agent in which the substituent R 9 is a protecting group that can be removed by reduction treatment, such as a halogenoalkyl group, an aralkyl group, or a benzhydryl group. As the reducing agent used in this reaction, zinc and acetic acid are preferred when the protecting group for the carboxyl group is a halogenoalkyl group such as 2,2-dibromoethyl or 2,2,2-trichloroethyl. , hydrogen and palladium when the protecting group is an aralkyl group such as benzyl, p-nitrobenzyl, or a benzhydryl group.
Catalytic reduction catalysts such as carbon or alkali metal sulfides such as sodium or potassium sulfide are preferred. The reaction is carried out in the presence of a solvent, and the solvent used is not particularly limited as long as it does not participate in this reaction, but alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and dioxane, and acetic acid are used. Fatty acids such as and mixed solvents of these organic solvents and water are suitable. The reaction temperature is usually around 0°C to room temperature, and the reaction time varies depending on the raw material compound and the type of reducing agent, but is usually 5 minutes to 12 hours. After the reaction is completed, the target compound of the carboxyl protecting group removal reaction is collected from the reaction mixture according to a conventional method. For example, it can be obtained by removing insoluble matter precipitated from the reaction mixture, washing the organic solvent layer with water, drying, and distilling off the solvent. The target compound thus obtained can be purified, if necessary, by conventional methods such as recrystallization, preparative thin layer chromatography, column chromatography, etc. Further, in compound (7), when the substituent R 7 is an acyloxy lower alkyl group or a trialkylsilyloxy lower alkyl group, and the substituent R 8 is a protecting group for an amino group or a lower alkylamino group, as desired, As described below, each protecting group can be removed according to a conventional method to convert the compound to the corresponding hydroxyl group, amino group, or lower alkylamino group, and the compound thus obtained can be It can also be subjected to the reaction for removing the carboxyl group protecting group R 9 described above. That is, the reaction for producing a compound in which the substituent R 1 represents a hydroxy lower alkyl group among the compounds having the general formula (1) is the reaction for producing a compound in which R 7 of the compound having the general formula (7) represents an acyloxy lower alkyl group. Alternatively, it can be achieved by removing the acyl or trialkylsilyl protecting group of the hydroxyl group from a compound representing a trialkylsilyloxy lower alkyl group. When R 7 is a lower aliphatic acyloxy lower alkyl group such as 1-acetoxyethyl, the reaction can be carried out by treating the corresponding compound (7) with a base in the presence of an aqueous solvent. The solvent used is not particularly limited as long as it is a solvent used in normal hydrolysis reactions, but water, water and methanol, ethanol,
A mixed solvent with an organic solvent such as an alcohol such as n-propanol or an ether such as tetrahydrofuran or dioxane is suitable.
The base used is not particularly limited as long as it does not affect other parts of the compound, especially the β-lactam ring, but alkali metal carbonates such as sodium carbonate and potassium carbonate are preferably used. It is done using The reaction temperature is not particularly limited, but a temperature of about 0° C. to room temperature is suitable in order to suppress side reactions. The time required for the reaction varies depending on the type of raw material compound, reaction temperature, etc., but is usually 1 to 6 hours. Furthermore, when the above substituent R 7 is an aralkyloxycarbonyloxy lower alkyl group such as 1-benzyloxycarbonyloxyethyl or 1-(P-nitrobenzyloxycarbonyloxy)ethyl, the reaction is performed with the corresponding compound.
(7) can be carried out by contacting with a reducing agent. The type of reducing agent and reaction conditions used in this reaction are as follows:
This is similar to the case of removing the aralkyl group, which is R 9 , and therefore, the carboxyl group protecting group R 9 can also be removed at the same time. Furthermore, when the above substituent R 7 is a tri-lower alkylsilyloxy lower alkyl group such as 1-tert-butyldimethylsilyloxyethyl,
The reaction can be carried out by treating the corresponding compound (7) with tetrabutylammonium fluoride. The solvent used is not particularly limited, but ethers such as tetrahydrofuran and dioxane are suitable. The reaction takes place around room temperature.
This is preferably carried out by treating for 10 to 18 hours. Among the compounds having the general formula (1), substituents
The reaction for producing an amino or lower alkylamino compound in which R 3 represents a hydrogen atom is performed using benzyloxycarbonyl or P-nitrobenzyloxycarbonyl, in which R 8 is a protecting group for the amino group, in a compound having the general formula (7). This is achieved by removing these protecting groups from a compound representing an aralkyloxycarbonyl group such as by a reduction reaction. The type of reducing agent and reaction conditions used in this reduction reaction are the same as those for removing the aralkyl group of the carboxyl group protecting group R 9 described above, so in such a case, both protecting groups should be removed at the same time. can do. Among the compounds having the general formula (1), substituents
R 3 is

【式】基 (式中、R5およびR6は前述したものと同意義
を示す。) を表わす化合物を製造する反応は前述した反応に
よつて得られる一般式(1)を有する化合物のうち
R3が水素原子であるアミノ若しくは低級アルキ
ルアミノ化合物を一般式 (式中、R5およびR6は前述したものと同意義
を示し、R10はメチル、エチル、n−プロピル、
イソプロピルのようなアルキル基を示す。)を有
するイミドエステルと接触させることによつて達
成される。反応に使用される溶剤としては特に限
定はないが、前記一般式(1)を有する化合物のう
ち、R3およびR5が水素原子である化合物を原料
とする場合はPH8付近に保たれたリン酸緩衝液
の使用が好適である。反応温度は0℃乃至室温付
近の比較的低温が望ましく、反応時間は通常10分
間乃至2時間である。 以上の各種の反応を実施した後、各反応の目的
化合物は常法に従つて反応混合物から採取され、
必要ならば常法例えば再結晶法、分取用薄層クロ
マトグラフイー、カラムクロマトグラフイーなど
によつてさらに精製することができる。 本発明の製造法の出発原料である前記一般式(2)
を有する4−アシルオキシ若しくは4−スルホニ
ルアゼチジン−2−オン化合物は、以下に例示す
る方法によつて合成することができる。 上記式中、R11はメチル、エチル、tert−ブチ
ルのようなアルキル基、ベンジルのようなアラル
キルなどのカルボキシル基の保護基を示し、R12
はP−ニトロベンジルオキシカルボニルあるいは
tert−ブチルジメチルシリルのような水酸基の保
護基を示す。 上記反応経路によつて公知化合物である6α−
ブロモペニシラン酸エステル(12)(J.P.Clayton;
J.Chem.Soc.(C),1969年、2123頁)をトリメチル
オキソニウム テトラフルオルボレート、次いで
塩基性アルミナのような塩基で処理すると、開環
した化合物(13)に導くことができる。化合物(13)
はメチルマグネシウムブロミドのようなグリニヤ
ル試薬若しくはジメチル銅−リチウムのようなジ
アルキル銅リチウムで処理するか、あるいはジエ
チルアルミニウムクロリドのようなジアルキルア
ルミニウムハライドの存在下で亜鉛で処理するこ
とによつて得られるエノレートアニオンにアセト
アルデヒドを反応させると、化合物(14)が得られ
る。化合物(14)の1′位の水酸基を保護して化合物
(15)となし、これを酢酸中酢酸第二水銀で処理
し、さらに過マンガン酸カリウムで酸化すると、
原料化合物2aを得ることができるし、また化合
物(15)を過マンガン酸カリウムの存在下で過沃素
酸カリウムで酸化すると、4−メチルスルホニル
アゼチジン−2−オン化合物2bを得ることがで
きる。 化合物(12)より出発する上記の反応において
は、アゼチジノン環の3位側鎖のヒドロキシエチ
ル基の1′位の配位は主成分としてS配位である
が、このような化合物(14)をトリフエニルホスフ
インおよびアゾジカルボン酸ジエチルエステルの
存在下で有機酸で処理すると、1′位の反転した、
1′R配位のアシルオキシ体を得ることができ、こ
れを常法に従つてメタノール−ナトリウムメトキ
シドのようなアルコール−アルカリ金属アルコキ
シドで処理すると、3位側鎖の1′R配位の水酸基
を有する化合物(14)に転換することができ、以下
の反応に使用される。さらに本反応において、化
合物(13)に対してアセトアルデヒド以外の脂肪族
アルデヒドを反応させることによつて、1−ヒド
ロキシエチル基以外の1−ヒドロキシエチル基を
アゼチジノン環の3位に導入した化合物を得るこ
とができる。 本発明の前記一般式(1)を有するペネム−3−カ
ルボン酸誘導体は、すぐれた抗菌作用を表わすも
のであるかあるいはそれらの抗菌作用を表わす化
合物の重要合成中間体である。そのうちの抗菌作
用を表わす化合物についてその活性を寒天平板希
釈法により測定したところ、例えば黄色ブドウ状
球菌、枯草菌などのグラム陽性菌及び大陽菌、赤
痢菌、肺炎桿菌、変形菌、緑膿菌などのグラム陰
性菌を包含する広範囲な病原菌に対して活性を示
した。 従つてこのような化合物はこれらの病原菌によ
る細菌感染症を治療する抗菌剤として有用であ
る。その目的のための投与形態としては、例えば
錠剤、カプセル剤、顆粒剤、散剤、シロツプ剤な
どによる経口投与あるいは静脈内注射、筋肉内注
射などによる非経口投与があげられる。投与量は
年令、体重、症状など並びに投与形態および投与
回数によつて異らなるが、通常は成人に対して1
日約250乃至3000mgを1回または数回に分けて投
与する。 次に実施例および参考例をあげて本発明をさら
に具体的に説明する。 参考例 7 (3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−4−〔〔〔1−メチ
ル−2−(P−ニトロベンジルオキシカルボニ
ルアミノ)エチル〕チオ〕チオカルボニル〕チ
オアゼチジン−2−オン 金属ナトリウム12.5mg(0.57mmol)をメタノ
ール4mlに溶かした溶液に−10℃で1−メチル−
2−(P−ニトロベンジルオキシカルボニルアミ
ノ)エタンチオール168mg(0.59mol)を加え、
5分間撹拌したのち同温度で二硫化炭素45mg
(0.59mmol)を加え、5分間撹拌したのち同温度
で二硫化炭素45mg(0.59mmol)を加え10分撹拌
する。ついで同温度で(3R.4R)−4−アセトキ
シ−3−〔(R)−1−tert−ブチルジメチルシリ
ルオキシエチル〕アゼチジン−2−オン154mg
(0.54mmol)を加え、約1時間でゆつくりと浴温
を0℃まで上げる。反応終了後、酢酸1滴を加え
溶液を微酸性とし、酢酸エチルで希釈し飽和食塩
水で洗浄して乾燥後溶剤を留去し残留物をシリカ
ゲル10gを用いるカラムクロマトグラフイーに付
し、10〜15%酢酸エチル−ベンゼンの混和溶剤で
溶出し、目的物237mg(収率77%)を黄色油状物
として得た。 元素分析値 C23H35N3O6S3Siとして 計算値:C,48.14;H,6.15;N,7.32 ;S,16.76 実測値:C,48.35;H,6.11;N,7.14 ;S,16.59 IRスペクトルνCHCl3 naxcm−1:3460,3420,1780,
1735 nmrスペクトル(CDCl3)δppm:0.08(6H,
S),0.85(9H,S),1.15(3H,d,J=6
Hz),1.34(3H,d,J=7Hz),3.13(1H,t,
J=3Hz),3.43(2H,t,J=7Hz),〜4.2
(2H,m),5.16(2H,S),5.38(1H,br,t,
J=7Hz),5.62(1H,d,J=3Hz),6.9
(1H,br.),7.50(2H,d),8,23(2H,d) 参考例 8 (3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−1−〔−ヒドロキ
シ(P−ニトロベンジルオキシカルボニル)メ
チル〕−4−〔〔〔1−メチル−2−(P−ニトロ
ベンジルオキシカルボニルアミノ)エチル〕チ
オ〕チオカルボニル〕チオアゼチジン−2−オ
(3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−4−〔〔〔1−メチル
−2−(P−ニトロベンジルオキシカルボニルア
ミノ)エチル〕チオ〕チオカルボニル〕チオアゼ
チジン−2−オン230mg(0.40mmol),P−ニト
ロベンジルグリオキシレート水和物182mg
(0.80mmol)をベンゼン5ml中で10時間加熱還流
する。反応終了後、溶剤を留去し、残留物をシリ
カゲル10gを用いるカラムクロマトグラフイーに
付し7〜10%酢酸エチル−ベンゼン混合溶剤で溶
出し、目的物を黄色油状物として234mg(収率、
75%)得た。 元素分析値C32H42N4O11S3Siとして 計算値:C,49.09;H,5.41;N,7.16 ;S,12.28 実測値:C,49.23;H,5.38;N,7.02 ;S,12.05 IRスペクトルνCHCl3 naxcm-1:3530,3450,1782,
1760,1736 nmrスペクトル(CDCl3)δppm:0.05(3H,
S),0.08(3H,S),0,85(9H,S),1.18
(3H,d,J=6Hz),1.36(3H,d,J=7
Hz),3.4(3H,m),4.2(3H,m),5.1〜5.7
(6H,m),6.2(1H,m),7.50(2H,d),7.55
(2H,d),8.23(4H,d) 参考例 9 (3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−4−〔〔〔1−メチ
ル−2−(P−ニトロベンジルオキシカルボニ
ルアミノ)エチル〕チオ〕チオカルボニル〕チ
オ−1−〔1−(P−ニトロベンジルオキシカル
ボニル)トリフエニルホスホラニリデンメチ
ル〕アゼチジン−2−オン (3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕1−〔1−ヒドロキ
シ(P−ニトロベンジルオキシカルボニル)メチ
ル〕−4−〔〔〔1−メチル−2−(P−ニトロベン
ジルオキシカルボニルアミノ)エチル〕チオ〕チ
オカルボニル〕チオアゼチジン−2−オン223mg
(0.285mmol)をテトラヒドロフラン5mlに溶か
し、−15℃で、2.6−ルチジン34mg(0.31mmol)
次いで塩化チオニル37mg(0.31mmol)を加え、
同温度で、15分間撹拌する。さらに2.6−ルチジ
ン60mg(0.56mmol)およびトリフエニルホスフ
イン183mg(0.70mmol)を加え、窒素気流下、65
℃で35時間撹拌する。反応終了後、酢酸エチルを
加えて稀釈し、水洗した後乾燥する。溶剤を留去
し、残留物をシリカゲル10gを用いるカラムクロ
マトグラフイーに付し、15〜20%酢酸エチル−ベ
ンゼン混合溶剤で溶出し、159mg(収率、54%)
の目的物を黄色油状物として得る。 元素分析値C50H55N4O10PS3Siとして 計算値:C,58.46;H,5.40;N,5.45 ;P,3.01 実測値:C,58.19;H,5.51;N,5.28 ;p,2.86 IRスペクトルνCHCl3 naxcm-1:3450,1760,1734,
1623 実施例 1 (5R,6S)−2−〔〔1−メチル−2−(P−ニ
トロベンジルオキシカルボニルアミノ)エチ
ル〕チオ〕−6−〔(R)−1−tert−ブチルジメ
チルシリルオキシエチル〕ペネム−3−カルボ
ン酸P−ニトロベンジルエステル及びその
(5S)−異性体 (3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−4−〔〔〔1−メチル
−2−(P−ニトロベンジルオキシカルボニルア
ミノ)エチル〕チオ〕チオカルボニル〕チオ−1
−〔1−(p−ニトロベンジルオキシカルボニル)
トリフエニルホスホラニリデンメチル)アゼチジ
ン−2−オン155mg、ハイドロキノン10mgをキシ
レン15ml中130℃で7.5時間、窒素気流下加熱す
る。反応終了後、減圧下溶剤を留去し、残留物を
シリカゲルの分取用薄層クロマトグラフイーで分
離し〔展開溶剤:ベンゼン−酢酸エチル(3:
1)〕、目的物81mg(収率、73%)、およびその
(5S)−異性体16mg(収率、14%)を、それぞれ
油状物として得た、nmrスペクトルよりそれぞれ
2位置換基の不斉炭素にもとづく立体異性体の
1:1混合物である。 元素分析値C32H40N4O10S2Siとして 計算値:C,52.44;H,5.50;N,7.65 ;S,8.75 実測値:C,52.69;H,5.44;N,7.38 ;S,8.51(5S)−異性体 実測値:C,52.55;H,5.67;N,7.37
;S,8.54 IRスペクトルνCHCl3 naxcm-1:3460,1798,1735,
1700(sh.) (5S)−異性体:3450,1798,1735,1700(sh.) UVスペクトルλTHF naxnm:265(ε25900),340
(ε10500) (5S)−異方体:265(ε25400),336(ε9900) nmrスペクトル(CDCl3)δppm:0.03,0.06
(6H,S)0.83(9H,S),1.23(3H,d,J=
6Hz),〜1.3(3H,m),3.45(3H,m),3.71,
3.73(1H,dd,J=4.2Hz)4.2(2H,m),5.18
(1H,d,J=14.5Hz),5.17(2H,s),〜5.4
(1H,m),5.38(1H,d,J=14.5Hz),5.61
(1H,br,s),7.48(2H,d),7.60(2H,
d),8.16(4H,d),(5S)−異性体:0.12(6H,
s),0.88(9H,s),1.40(6H,d,J=6
Hz),〜3.5(3H,m),3.87(1H,dd,J=10,
4Hz),〜4.4(2H,m),5.16(2H,S),〜5.3
(1H,m),5.22(1H,d,J=14.5Hz),5.42
(1H,d,J=14.5Hz),5.61,5.68(1H,1:
1,d,J=3.5Hz)7.47(2H,d)7.61(2H,
d),8.18(4H,d) 実施例 2 (5R,6S)−2−〔〔1−メチル−2−(p−ニ
トロベンジルオキシカルボニルアミノ)エチ
ル〕チオ〕−6−〔(R)−1−ヒドロキシエチ
ル〕ペネム−3−カルボン酸p−ニトロベンジ
ルエステル (5R,6S)−2−〔〔1−メチル−2−(P−ニ
トロベンジルオキシカルボニルアミノ)エチル〕
チオ〕−6−〔(R)−1−tert−ブチルジメチルシ
リオルキシエエル〕ペネム−3−カルボン酸p−
ニトロベンジルエステル80mg(0.109mmol)、酢
酸65mg(1.09mmol)、フツ化テトラ(n−ブチ
ル)アンモニウム114mg(0.437mmol)をテトラ
ヒドロフラン4.5ml中室温で24時間放置する。反
応終了後、酢酸エチルを加えて稀釈し、水次いで
重曹水で洗浄する。乾燥後、溶剤を留去し、得ら
れる結晶性残留物を酢酸エチルで洗い、融点195
〜198℃を有する立体異性体A18mg(収率、27%)
を得た。結晶の洗液を濃縮後、シリカゲルの薄層
クロマトグラフイーで精製し〔展開溶剤:酢酸エ
チル−クロロホルム(3:1)〕、もう一方の立体
異性体Bを主成分として含む油状物32mg(収率,
47%)を得た。 結晶性異性体Aの物理データ 元素分析値C26H26N4O10S2S2として 計算値:C,50.48;H,4.24;N,9.06 ;S,10.37 実測値:C,50.33;H,4.18;N,9.13 ;S,10.19 IRスペクトルνnujol naxcm-1:3450,3290,1775,
1690 比旋光度〔α〕D+92.4゜(C=0.38,THF) nmrスペクトル(d7−DMF)δppm:1.32
(3H,d,J=6Hz),1.42(3H,d,J=6.5
Hz),〜3.5(3H,m)3.95(1H,dd,J=7.15
Hz),〜4.2(2H,m),5.28(2H,s),5.37
(1H,d,J=14.5Hz),5.65(1H,d,J=
14.5Hz),5.85(1H,d,J=1.5Hz),7.69(2H,
d),7.81(2H,d),8.27(4H,d) 油状異性体Bのnmrスペクトル(d7−DMF)
δppm:1.32(3H,d,J=6Hz),1.46(3H,
d,J=6.5Hz)3.95(1H,dd,J=7.15Hz),
〜4.2(2H,m),5.28(2H,m),5.37(1H,d,
J=14.5Hz),5.65(1H,d,J=14.5Hz),5,
87(1H,d,J=1.5Hz),7.69(2H,d),7.81
(2H,d)8.27(4H,d). 実施例 3 (5R,6S)−2−〔〔2−アミノ−1−メチルエ
チル)チオ〕−6−〔(R)−1−ヒドロキシエチ
ル〕ペネム−3−カルボン酸 実施例2で得られる(5R,6S)−2−〔〔1−メ
チル−2−(p−ニトロベンジルオキシカルボニ
ルアミノ)エチル〕チオ〕−6−〔(R)−1−ヒド
ロキシエチル〕ペネムカルボン酸p−ニトロベン
ジルエステル(立体異性体A,Bの1:1混合
物)46mgをテトラヒドロフラン4mlおよび0.1M
−リン酸緩衝液(PH7.1)4mlに溶かし、10%パ
ラジウム−炭素120mgを加え、常圧水素下、5.5時
間撹拌した。反応終了後、反応混合物を過し、
触媒を上記リン酸緩衝液4mlで洗い、液と洗液
を合わせて酢酸エチルで洗浄した。水層を約4ml
まで減圧下室温で濃縮し、ダイヤイオン
HP20AG(三菱化成社製)15mlを用いるクロマト
グラフイーに付し、4〜5%アセトン−水で溶出
する画分を集めて凍結乾燥し、粉末状の目的物
11.5mg(収率51%)を得た。 UVスペクトルλH2O naxnm:254(ε,4900),322
(ε,6500) IRスペクトルνKBr naxcm-1:3400(br),1767,1585 比旋光度〔α〕D+120゜(C=0.54,H2O) nmrスペクトル(D2O)δppm(ext.TMS):
1.31(3H,d,J=6Hz),1.42,1.46(3H,
1:1,d,J=7Hz),2.8−3.8(3H,m),
3.96(1H,dd,J=6,1.5Hz),4.3(1H,m),
5.69,5.72(1H,1:1,d,J=1.5Hz) 実施例 4 (5R,6S)−2−〔〔2−アミノ−1−メチルエ
チル)チオ)−6−〔(R)−1−ヒドロキシエチ
ル〕ペネム−3−カルボン酸 実施例2で得られる(5R,6S)−2−〔〔1−メ
チル−2−(p−ニトロベンジルオキシカルボニ
ルアミノ)エチル〕チオ〕−6−〔(R)−1−ヒド
ロキシエチル〕ペネムカルボン酸p−ニトロベン
ジルエステル(結晶性異性体A)を実施例3と同
様に還元反応に付して保護基を除去し、目的とす
るアミノ酸を収率53%で得た。 UVスペクトルλH2O naxnm(ε):251(5200),320
(6000) IRスペクトルνKBr naxcm-1:3400,1770,1580 nmrスペクトル(D2O)δppm:1.31(3H,
d,J=6Hz),1.42(3H,d,J=7Hz),2.8
〜3.8(3H,m),3.96(1H,dd,J=6,1.5
Hz),4.3(1H,m),5.69(1H,d,J=1.5Hz) 参考例 10 (3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−4−〔〔〔2−(p
−ニトロベンジルオキシカルボニルアミノ)プ
ロピル〕チオ〕チオカルボニル〕チオアゼチジ
ン−2−オン 参考例7と同様操作により2−メチル−2−
(p−ニトロベンジルオキシカルボニルアミノ)
プロパンチオールと二硫酸炭素より調整したトリ
チオカルボン酸ナトリウム塩と(3R,4R)−4
−アセトキシ−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕アゼチジン−2−オ
ンとの反応により目的物を黄色油状物として収率
80%で得た。 IRスペクトルCHCl3 naxcm-1:3450,3420,1780,
1735 参考例 11 (3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−1−〔1−ヒドロ
キシ(P−ニトロベンジルオキシカルボニル)
メチル〕−4−〔〔〔2−(p−ニトロベンジルオ
キシカルボニルアミノ)プロピル〕チオ〕チオ
カルボニル〕チオアゼチジン−2−オン 参考例8で述べたと同様にして(3S,4R)−3
−〔(R)−1−tert−ブチルジメチルシリルオキ
シエチル〕−4−〔〔〔2−(p−ニトロベンジルオ
キシカルボニルアミノ)プロピル〕チオ〕チオカ
ルボニル〕チオアゼチジン−2−オンより収率87
%で目的化合物を得た。 IRスペクトルνCHCl3 naxcm-1:3530,6450,1780,
1760,1740 参考例 12 (3S,4R)−〔(R)−1−tert−ブチルジメチ
ルシリルオキシエチル〕−4−〔〔〔2−(p−ニ
トロベンジルオキシカルボニルアミノ)プロピ
ル〕チオ〕チオカルボニル〕チオ−1−〔1−
(p−ニトロベンジルオキシカルボニル)トリ
フエニルホスホラニリデンメチル〕アゼチジン
−2−オン 参考例9で述べたと同様の操作により(3S,
4R)−3−〔(R)−1−tert−ブチルジメチルシリ
ルオキシエチル〕−1−〔1−ヒドロキシ(p−ニ
トロベンジルオキシカルボニル)メチル〕−4−
〔〔〔2−(p−ニトロベンジルオキシカルボニルア
ミノ)プロピル〕チオ〕チオカルボニル〕チオア
ゼチジン−2−オンより収率60%で目的物を得
た。 IRスペクトルνCHCl3 naxcm-1:3450,1760,1735,
1625 実施例 5 (5R,6S)−2−〔〔2−(P−ニトロベンジル
オキシカルボニルアミノ)プロピル〕チオ〕−
6−〔(R)−1−tert−ブチルジメチルシリル
オキシ〕ペネム−3−カルボン酸p−ニトロベ
ンジルエステル及びその(5S)−異性体 実施例1で述べたと同様にして(3S,4R)−
〔(R)−1−tert−ブチルジメチルシリルオキシ
エチル〕−4−〔〔〔2−(p−ニトロベンジルオキ
シカルボニルアミノ)プロピル〕チオ〕チオカル
ボニル〕チオ−1−〔1−(p−ニトロベンジルオ
キシカルボニル)トリフエニルホスホラニリデン
メチル〕アゼチジン−2−オンをキシレン中で加
熱して目的物のトランス異性体(収率70%)とそ
の(5S)−シス異性体(収率14%)を得た。 IRスペクトルνCHCl3 naxcm-1:3440,1790,1725,
1702, (5S)−異性体:3430,1785,1722,1700 nmrスペクトル(CDCl3)δppm:0.04(3H,
S),0.07(3H,S),0.79(9H,S),1.16(3H,
d,J=6Hz),1.24(3H,d,J=6.5Hz),
3.19(9H,d,J=6.5Hz),3.60〜3.75(1H,
m),3.85〜4.45(2H,m),5.03(1H,d,J
=8.5Hz),5.19(2H,S),523,5.40(2H,
ABq,J=14Hz),5.65(1H,d,J=1.8Hz),
7.50(2H,d),7.65(2H,d),8,22(4H,
d) (5S)−異性体:0.12(6H,s),0.88(9H,
s),1.31(3H,d,J=6Hz),1.42(3H,d,
J=6Hz),3.18(2H,d,J=6Hz),3.87
(1H,dd,J=10.4Hz),3.9〜4.5(2H,m),
4.99(1H,d,J=8Hz),5.16(2H,S),
5.22,5.42(2H,ABq,J=14Hz),5.68(1H,
d,J=4Hz),7.47(2H,d),7.61(2H,
d),8.18(4H,d) 実施例 6 (5R,6S)−2−〔〔2−(P−ニトロベンジル
オキシカルボニルアミノ)プロピル〕チオ〕−
6−〔(R)−1−ヒドロキシエチル〕ペネム−
3−カルボン酸P−ニトロベンジルエステル 実施例3で述べたと同様の操作により(5R,
6S)−2−〔〔2−(p−ニトロベンジルオキシカ
ルボニルアミノ)プロピル〕チオ〕−6−〔(R)−
1−tert−ブチルジメチルシリルオキシ〕ペネム
−3−カルボン酸p−ニトロベンジルエステルを
脱シリル化して目的物を収率80%で得た。 UVスペクトルλEtoH naxnm:264,338 IRスペクトルνCHCl3 naxcm-1:3430,1790,1730,
1700 nmrスペクトル(d7−DMF)δppm:1.29
(6H,d,J=6.5Hz),3.25(2H,d,J=6
Hz),3.7〜4.5(3H,m),5.30(2H,s),5.42,
5.60(2H,ABq,J=14Hz),5.91(1H,d,J
=1.5Hz),7.53(1H,d,J=9Hz),7.73
(2H,d),7.87(2H,d)8.34(4,d). 実施例 7 (5R,6S)−2−〔(2−(アミノプロピル)チ
オ〕−6−〔(R)−1−ヒドロキシエチル〕ペネ
ム−3−カルボン酸 実施例4で述べたと同様の操作により(5R,
6S)−2−〔〔2−(P−ニトロベンジルオキシカ
ルボニルアミノ)プロピル〕チオ〕−6−〔(R)−
1−ヒドロキシエチル〕ペネム−3−カルボン酸
p−ニトロベンジルエステルを還元反応に付し、
目的とするアミノ酸を収率55%で得た。 UVスペクトルλH3O naxnm(ε):254(4600),320
(5700) IRスペクトルνKBr naxcm-1:3400,1770,1570 nmrスペクトル(D2O)δppm:1.31(3H,
d,J=6.5Hz),1.41(3H,d,J=6.5Hz),
2.8〜3.3(2H,m),3.5(1H,m),3.95(1H,
dd,J=6.18Hz),4.3(1H,m),5.69(1/2H,
d,J=1.8Hz),5.72(1/2H,d,J=1.8Hz). 参考例 13 (3S,4R)−3−[(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−4−[[[(R)−1
−メチル−2−(P−ニトロベンジルオキシカ
ルボニルアミノ)エチル]チオ]チオカルボニ
ル]チオアゼチジン−2−オン 金属ナトリウム518mg(22.5mmol)をメタノー
ル100mlに溶かした溶液に−10℃で(R)−1−メ
チル−2−(p−ニトロベンジルオキシカルボニ
ルアミノ)エタンチオール6.61g(23,1mmol)
を加え、5分間撹拌したのち二硫化炭素1.76g
(23.1mmol)を加え10分間撹拌する。ついで同温
度で(3R,4R)−4−アセトキシ−3−[(R)−
1−tert−ブチルジメチルシリルオキシエチル]
アゼチジン−2−オン6.46mg(22.5mmol)を加
え、約1時間で浴温を0℃まで上げる。酢酸約
300mgを加えた後、酢酸エチルで希釈し飽和食塩
水で洗浄して乾燥後、溶剤を留去し残留物をシリ
カゲル200gを用いるカラムクロマトグラフイー
に付し、10%酢酸エチル−ベンゼンの混合溶剤で
溶出し、目的物10.8g(収率84%)を黄色油状物
として得た。 元素分析値 C23H55O6S3Siとして 計算値:C,48.14;H,6.15;N,7.32 ;S,16.76 実測値:C,48.22;H,6.12;N,7.18 ;S,16.55 IRスペクトルνCHCl3 naxcm-1:3460,3420,1780,
1735 NMRスペクトル(CDCl3)δppm:0.08
(6H,s),0.85(9H,s),1.15(3H,d,J
=6Hz),1.34(3H,d,J=7Hz),3.13(1H,
t,J=3Hz),3.43(2H,t,J=7Hz),〜
4.2(2H,m),5.16(2H,s),5.38(1H,br,
t,J=7Hz),5.62(1H,d,J=3Hz),6.9
(1H,br.),7.50(2H,d),8,23(2H,d) 参考例 14 (3S,4R)−3−[(R)−1−tert−ブチルジ
メチルシリルオキシエチル]−1−[1−ヒドロ
キシ(P−ニトロベンジルオキシカルボニル)
メチル]−4−[[[(R)−1−メチル−2−(P
−ニトロベンジルオキシカルボニルアミノ)エ
チル]チオ]チオカルボニル]チオアゼチジン
−2−オン (3S,4R)−3−[(R)−1−tert−ブチルジ
メチルシリルオキシエチル]−4−[[[(R)−1−
メチル−2−(P−ニトロベンジルオキシカルボ
ニルアミノ)エチル]チオ]チオカルボニル]チ
オアゼチジン−2−オン10.8g(18.8mmol)と
p−ニトロベンジルグリオキシレート水和物8.53
g(37.6mmol)をベンゼン100ml中20時間加熱還
流する。反応終了後、溶剤を留去し、残留物をシ
リカゲル150gを用いるカラムクロマトグラフイ
ーに付す。15%アセセトン−ヘキサン混合溶剤で
出発原料1.62g(15%)を溶出した後、30%アセ
トン−ヘキサン混合溶剤で溶出するフラクシヨン
を集め、目的物を黄色油状物として12.6g(収率
85%)得た。 元素分析値 C32H42N4O11S3Siとして 計算値:C,49.09;H,5.41;N,7.16 ;S,12.28 実測値:C,49.15;H,5.38;N,6.91 ;S,12.07 IRスペクトルνCHCl3 naxcm-1:3530,3450,1782,
1760,1736 NMRスペクトル(CDCl3)δppm:0.05
(3H,s),0.08(3H,s),0.85(9H,s),
1.18(3H,d,J=6Hz),1.36(3H,d,J=
7Hz),3.4(3H,m),4.2(3H,m),5.1〜5.7
(6H,m),6.2(1H,m),7.50(2H,d),7.55
(2H,d),8.23(4H,d) 参考例 15 (3S,4R)−3−[(R)−1−tert−ブチルジ
メチルシリルオキシエチル]−4−[[[(R)−1
−メチル−2−(p−ニトロベンジルオキシカ
ルボニルアミノ)エチル]チオ]チオカルボニ
ル]チオ−1−[1−(p−ニトロベンジルオキ
シカルボニル)トリフエニルホスホラニリデン
メチル]アゼチジン−2−オン (3S,4R)−3−[(R)−1−tert−ブチルジ
メチルシリルオキシエチル]−1−[1−ヒドロキ
シ(p−ニトロベンジルオキシカルボニル)メチ
ル]−4−[[[(R)−1−メチル−2−(p−ニト
ロベンジルオキシカルボニルアミノ)エチル]チ
オ]チオカルボニル]チオアゼチジン−2−オン
12.6g(1.61mmol)をテトラヒドロフラン150ml
に溶かし、−15℃で2.6−ルチジン2.00g
(18.7mmol)次いで塩化チオニル2.11g
(1.77mmol)を加え同温度で15分間撹拌する。さ
らに2.6−ルチジン3.45g(3.22mmol)およびト
リフエニルホスフイン12.6g(48.1mmol)を加
え、窒素気流下、65℃で35時間撹拌する。反応終
了後、酢酸エチルを加えて稀釈し、水洗後乾燥す
る。溶剤を留去し残留物をシリカゲル250gを用
いるカラムクロマトグラフイーに付し、15〜20%
酢酸エチル−ベンゼン混合溶剤で溶出し、目的物
10.9g(収率66%)を黄色油状物として得た。 元素分析値 C50H55N4O10PS3Siとして 計算値:C,58.46;H,5.40;N,5.45 ;S,3.01 実測値:C,58.59;H,5.22;N,5.33 ;S,2.95 IRスペクトルνCHCl3 naxcm-1:3450,1760,1734,
1623 実施例 8 (5R,6S)−2−[[(R)−1−メチル−2−
(p−ニトロベンジルオキシカルボニルアミノ)
エチル]チオ]〕−6−[(R)−1−tert−ブチ
ルジメチルシリルオキシエチル]ペネム−3−
カルボン酸p−ニトロベンジルエステルおよび
その(5S)−異性体 (3S,4R)−3−[(R)−1−tert−ブチルジ
メチルシリルオキシエチル]−4−[[[(R)−1−
メチル−2−(p−ニトロベンジルオキシカルボ
ニルアミノ)エチル]チオ]チオカルボニル]チ
オ−1−[1−(p−ニトロベンジルオキシカルボ
ニル)トリフエニルホスホラニリデンメチル]ア
ゼチジン−2−オン9.90g、ハイドロキノン570
mgをキシレン1000ml中127−130℃で13.5時間窒素
気流下加熱する。反応終了後、減圧下溶剤を留去
し、残留物をシリカゲル150gを用いるカラムク
ロマトグラフイーに付し、5%酢酸エチル−ベン
ゼンで溶出してシス異性体〔(5S,6S)異性体〕
1.60g(収率23%)を油状物として得た。さらに
5〜10%酢酸エチル−ベンゼンで溶出して、トラ
ンス異性体〔(5R,6S)異性体〕5.24g(収率74
%)を得た。トランス異性体はベンゼンより再結
晶を行ない融点163−164℃の純品を得た。 元素分析値 C32H40N4O10S2Siとして 計算値:C,52.44;H,5.50;N,7.65 ;S,8.75 実測値:トランス異性体:C,52.70;H,
5.39;N,7.43;S,8.55;シス異性体:C,
52.58;H;5.44;N,7.41;S,8.52 IRスペクトル,トランス異性体νKBr naxcm-1
3400(br.),1785,1735,1690;シス異性体
νCHCl3 naxcm-1:3450,1798,1735,1700(Sh.) 比旋光度、トランス異性体:〔α〕25 D+29.6゜
(C=0.47,CHCl3) NMRスペクトル(CDCl3)δppm、トランス
異性体:0.03,0.06(6H,s),0.83(9H,s),
1.23(3H,d,J=6Hz),〜1.3(3H,m)
3.45(3H,m),3.71(1H,dd,J=4,1.5
Hz),4.2(2H,m),5.17(2H,s),5.18(1H,
d,J=14.5Hz),5.38(1H,d,J=14.5Hz),
〜5.4(1H,m),5.61(1H,d,J=1.5Hz),
7.48(2H,d),7.60(2H,d)8.16(4H,d);
シスー異性体:0.12(6H,s)0.88(9H.S),
1.40(6H,d,J=6Hz),〜3.5(3H,m),
3.87(1H,dd,J=10,3.5Hz),〜4.4(2H,
m),5.16(2H,s),〜5.3(1H,m),5.22
(1H,d,J=14.5Hz),5.42(1H,d,J=
14.5Hz),5.61(1H,d,J=3.5Hz),7.47(2H,
d),7.61(2H,d),8.18(4H,4) 実施例 9 (5R,6S)−2−[[(R)1−メチル−2−(P
−ニトロベンジルオキシカルボニルアミノ)エ
チル]チオ]−6−[(R)−1−ヒドロキシエチ
ル〕ペネム−3−カルボン酸p−ニトロベンジ
ルエステル (5R,6S)−2−[[(R)1−メチル−2−(p
−ニトロベンジルオキシカルボニルアミノ)エチ
ル]チオ]−6−[(R)−1−tert−ブチルジメチ
ルシリルオキシエチル]ペネム−3−カルボン酸
p−ニトロベンジルエステル3.39g
(4.63mmol)、酢酸2.78g(46mmol)、フツ化テ
トラ(n−ブチル)アンモニウム3.62g
(1.39mmol)をテトラヒドロフラン66mlに溶か
し、室温下、15時間撹拌する。反応終了後酢酸エ
チルで稀釈し、水ついで重曹水で洗浄する。溶剤
を留去して得られる結晶性残留物を酢酸エチルよ
り再結晶をおこない、融点158−160℃を有する目
的物を1.98g得た。液をカラムクロマトグラフ
イーに付し、目的物結晶(融点158−160℃)をさ
らに0.36g得た。合計収量2.34g(収率82%) この化合物は実施例5で述べた異性体Bと
NMRスペクトルが一致した。 元素分析値 C26H26N4O10S2として 計算値:C,50.48;H,4.24;N,9.06 ;S,10.37 実測値:C,50.42;H,4.19;N,8.95 ;S,10.33 IRスペクトルνKBr naxcm-1:3520,3330,1780,
1710 比旋光度〔α〕25 D+70.0゜(C=0.47,DMF) NMRスペクトル(d7−DMF)δppm:1.32,
(3H,d,J=6Hz),1.46(3H,d,J=6.5
Hz),3.95(1H,dd,J=7.15Hz),4.17(1H,
m),5.28(2H,s),5.37(1H,d,J=14.5
Hz),5.65(1H,d,J=14.5Hz),5.87(1H,
d,J=1.5Hz),7.69(2H,d),7.81(2H,
d),8.27(4H,d) 実施例 10 (5R,6S)−2−[[(R)−2−アミノ−1−メ
チルエチル]チオ]−6−[(R)−1−ヒドロキ
シエチル]ペネム−3−カルボン酸 (5R,6S)−2−[[(R)1−メチル−2−(p
−ニトロベンジルオキシカルボニルアミノ)エチ
ル]チオ]−6−[(R)−1−ヒドロキシエチル〕
ペネム−3−カルボン酸p−ニトロベンジルエス
テル2.19gをテトラヒドロフラン200mlおよび
0.1Mリン酸緩衝液(PH7.1)200mlに溶かし、10
%パラジウム−炭素4gを加え、常圧水素化、5
時間撹拌した。反応終了後、反応混合物を過
し、触媒を上記リン酸緩衝液50mlで洗い、液と
洗液を合わせて酢酸エチルで2回洗浄した。水層
を減圧下室温で約200mlまで濃縮し、ダイヤイオ
ンHp20AG50mlを用いるカラムクロマトグラフ
イーに付し、5%アセトン−水で溶出する画分を
集めて凍結乾燥をおこない得られた粉末物質をさ
らに同カラムクロマトグラフイーに付し、目的物
604mg(収率56%)を無色粉末として得た。 IRスペクトルνKBr naxcm-1:3400(br.),1775,
1580 比旋光度〔α〕25 D+14.34゜(C=0.47,H2O) NMRスペクトル(D2O)δppm(ext・
TMB):1.31(3H,d,J=6Hz),1.46(3H,
d,J=7Hz),3.1〜3.8(3H,m),3.96(1H,
dd,J=6,1.5Hz),4.26(1H,m),5.69
(1H,d,J=1.5Hz)。 実施例 11 (5R,6S)−2−[[(R)2−[(ホルムイミド
イル)アミノ]−1−メチルエチル]チオ]−6
−[(R)−1−ヒドロキシエチル〕ペネム−3
−カルボン酸 (5R,6S)−2−[[(R)−2−アミノ−1−メ
チルエチル]エチル]チオ]−6−[(R)−1−ヒ
ドロキシエチル〕ペネム−3−カルボン酸50mg
(0.16mmol)を、0.1Mリン酸緩衝液(PH7.1)10
mlに溶解し、氷水中で撹拌しながら2N−水酸化
ナトリウム溶液を滴下しPH8.5に調節する。メチ
ルホルムイミデート塩酸塩236mg(2.47mmol)を
少量ずつ5分間で加える。同時に2N−水酸化ナ
トリウム溶液を滴下しながらPH8.5に保つ。5分
間撹拌したのち2N−塩酸溶液を加えPH7.0にしこ
の溶液を、ダイヤイオンHP20AG(20ml)を用い
るカラムクロマトグラフイーに付付す。水で無機
塩および不純物を溶出したのち、3%〜5%アセ
トン−水で溶出するフラクシヨンを集めて凍結乾
燥すると、17mg(収率31%)のN−ホルムイミド
イル誘導体を無色粉末として得た。 IRスペクトルνKBr naxcm-1:3400(br),1770,1720
(Sh),1580 比旋光度〔α〕25 D+124.1゜(C=0.34,H2O) NMRスペクトル(D2O)δppm:1.30(3H,
d,J=6Hz),1.34(3H,d,J=7Hz),3.2
〜3.7(3H,m),3.90(1H,dd,J=6,1.5
Hz),4.26(1H,m)5.72(1H,d,J=1.5
Hz),7.83(1H,s) 参考例 1 (3S,4R)−3−〔(S)−1−ヒドロキシエチ
ル〕−1−(1−メトキシカルボニル−2−メチ
ルプロプ−1−エニル)−4−メチルチオ−ア
ゼチジン−2−オン (3S,4R)−3−ブロモ−1−(1−メトキシ
カルボニル−2−メチルプロプ−1−エニル)−
4−メチルチオアゼチジン−2−オン(1.96g,
6.38mmol)、アセトアルデヒド(843mg,3当量)
をテトラヒドロフラン20mlに溶かし、この溶液を
亜鉛(625mg,1.5当量)、ジエチルアルミニウム
クロリド(6.68ml,1.5当量、15%ヘキサン溶液)
のテトラヒドロフラン15mlの溶液に撹拌下、15〜
20℃で40分間に加える。そのまゝ1時間撹拌した
のち、水、次いで酢酸エチルを加え生ずる白色沈
澱物をセライトを用いて別し、液を酢酸エチ
ルにて抽出する。常法により処理し、粗目的物
2.05gを油状物として得る。 これをシリカゲルカラムクロマト〔約30g,ク
ロロホルム−酢酸エチル(5:1)で展開〕で分
離し目的物を1.04g(収率、60%)の無色油状物
として得た。本品は3位側鎖について1′S,1′R配
位の混合物でその比は4:1である。 元素分析値 C12H19O4NSとして 計算値:C,52.74;H,6.96;N,5.13 ;S,11.72 実測値:C,52.81;H,7.21;N,5.43 ;S,11.78 IRスペクトルνliq naxcm-1:3450,1760,1710,
1380,1360,1225 nmrスペクトル(CDCl3)δppm,1′S系:
1.30(3H,d,J=6Hz),1.93(3H,s),
2.05(3H,s),3.14(1H,dd,J=6.3Hz),
3.72(3H,s),4.12(1H,m),4.92(1H,d,
J=3Hz);1′R系:1.26(3H,d,J=6Hz),
1.93(3H,s),2.05(3H,s),2.16(3H,s),
3.14(1H,dd,J=6.3Hz),3.72(3H,s),
4.12(1H,m),5.04(1H,d,J=3Hz). 参考例 2 (3S,4R)−3−〔(R)−1−ベンゾイルオ
キシエチル〕−1−(1−メトキシカルボニル−
2−メチルプロプ−1−エニル)−4−メチル
チオアゼチジン−2−オン (3S,4R)−3−〔(S)−1−ヒドロキシエチ
ル〕−1−(1−メトキシカルボニル−2−メチル
プロプ−1−エニル)−4−メチルチオ−アゼチ
ジン−2−オン(105mg,0.38mmol),トリフエ
ニルホスフイン(201mg,2当量),安息香酸(94
mg,2当量)を2mlのテトラヒドロフランにとか
し、これにアゾジカルボン酸ジエチルエステル
(134mg,2当量)のテトラヒドロフラン(1ml)
溶液を20℃で徐々に10分を要して加え、そのまゝ
1.5時間撹拌をつゞける。溶剤を留去し、残渣を
ベンゼン−酢酸エチル(6:1)の混合溶液3ml
に溶解し、冷所に放置し、析出する結晶を別
し、液を薄層クロマトグラフイー(展開剤、ベ
ンゼン:酢酸エチル=5:1)で分離し、目的物
119mg(収率、82%)を油状物として得た。本品
は小量の1′位の異性体を含有する。 元素分析値 C19H23NO5Sとして 計算値:C,60.48;H,6.10;N,3.71 ;S,8.49. 実測値:C,59.20;H,6.36;N,3.52 ;S,8.68. IRスペクトルνliq naxcm-1:1765,1720,1380,
1360,1270. nmrスペクトル(CDCl3)δppm、主成分
(1′R系):1.49(3H,d,J=6Hz),1.95(3H,
s),2.03(3H,s),2.17(3H,s),3.33(1H,
dd,J=7.3Hz),3.74(3H,s),5.14(1H,
d,J=3Hz),5.63(1H,dq,J=7.6Hz),
7.54(3H,m),8.10(2H,m);副成分(1′S
系):1.52(3H,d,J=6Hz),1.95(3H,
s),2.03(3H,s),2.17(3H,s),3.33(1H,
dd,J=7.3Hz),3.74(3H,s),4.96(1H,
d,J=3Hz),5.63(1H,dq,J=7.6Hz),
7.54(3H,m),8.10(2H,m). 参考例 3 (3S,4R)−3−〔(R)−1−ヒドロキシエチ
ル〕−1−(1−メトキシカルボニル−2−メチ
ルプロプ−1−エニル)−4−メチルチオアゼ
チジン−2−オン (3S,4R)−3〔(R)−1−ベンゾイルオキシ
エチル〕−1−(1−メトキシカルボニル−2−メ
チルプロプ−1−エニル)−4−メチルチオアゼ
チジン−2−オン91mg(0.24mmol)をメタノー
ルに溶かし、これにナトリウム7.17mg
(0.31mmol)をメタノール0.65mlに溶かした溶液
を、0゜で加えた後、室温(18゜〜20℃)で5時間
撹拌する。反応終了後、酢酸で微酸性とし酢酸エ
チル20mlを加えて、水で洗浄する。乾燥した後、
溶剤を留去する。得られた残留物をシリカゲルを
用いる分取用薄層クロマトグラフイー〔展開溶
剤:ベンゼン−酢酸エチル(2:1)〕によつて
精製して純品を得る。このものはnmrスペクトル
より1′R,1′Sの混合物でありその比率は約4対1
である。油状物として50mg(収率、74.4%)を得
る。 元素分析値 C12H19NO4Sとして 計算値:C,52.74;H,6.96;N,5.13 ;S,11.72 実験値:C,53.03;H,7.33;N,4.68 ;S,11.39 IRスペクトルνliq naxcm-1:3450(br),1750,1720 nmrスペクトル(CDCl3)δppm, 主成分(1′R系):1.26(3H,d,J=6Hz),
1.93(3H,s),2.05(3H,s)2.15(3H,s),
3.10(1H,dd,J=6.3Hz),3.72(3H,s),
4.23(1H,dq,J=6.6Hz),5.03(1H,d,J
=3Hz);副成分(1′S系):1.29(3H,d,J
=6Hz),1・93(3H,s),2.05(3H,s),
2.15(3H,s),3.10(1H,dd,J=6.3Hz),
3.72(3H,s),4.23(1H,dq,J=6.6Hz),
4.90(1H,d,J=3Hz). 参考例 4 (3S,4R)−3−〔(R)−1−tert−ブチルジ
メチルシリルオキシエチル〕−1−(1−メトキ
シカルボニル−2−メチルプロプ−1−エニ
ル)−4−メチルチオアゼチジン−2−オン 参考例3で得られる(3S,4R)−3〔(R)−1
−ヒドロキシエチル〕−1−(1−メトキシカルボ
ニル−2−メチルプロプ−1−エニル)−4−メ
チルチオアゼチジン−2−オンを主成分とする混
合物5.65g(20.8mmol)、イミダゾール2.54g
(37.3mmol)を、ジメチルホルムアミド110mlに
溶解し、0℃でtert−ブチルジメチルクロルシラ
ン53.3g(35.3mmol)を加え室温で一晩撹拌す
る。反応終了後、ベンゼン200mlを加え、水で洗
浄する。乾燥後溶剤を留去し得られる残留物を10
倍量のシリカゲルを用いるカラムクロマトグラフ
イーに付し、ベンゼン−酢酸エチル(10:1)の
混合溶剤で溶出し、目的物7.95g(収率94%)を
無色油状物として得た。同時に原料370mg(6%)
を回収した。生成物は、nmrスペクトルより、3
位側鎖の1′R,1′S配位異性体の混合物でありその
比率は約4:1である。 元素分析値 C18H33NO4SSiとして 計算値:C,55.81;H,8.53;N,3.62 ;S,8.29 実測値:C,55.44;H,8.70;N,3.42 ;S,8.45 IRスペクトルνliq naxcm-1:1760,1720 nmrスペクトル(CDCl3)δppm;主成分
(1′R系):0.10(6H,s),0.84(9H,s),1.23
(3H,d,J=6Hz),1.92(3H,s),2.05
(3H,s)2.16(3H,s)3.05(1H,dd,J=
5.3Hz)3.71(3H,s)4.23(1H,m)),5.09
(1H,d,J=2Hz);副成分(1′S系):0.10
(6H,s),0.84(9H,s)1.28(3H,d,J=
6Hz)1.92(3H,s),2.05(3H,s)2.16(3H,
s),3.20(1H,m),3.71(3H,s),4.23(1H,
m)4.96(1H,d,J=3Hz). 参考例 5 (3S,4R)−4−アセトキシ−3〔(R)−1−
tert−ブチルジメチルシリルオキシエチル〕−
1−(1−メトキシカルボニル−2−メチルプ
ロプ−1−エニル)アゼチジン−2−オン 参考例4で得られる(3S,4R)−3〔(R)−
tert−ブチルジメチルシリルオキシエチル〕−1
−(1−メトキシカルボニル−2−メチルプロプ
−1−エニル)−4−メチルチオアゼチジン−2
−オンを主成分とする混合物3.85g
(9.95mmol)、酢酸第二水銀5.08g(15.9mmol)
を酢酸38mlに溶かし窒素気流下浴温95〜100℃で
20分間加熱撹拌する。反応終了後、酢酸を減圧留
去し得られる白色残留物を、0℃で水−酢酸エチ
ル(約1:1)の混合溶剤を加えて撹拌する。酢
酸エチル層を水で洗浄し、乾燥後溶剤を留去し得
られる残留物を、30gのシリカゲルを用いるカラ
ムクロマトグラフイーに付し、ベンゼン−酢酸エ
チル(5:1)の混合溶剤で溶出し、目的物3.50
g(収率,88%)を油状物として得た。このもの
は、nmrスペクトルより3位側鎖の1′S配位異性
体を少量含む。 元素分析値 C19H33NO6Siとして 計算値:C,57.14;H,8.27;N,3.51 実測値:C,56.80;H,8.44;N,3.29 IRスペクトルνliq naxcm-1:1780,1755,1725 nmrスペクトル(CDCl3)δppm;主成分
(1′R系);0.10(6H,s),0.90(9H,s),1.32
(3H,d,J=6Hz),1.94(3H,s),2.06
(3H,s),2.22(3H,s),3.23(1H,dd,J
=6.15Hz),3.80(3H,s),4.26(1H,m),
6,32(1H,d,J=1.5Hz); 副成分(1′S系);0.10(6H,s),0.90(9H,
s),1.34(3H,d,J=6Hz),1.94(3H,
s),2.06(3H,s),2.22(3H,s),3.34(1H,
m),3.80(3H,s),4.26(1H,m),6.25(1H,
d,J=1.5Hz) 参考例 6 (3S,4R)−4−アセトキシ−3〔(R)−1−
tert−ブチルジメチルシリルオキシエチル〕ア
ゼチジン−2−オン 参考例5で得られる(3S,4R)−4−アセトキ
シ−3−〔(R)−1−tert−ブチルジメチルシリ
ルオキシエチル〕−1−(1−メトキシカルボニル
−2−メチルプロプ−1−エニル)アゼチジン−
2−オンを主成分とする混合物3g(7.5mmol)
をアセトン300mlに溶解し、これにメタ過ヨウ素
酸ナトリウム6.43g(30.1mmol)、過マンガン酸
カリウム120mgを、水150ml,0.1M−リン酸緩衝
液(PH7.02)150mlに溶かした溶液を18℃付近で
30分間で加え、同温度で4時間撹拌する。反応終
了後、沈澱物を別し、液に緩衝液約25mlを加
えPH6.8とした後減圧下低温でアセトンを除去し
ベンゼンで抽出する。ベンゼン層を集めて乾燥後
溶剤を留去すると結晶固体が得られる。n−ヘキ
サンから再結晶して融点104〜106℃を有する目的
物0.934g(43.3%)を針状晶として得た。 元素分析値 C13H25O4Siとして 計算値:C,54.32;H,8.77;N,4.87 実測値:C,54.04;H,8.79;N,4.71 IRスペクトルνnujol naxcm-1:3175,1783,1743. 比旋光度〔α〕20 D+48.8゜(C=0.41,CHCl3) nmrスペクトル(CDCl3)δppm:0.07(6H,
s),0.88(9H,s),1.25(3H,d,J=6.5
Hz),2.13(3H,s),3.20(1H,dd,J=3.5,
1.5Hz),4.3(1H,m)5.98(1H,d,J=1.5
Hz),7.24(1H,br)。
[Formula] Group (wherein R 5 and R 6 have the same meanings as defined above)
An amino or lower alkylamino compound in which R 3 is a hydrogen atom is defined by the general formula (In the formula, R 5 and R 6 have the same meanings as described above, and R 10 is methyl, ethyl, n-propyl,
Indicates an alkyl group such as isopropyl. ) is achieved by contacting with an imidoester having There are no particular limitations on the solvent used in the reaction, but when using a compound having the general formula (1) above in which R 3 and R 5 are hydrogen atoms as a raw material, phosphorus kept at a pH of around 8 is used. The use of acid buffers is preferred. The reaction temperature is preferably relatively low, from 0°C to around room temperature, and the reaction time is usually 10 minutes to 2 hours. After carrying out the above various reactions, the target compound for each reaction is collected from the reaction mixture according to a conventional method,
If necessary, it can be further purified by conventional methods such as recrystallization, preparative thin layer chromatography, column chromatography, etc. The above general formula (2) which is a starting material for the production method of the present invention
A 4-acyloxy or 4-sulfonylazetidin-2-one compound having the formula can be synthesized by the method exemplified below. In the above formula, R 11 represents a carboxyl group protecting group such as an alkyl group such as methyl, ethyl, or tert-butyl, or an aralkyl group such as benzyl, and R 12
is P-nitrobenzyloxycarbonyl or
Indicates a hydroxyl protecting group such as tert-butyldimethylsilyl. The known compound 6α-
Bromopenicillanic acid ester (12) (JPClayton;
J. Chem. Soc. (C), 1969, p. 2123) with trimethyloxonium tetrafluoroborate followed by a base such as basic alumina can lead to the ring-opened compound (13). Compound (13)
is obtained by treatment with a Grignard reagent such as methylmagnesium bromide or a dialkyl copper lithium such as dimethylcopper-lithium, or by treatment with zinc in the presence of a dialkyl aluminum halide such as diethyl aluminum chloride. Compound (14) is obtained by reacting the rate anion with acetaldehyde. The 1'-hydroxyl group of compound (14) is protected to form compound (15), which is treated with mercuric acetate in acetic acid and further oxidized with potassium permanganate.
Starting compound 2a can be obtained, and 4-methylsulfonylazetidin-2-one compound 2b can be obtained by oxidizing compound (15) with potassium periodate in the presence of potassium permanganate. In the above reaction starting from compound (12), the coordination at the 1' position of the hydroxyethyl group in the 3-position side chain of the azetidinone ring is mainly S coordination. Treatment with an organic acid in the presence of triphenylphosphine and azodicarboxylic acid diethyl ester results in an inverted,
A 1′R-coordinated acyloxy compound can be obtained, and when this is treated with an alcohol-alkali metal alkoxide such as methanol-sodium methoxide according to a conventional method, a 1′R-coordinated hydroxyl group on the 3-position side chain can be obtained. Compound (14) can be converted to compound (14), which is used in the following reaction. Furthermore, in this reaction, by reacting compound (13) with an aliphatic aldehyde other than acetaldehyde, a compound in which a 1-hydroxyethyl group other than a 1-hydroxyethyl group is introduced into the 3-position of the azetidinone ring is obtained. be able to. The penem-3-carboxylic acid derivatives of the present invention having the general formula (1) exhibit excellent antibacterial activity or are important synthetic intermediates for compounds exhibiting such antibacterial activity. Among them, the activity of compounds exhibiting antibacterial activity was measured by the agar plate dilution method, and it was found that, for example, Gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilis, as well as Bacillus enterica, Shigella, Klebsiella pneumoniae, M. mutiformis, and Pseudomonas aeruginosa It showed activity against a wide range of pathogenic bacteria, including Gram-negative bacteria such as. Such compounds are therefore useful as antibacterial agents to treat bacterial infections caused by these pathogens. Examples of dosage forms for this purpose include oral administration using tablets, capsules, granules, powders, syrups, etc., and parenteral administration via intravenous injection, intramuscular injection, etc. The dosage varies depending on age, body weight, symptoms, etc., as well as the dosage form and number of administrations, but it is usually 1 dose for adults.
Approximately 250 to 3000 mg per day is administered once or in divided doses. Next, the present invention will be explained in more detail with reference to Examples and Reference Examples. Reference example 7 (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[1-methyl-2-(P-nitrobenzyloxycarbonylamino)ethyl]thio [thiocarbonyl]thioazetidin-2-one 1-Methyl-
Add 168 mg (0.59 mol) of 2-(P-nitrobenzyloxycarbonylamino)ethanethiol,
After stirring for 5 minutes, add 45 mg of carbon disulfide at the same temperature.
(0.59 mmol) and stirred for 5 minutes, then added 45 mg (0.59 mmol) of carbon disulfide at the same temperature and stirred for 10 minutes. Then, at the same temperature, 154 mg of (3R.4R)-4-acetoxy-3-[(R)-1-tert-butyldimethylsilyloxyethyl]azetidin-2-one was added.
(0.54 mmol) and slowly raise the bath temperature to 0°C over about 1 hour. After the reaction was completed, the solution was made slightly acidic by adding one drop of acetic acid, diluted with ethyl acetate, washed with saturated brine, dried, the solvent was distilled off, and the residue was subjected to column chromatography using 10 g of silica gel. Elution was performed with a mixed solvent of ~15% ethyl acetate-benzene to obtain 237 mg (yield 77%) of the desired product as a yellow oil. Elemental analysis value as C 23 H 35 N 3 O 6 S 3 Si Calculated value: C, 48.14; H, 6.15; N, 7.32; S, 16.76 Actual value: C, 48.35; H, 6.11; N, 7.14; S, 16.59 IR spectrum ν CHCl3 nax cm−1: 3460, 3420, 1780,
1735 nmr spectrum ( CDCl3 ) δppm: 0.08 (6H,
S), 0.85 (9H, S), 1.15 (3H, d, J=6
Hz), 1.34 (3H, d, J = 7Hz), 3.13 (1H, t,
J=3Hz), 3.43 (2H, t, J=7Hz), ~4.2
(2H, m), 5.16 (2H, S), 5.38 (1H, br, t,
J=7Hz), 5.62 (1H, d, J=3Hz), 6.9
(1H, br.), 7.50 (2H, d), 8, 23 (2H, d) Reference example 8 (3S, 4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1 -[-hydroxy(P-nitrobenzyloxycarbonyl)methyl]-4-[[[1-methyl-2-(P-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thioazetidin-2-one (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[1-methyl-2-(P-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl ]Thioazetidin-2-one 230mg (0.40mmol), P-nitrobenzylglyoxylate hydrate 182mg
(0.80 mmol) was heated under reflux in 5 ml of benzene for 10 hours. After the reaction, the solvent was distilled off, and the residue was subjected to column chromatography using 10 g of silica gel and eluted with a 7-10% ethyl acetate-benzene mixed solvent to obtain 234 mg of the target product as a yellow oil (yield,
75%) obtained. Elemental analysis value C 32 H 42 N 4 O 11 S 3 Si Calculated value: C, 49.09; H, 5.41; N, 7.16; S, 12.28 Actual value: C, 49.23; H, 5.38; N, 7.02; S, 12.05 IR spectrum ν CHCl3 nax cm -1 : 3530, 3450, 1782,
1760, 1736 nmr spectrum (CDCl 3 ) δppm: 0.05 (3H,
S), 0.08 (3H, S), 0,85 (9H, S), 1.18
(3H, d, J=6Hz), 1.36 (3H, d, J=7
Hz), 3.4 (3H, m), 4.2 (3H, m), 5.1 to 5.7
(6H, m), 6.2 (1H, m), 7.50 (2H, d), 7.55
(2H, d), 8.23 (4H, d) Reference example 9 (3S, 4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[1-methyl-2- (P-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thio-1-[1-(P-nitrobenzyloxycarbonyl)triphenylphosphoranylidenemethyl]azetidin-2-one (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]1-[1-hydroxy(P-nitrobenzyloxycarbonyl)methyl]-4-[[[1-methyl-2 -(P-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thioazetidin-2-one 223 mg
(0.285 mmol) was dissolved in 5 ml of tetrahydrofuran, and at -15℃, 34 mg (0.31 mmol) of 2.6-lutidine was dissolved in 5 ml of tetrahydrofuran.
Then 37 mg (0.31 mmol) of thionyl chloride was added,
Stir for 15 minutes at the same temperature. Furthermore, 60 mg (0.56 mmol) of 2.6-lutidine and 183 mg (0.70 mmol) of triphenylphosphine were added, and the
Stir for 35 hours at °C. After the reaction is completed, the mixture is diluted with ethyl acetate, washed with water, and then dried. The solvent was distilled off, and the residue was subjected to column chromatography using 10 g of silica gel and eluted with a 15-20% ethyl acetate-benzene mixed solvent to give 159 mg (yield, 54%).
The desired product is obtained as a yellow oil. Elemental analysis value C 50 H 55 N 4 O 10 PS 3 Si Calculated value: C, 58.46; H, 5.40; N, 5.45; P, 3.01 Actual value: C, 58.19; H, 5.51; N, 5.28; p, 2.86 IR spectrum ν CHCl3 nax cm -1 : 3450, 1760, 1734,
1623 Example 1 (5R,6S)-2-[[1-methyl-2-(P-nitrobenzyloxycarbonylamino)ethyl]thio]-6-[(R)-1-tert-butyldimethylsilyloxyethyl ] Penem-3-carboxylic acid P-nitrobenzyl ester and its (5S)-isomer (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[1-methyl-2-(P-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl ]Thio-1
-[1-(p-nitrobenzyloxycarbonyl)
155 mg of triphenylphosphoranylidenemethyl)azetidin-2-one and 10 mg of hydroquinone are heated in 15 ml of xylene at 130°C for 7.5 hours under a nitrogen stream. After the reaction was completed, the solvent was distilled off under reduced pressure, and the residue was separated by preparative thin layer chromatography on silica gel [developing solvent: benzene-ethyl acetate (3:
1)], 81 mg (yield, 73%) of the target product, and 16 mg (yield, 14%) of its (5S)-isomer were obtained as oils. From the nmr spectra, it was determined that the 2-position substituent was unsaturated. It is a 1:1 mixture of stereoisomers based on the same carbon atoms. Elemental analysis value as C 32 H 40 N 4 O 10 S 2 Si Calculated value: C, 52.44; H, 5.50; N, 7.65; S, 8.75 Actual value: C, 52.69; H, 5.44; N, 7.38; S, 8.51(5S)-isomer Actual value: C, 52.55; H, 5.67; N, 7.37
;S, 8.54 IR spectrum ν CHCl3 nax cm -1 : 3460, 1798, 1735,
1700 (sh.) (5S) - isomer: 3450, 1798, 1735, 1700 (sh.) UV spectrum λ THF nax nm: 265 (ε25900), 340
(ε10500) (5S)-anisotropic: 265 (ε25400), 336 (ε9900) nmr spectrum (CDCl 3 ) δppm: 0.03, 0.06
(6H, S) 0.83 (9H, S), 1.23 (3H, d, J=
6Hz), ~1.3 (3H, m), 3.45 (3H, m), 3.71,
3.73 (1H, dd, J=4.2Hz) 4.2 (2H, m), 5.18
(1H, d, J=14.5Hz), 5.17 (2H, s), ~5.4
(1H, m), 5.38 (1H, d, J=14.5Hz), 5.61
(1H, br, s), 7.48 (2H, d), 7.60 (2H,
d), 8.16 (4H, d), (5S) -isomer: 0.12 (6H,
s), 0.88 (9H, s), 1.40 (6H, d, J=6
Hz), ~3.5 (3H, m), 3.87 (1H, dd, J=10,
4Hz), ~4.4 (2H, m), 5.16 (2H, S), ~5.3
(1H, m), 5.22 (1H, d, J=14.5Hz), 5.42
(1H, d, J = 14.5Hz), 5.61, 5.68 (1H, 1:
1, d, J = 3.5Hz) 7.47 (2H, d) 7.61 (2H,
d), 8.18 (4H, d) Example 2 (5R, 6S)-2-[[1-methyl-2-(p-nitrobenzyloxycarbonylamino)ethyl]thio]-6-[(R)-1 -Hydroxyethyl]penem-3-carboxylic acid p-nitrobenzyl ester (5R,6S)-2-[[1-methyl-2-(P-nitrobenzyloxycarbonylamino)ethyl]
thio]-6-[(R)-1-tert-butyldimethylsiliolxyel]penem-3-carboxylic acid p-
80 mg (0.109 mmol) of nitrobenzyl ester, 65 mg (1.09 mmol) of acetic acid, and 114 mg (0.437 mmol) of tetra(n-butyl)ammonium fluoride are left in 4.5 ml of tetrahydrofuran at room temperature for 24 hours. After the reaction is completed, the mixture is diluted with ethyl acetate and washed with water and then with aqueous sodium bicarbonate. After drying, the solvent was distilled off and the resulting crystalline residue was washed with ethyl acetate, melting point 195.
18 mg of stereoisomer A with ~198 °C (yield, 27%)
I got it. After concentrating the washings of the crystals, the crystals were purified by thin layer chromatography on silica gel [developing solvent: ethyl acetate-chloroform (3:1)] to obtain 32 mg of an oil containing the other stereoisomer B as the main component. rate,
47%). Physical data of crystalline isomer A Elemental analysis value C 26 H 26 N 4 O 10 S 2 S 2 Calculated value: C, 50.48; H, 4.24; N, 9.06; S, 10.37 Actual value: C, 50.33; H , 4.18; N, 9.13; S, 10.19 IR spectrum ν nujol nax cm -1 : 3450, 3290, 1775,
1690 Specific optical rotation [α] D +92.4° (C=0.38, THF) nmr spectrum (d 7 -DMF) δppm: 1.32
(3H, d, J=6Hz), 1.42 (3H, d, J=6.5
Hz), ~3.5 (3H, m) 3.95 (1H, dd, J=7.15
Hz), ~4.2 (2H, m), 5.28 (2H, s), 5.37
(1H, d, J = 14.5Hz), 5.65 (1H, d, J =
14.5Hz), 5.85 (1H, d, J = 1.5Hz), 7.69 (2H,
d), 7.81 (2H, d), 8.27 (4H, d) nmr spectrum of oily isomer B (d 7 -DMF)
δppm: 1.32 (3H, d, J = 6Hz), 1.46 (3H,
d, J=6.5Hz) 3.95 (1H, dd, J=7.15Hz),
~4.2 (2H, m), 5.28 (2H, m), 5.37 (1H, d,
J = 14.5Hz), 5.65 (1H, d, J = 14.5Hz), 5,
87 (1H, d, J = 1.5Hz), 7.69 (2H, d), 7.81
(2H, d) 8.27 (4H, d). Example 3 (5R,6S)-2-[[2-amino-1-methylethyl)thio]-6-[(R)-1-hydroxyethyl]penem-3-carboxylic acid (5R,6S)-2-[[1-methyl-2-(p-nitrobenzyloxycarbonylamino)ethyl]thio]-6-[(R)-1-hydroxyethyl]penemcarvone obtained in Example 2 46 mg of acid p-nitrobenzyl ester (1:1 mixture of stereoisomers A and B) in 4 ml of tetrahydrofuran and 0.1 M
- It was dissolved in 4 ml of phosphate buffer (PH7.1), 120 mg of 10% palladium-carbon was added, and the mixture was stirred under normal pressure of hydrogen for 5.5 hours. After the reaction is completed, the reaction mixture is filtered,
The catalyst was washed with 4 ml of the above phosphate buffer, and the combined solution and washing solution were washed with ethyl acetate. Approximately 4ml of water layer
Concentrate at room temperature under reduced pressure until
Chromatography was performed using 15 ml of HP20AG (manufactured by Mitsubishi Kasei Corporation), and the fractions eluted with 4-5% acetone-water were collected and lyophilized to obtain the desired product in powder form.
11.5 mg (yield 51%) was obtained. UV spectrum λ H2O nax nm: 254 (ε, 4900), 322
(ε, 6500) IR spectrum ν KBr nax cm -1 : 3400 (br), 1767, 1585 Specific rotation [α] D +120° (C=0.54, H 2 O) nmr spectrum (D 2 O) δppm (ext .TMS):
1.31 (3H, d, J = 6Hz), 1.42, 1.46 (3H,
1:1, d, J=7Hz), 2.8-3.8 (3H, m),
3.96 (1H, dd, J=6, 1.5Hz), 4.3 (1H, m),
5.69, 5.72 (1H, 1:1, d, J = 1.5Hz) Example 4 (5R, 6S)-2-[[2-amino-1-methylethyl)thio)-6-[(R)-1 -Hydroxyethyl]penem-3-carboxylic acid (5R,6S)-2-[[1-methyl-2-(p-nitrobenzyloxycarbonylamino)ethyl]thio]-6-[(R)-1-hydroxyethyl]penemcarvone obtained in Example 2 The acid p-nitrobenzyl ester (crystalline isomer A) was subjected to a reduction reaction in the same manner as in Example 3 to remove the protecting group, and the desired amino acid was obtained in a yield of 53%. UV spectrum λ H2O nax nm (ε): 251 (5200), 320
(6000) IR spectrum ν KBr nax cm -1 : 3400, 1770, 1580 nmr spectrum (D 2 O) δppm: 1.31 (3H,
d, J = 6Hz), 1.42 (3H, d, J = 7Hz), 2.8
~3.8 (3H, m), 3.96 (1H, dd, J=6, 1.5
Hz), 4.3 (1H, m), 5.69 (1H, d, J = 1.5Hz) Reference example 10 (3S, 4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4- [[[2-(p
-nitrobenzyloxycarbonylamino)propyl]thio]thiocarbonyl]thioazetidin-2-one By the same operation as in Reference Example 7, 2-methyl-2-
(p-nitrobenzyloxycarbonylamino)
Trithiocarboxylic acid sodium salt prepared from propanethiol and carbon disulfate and (3R,4R)-4
-acetoxy-3-[(R)-1-tert-butyldimethylsilyloxyethyl]yield as a yellow oil by reaction with azetidin-2-one
Got it at 80%. IR spectrum CHCl3 nax cm -1 : 3450, 3420, 1780,
1735 Reference example 11 (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1-[1-hydroxy(P-nitrobenzyloxycarbonyl)
Methyl]-4-[[[2-(p-nitrobenzyloxycarbonylamino)propyl]thio]thiocarbonyl]thioazetidin-2-one In the same manner as described in Reference Example 8, (3S, 4R)-3
-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[2-(p-nitrobenzyloxycarbonylamino)propyl]thio]thiocarbonyl]thioazetidin-2-one yield 87
% of the target compound was obtained. IR spectrum ν CHCl3 nax cm -1 : 3530, 6450, 1780,
1760, 1740 Reference example 12 (3S,4R)-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[[2-(p-nitrobenzyloxycarbonylamino)propyl]thio]thiocarbonyl ]Thio-1-[1-
(p-nitrobenzyloxycarbonyl)triphenylphosphoranylidenemethyl]azetidin-2-one By the same operation as described in Reference Example 9 (3S,
4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1-[1-hydroxy(p-nitrobenzyloxycarbonyl)methyl]-4-
The desired product was obtained from [[[2-(p-nitrobenzyloxycarbonylamino)propyl]thio]thiocarbonyl]thioazetidin-2-one in a yield of 60%. IR spectrum ν CHCl3 nax cm -1 : 3450, 1760, 1735,
1625 Example 5 (5R,6S)-2-[[2-(P-nitrobenzyloxycarbonylamino)propyl]thio]-
6-[(R)-1-tert-butyldimethylsilyloxy]penem-3-carboxylic acid p-nitrobenzyl ester and its (5S)-isomer In the same manner as described in Example 1, (3S, 4R) −
[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[2-(p-nitrobenzyloxycarbonylamino)propyl]thio]thiocarbonyl]thio-1-[1-(p-nitro Heating benzyloxycarbonyl)triphenylphosphoranylidenemethyl]azetidin-2-one in xylene yields the desired trans isomer (70% yield) and its (5S)-cis isomer (14% yield). I got it. IR spectrum ν CHCl3 nax cm -1 : 3440, 1790, 1725,
1702, (5S)-isomer: 3430, 1785, 1722, 1700 nmr spectrum ( CDCl3 ) δppm: 0.04 (3H,
S), 0.07 (3H, S), 0.79 (9H, S), 1.16 (3H,
d, J = 6Hz), 1.24 (3H, d, J = 6.5Hz),
3.19 (9H, d, J = 6.5Hz), 3.60~3.75 (1H,
m), 3.85-4.45 (2H, m), 5.03 (1H, d, J
=8.5Hz), 5.19 (2H, S), 523, 5.40 (2H,
ABq, J=14Hz), 5.65 (1H, d, J=1.8Hz),
7.50 (2H, d), 7.65 (2H, d), 8, 22 (4H,
d) (5S)-isomer: 0.12 (6H, s), 0.88 (9H,
s), 1.31 (3H, d, J=6Hz), 1.42 (3H, d,
J=6Hz), 3.18 (2H, d, J=6Hz), 3.87
(1H, dd, J=10.4Hz), 3.9~4.5 (2H, m),
4.99 (1H, d, J=8Hz), 5.16 (2H, S),
5.22, 5.42 (2H, ABq, J=14Hz), 5.68 (1H,
d, J=4Hz), 7.47 (2H, d), 7.61 (2H,
d), 8.18 (4H, d) Example 6 (5R, 6S)-2-[[2-(P-nitrobenzyloxycarbonylamino)propyl]thio]-
6-[(R)-1-hydroxyethyl]penem-
3-carboxylic acid P-nitrobenzyl ester By the same operation as described in Example 3 (5R,
6S)-2-[[2-(p-nitrobenzyloxycarbonylamino)propyl]thio]-6-[(R)-
1-tert-Butyldimethylsilyloxy]penem-3-carboxylic acid p-nitrobenzyl ester was desilylated to obtain the desired product in 80% yield. UV spectrum λ EtoH nax nm: 264, 338 IR spectrum ν CHCl3 nax cm -1 : 3430, 1790, 1730,
1700 nmr spectrum ( d7 -DMF) δppm: 1.29
(6H, d, J = 6.5Hz), 3.25 (2H, d, J = 6
Hz), 3.7-4.5 (3H, m), 5.30 (2H, s), 5.42,
5.60 (2H, ABq, J = 14Hz), 5.91 (1H, d, J
= 1.5Hz), 7.53 (1H, d, J = 9Hz), 7.73
(2H, d), 7.87 (2H, d) 8.34 (4, d). Example 7 (5R,6S)-2-[(2-(aminopropyl)thio]-6-[(R)-1-hydroxyethyl]penem-3-carboxylic acid By the same operation as described in Example 4 (5R,
6S)-2-[[2-(P-nitrobenzyloxycarbonylamino)propyl]thio]-6-[(R)-
1-Hydroxyethyl]penem-3-carboxylic acid p-nitrobenzyl ester is subjected to a reduction reaction,
The target amino acid was obtained with a yield of 55%. UV spectrum λ H3O nax nm (ε): 254 (4600), 320
(5700) IR spectrum ν KBr nax cm -1 : 3400, 1770, 1570 nmr spectrum (D 2 O) δppm: 1.31 (3H,
d, J = 6.5Hz), 1.41 (3H, d, J = 6.5Hz),
2.8-3.3 (2H, m), 3.5 (1H, m), 3.95 (1H,
dd, J = 6.18Hz), 4.3 (1H, m), 5.69 (1/2H,
d, J=1.8Hz), 5.72 (1/2H, d, J=1.8Hz). Reference example 13 (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[(R)-1
-Methyl-2-(P-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thioazetidin-2-one 6.61 g (23,1 mmol) of (R)-1-methyl-2-(p-nitrobenzyloxycarbonylamino)ethanethiol was added to a solution of 518 mg (22.5 mmol) of metallic sodium dissolved in 100 ml of methanol at -10°C.
and stirred for 5 minutes, then 1.76g of carbon disulfide
(23.1 mmol) and stir for 10 minutes. Then, at the same temperature, (3R,4R)-4-acetoxy-3-[(R)-
1-tert-butyldimethylsilyloxyethyl]
Add 6.46 mg (22.5 mmol) of azetidin-2-one, and raise the bath temperature to 0°C in about 1 hour. Acetic acid approx.
After adding 300 mg, dilute with ethyl acetate, wash with saturated saline, and dry. The solvent was distilled off and the residue was subjected to column chromatography using 200 g of silica gel. 10.8 g (yield: 84%) of the target product was obtained as a yellow oil. Elemental analysis value as C 23 H 55 O 6 S 3 Si Calculated value: C, 48.14; H, 6.15; N, 7.32; S, 16.76 Actual value: C, 48.22; H, 6.12; N, 7.18; S, 16.55 IR Spectrum ν CHCl3 nax cm -1 : 3460, 3420, 1780,
1735 NMR spectrum ( CDCl3 ) δppm: 0.08
(6H, s), 0.85 (9H, s), 1.15 (3H, d, J
= 6Hz), 1.34 (3H, d, J = 7Hz), 3.13 (1H,
t, J = 3Hz), 3.43 (2H, t, J = 7Hz), ~
4.2 (2H, m), 5.16 (2H, s), 5.38 (1H, br,
t, J = 7Hz), 5.62 (1H, d, J = 3Hz), 6.9
(1H, br.), 7.50 (2H, d), 8, 23 (2H, d) Reference example 14 (3S, 4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1 -[1-Hydroxy(P-nitrobenzyloxycarbonyl)
methyl]-4-[[[(R)-1-methyl-2-(P
-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thioazetidin-2-one (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[(R)-1-
10.8 g (18.8 mmol) of methyl-2-(P-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thioazetidin-2-one and 8.53 g of p-nitrobenzylglyoxylate hydrate
(37.6 mmol) was heated under reflux in 100 ml of benzene for 20 hours. After the reaction is complete, the solvent is distilled off and the residue is subjected to column chromatography using 150 g of silica gel. After eluting 1.62 g (15%) of the starting material with a 15% acetone-hexane mixed solvent, the fraction eluted with a 30% acetone-hexane mixed solvent was collected, and 12.6 g (yield) of the target product was obtained as a yellow oil.
85%) obtained. Elemental analysis value as C 32 H 42 N 4 O 11 S 3 Si Calculated value: C, 49.09; H, 5.41; N, 7.16; S, 12.28 Actual value: C, 49.15; H, 5.38; N, 6.91; S, 12.07 IR spectrum ν CHCl3 nax cm -1 : 3530, 3450, 1782,
1760, 1736 NMR spectrum ( CDCl3 ) δppm: 0.05
(3H, s), 0.08 (3H, s), 0.85 (9H, s),
1.18 (3H, d, J = 6Hz), 1.36 (3H, d, J =
7Hz), 3.4 (3H, m), 4.2 (3H, m), 5.1 to 5.7
(6H, m), 6.2 (1H, m), 7.50 (2H, d), 7.55
(2H, d), 8.23 (4H, d) Reference example 15 (3S, 4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[(R)-1
-Methyl-2-(p-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thio-1-[1-(p-nitrobenzyloxycarbonyl)triphenylphosphoranylidenemethyl]azetidin-2-one (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1-[1-hydroxy(p-nitrobenzyloxycarbonyl)methyl]-4-[[[(R)- 1-Methyl-2-(p-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thioazetidin-2-one
12.6g (1.61mmol) in 150ml of tetrahydrofuran
2.00 g of 2.6-lutidine dissolved in -15℃
(18.7 mmol) then 2.11 g of thionyl chloride
(1.77 mmol) and stirred at the same temperature for 15 minutes. Furthermore, 3.45 g (3.22 mmol) of 2.6-lutidine and 12.6 g (48.1 mmol) of triphenylphosphine are added, and the mixture is stirred at 65° C. for 35 hours under a nitrogen stream. After the reaction is completed, the mixture is diluted with ethyl acetate, washed with water, and then dried. The solvent was distilled off and the residue was subjected to column chromatography using 250 g of silica gel to obtain a concentration of 15-20%.
Elute with a mixed solvent of ethyl acetate and benzene to obtain the target product.
10.9 g (yield 66%) was obtained as a yellow oil. Elemental analysis value C 50 H 55 N 4 O 10 PS 3 Si Calculated value: C, 58.46; H, 5.40; N, 5.45; S, 3.01 Actual value: C, 58.59; H, 5.22; N, 5.33; S, 2.95 IR spectrum ν CHCl3 nax cm -1 : 3450, 1760, 1734,
1623 Example 8 (5R,6S)-2-[[(R)-1-methyl-2-
(p-nitrobenzyloxycarbonylamino)
ethyl]thio]]-6-[(R)-1-tert-butyldimethylsilyloxyethyl]penem-3-
Carboxylic acid p-nitrobenzyl ester and its (5S)-isomer (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-[[[(R)-1-
9.90 g of methyl-2-(p-nitrobenzyloxycarbonylamino)ethyl]thio]thiocarbonyl]thio-1-[1-(p-nitrobenzyloxycarbonyl)triphenylphosphoranylidenemethyl]azetidin-2-one, Hydroquinone 570
mg is heated in 1000 ml of xylene at 127-130°C for 13.5 hours under nitrogen flow. After the reaction, the solvent was distilled off under reduced pressure, and the residue was subjected to column chromatography using 150 g of silica gel, eluting with 5% ethyl acetate-benzene to obtain the cis isomer [(5S, 6S) isomer]
1.60 g (23% yield) was obtained as an oil. Further elution with 5-10% ethyl acetate-benzene yielded 5.24 g of trans isomer [(5R,6S) isomer] (yield 74
%) was obtained. The trans isomer was recrystallized from benzene to obtain a pure product with a melting point of 163-164°C. Elemental analysis value as C 32 H 40 N 4 O 10 S 2 Si Calculated value: C, 52.44; H, 5.50; N, 7.65; S, 8.75 Actual value: Trans isomer: C, 52.70; H,
5.39; N, 7.43; S, 8.55; cis isomer: C,
52.58; H; 5.44; N, 7.41; S, 8.52 IR spectrum, trans isomer ν KBr nax cm -1 :
3400 (br.), 1785, 1735, 1690; Cis isomer ν CHCl3 nax cm -1 : 3450, 1798, 1735, 1700 (Sh.) Specific rotation, trans isomer: [α] 25 D +29.6° (C=0.47, CHCl 3 ) NMR spectrum (CDCl 3 ) δppm, trans isomer: 0.03, 0.06 (6H, s), 0.83 (9H, s),
1.23 (3H, d, J=6Hz), ~1.3 (3H, m)
3.45 (3H, m), 3.71 (1H, dd, J=4, 1.5
Hz), 4.2 (2H, m), 5.17 (2H, s), 5.18 (1H,
d, J=14.5Hz), 5.38 (1H, d, J=14.5Hz),
~5.4 (1H, m), 5.61 (1H, d, J = 1.5Hz),
7.48 (2H, d), 7.60 (2H, d) 8.16 (4H, d);
Cis-isomer: 0.12 (6H, s) 0.88 (9H.S),
1.40 (6H, d, J=6Hz), ~3.5 (3H, m),
3.87 (1H, dd, J=10, 3.5Hz), ~4.4 (2H,
m), 5.16 (2H, s), ~5.3 (1H, m), 5.22
(1H, d, J = 14.5Hz), 5.42 (1H, d, J =
14.5Hz), 5.61 (1H, d, J = 3.5Hz), 7.47 (2H,
d), 7.61 (2H, d), 8.18 (4H, 4) Example 9 (5R, 6S)-2-[[(R)1-methyl-2-(P
-nitrobenzyloxycarbonylamino)ethyl]thio]-6-[(R)-1-hydroxyethyl]penem-3-carboxylic acid p-nitrobenzyl ester (5R,6S)-2-[[(R)1-methyl-2-(p
3.39 g
(4.63 mmol), acetic acid 2.78 g (46 mmol), tetra(n-butyl)ammonium fluoride 3.62 g
(1.39 mmol) was dissolved in 66 ml of tetrahydrofuran and stirred at room temperature for 15 hours. After the reaction is complete, dilute with ethyl acetate, wash with water and then with aqueous sodium bicarbonate. The crystalline residue obtained by distilling off the solvent was recrystallized from ethyl acetate to obtain 1.98 g of the desired product having a melting point of 158-160°C. The liquid was subjected to column chromatography to obtain an additional 0.36 g of target crystals (melting point: 158-160°C). Total yield: 2.34 g (82% yield) This compound is similar to isomer B described in Example 5.
The NMR spectra matched. Elemental analysis value as C 26 H 26 N 4 O 10 S 2 Calculated value: C, 50.48; H, 4.24; N, 9.06; S, 10.37 Actual value: C, 50.42; H, 4.19; N, 8.95; S, 10.33 IR spectrum ν KBr nax cm -1 : 3520, 3330, 1780,
1710 Specific rotation [α] 25 D +70.0° (C = 0.47, DMF) NMR spectrum (d 7 −DMF) δppm: 1.32,
(3H, d, J=6Hz), 1.46 (3H, d, J=6.5
Hz), 3.95 (1H, dd, J=7.15Hz), 4.17 (1H,
m), 5.28 (2H, s), 5.37 (1H, d, J = 14.5
Hz), 5.65 (1H, d, J = 14.5Hz), 5.87 (1H,
d, J=1.5Hz), 7.69 (2H, d), 7.81 (2H,
d), 8.27 (4H, d) Example 10 (5R,6S)-2-[[(R)-2-amino-1-methylethyl]thio]-6-[(R)-1-hydroxyethyl] penem-3-carboxylic acid (5R,6S)-2-[[(R)1-methyl-2-(p
-nitrobenzyloxycarbonylamino)ethyl]thio]-6-[(R)-1-hydroxyethyl]
2.19 g of penem-3-carboxylic acid p-nitrobenzyl ester was added to 200 ml of tetrahydrofuran and
Dissolve in 200ml of 0.1M phosphate buffer (PH7.1) and add 10
Add 4g of % palladium-carbon and hydrogenate at atmospheric pressure, 5
Stir for hours. After the reaction was completed, the reaction mixture was filtered, the catalyst was washed with 50 ml of the above phosphate buffer solution, and the combined solution and washing solution were washed twice with ethyl acetate. The aqueous layer was concentrated to about 200 ml under reduced pressure at room temperature, subjected to column chromatography using 50 ml of Diaion Hp20AG, and the fractions eluted with 5% acetone-water were collected and freeze-dried. The target product was subjected to the same column chromatography.
604 mg (yield 56%) was obtained as a colorless powder. IR spectrum ν KBr nax cm -1 : 3400 (br.), 1775,
1580 Specific rotation [α] 25 D +14.34° (C=0.47, H 2 O) NMR spectrum (D 2 O) δppm (ext・
TMB): 1.31 (3H, d, J = 6Hz), 1.46 (3H,
d, J=7Hz), 3.1-3.8 (3H, m), 3.96 (1H,
dd, J=6, 1.5Hz), 4.26 (1H, m), 5.69
(1H, d, J = 1.5Hz). Example 11 (5R,6S)-2-[[(R)2-[(formimidoyl)amino]-1-methylethyl]thio]-6
-[(R)-1-hydroxyethyl]penem-3
-carboxylic acid (5R,6S)-2-[[(R)-2-amino-1-methylethyl]ethyl]thio]-6-[(R)-1-hydroxyethyl]penem-3-carboxylic acid 50 mg
(0.16mmol) in 0.1M phosphate buffer (PH7.1) 10
ml, and adjust the pH to 8.5 by adding 2N sodium hydroxide solution dropwise while stirring in ice water. Add 236 mg (2.47 mmol) of methylformimidate hydrochloride in small portions over 5 minutes. At the same time, keep the pH at 8.5 by dropping 2N sodium hydroxide solution. After stirring for 5 minutes, 2N hydrochloric acid solution was added to adjust the pH to 7.0, and this solution was subjected to column chromatography using Diaion HP20AG (20 ml). After eluting inorganic salts and impurities with water, the fractions eluted with 3% to 5% acetone-water were collected and lyophilized to obtain 17 mg (yield 31%) of the N-formimidoyl derivative as a colorless powder. . IR spectrum ν KBr nax cm -1 : 3400 (br), 1770, 1720
(Sh), 1580 Specific optical rotation [α] 25 D +124.1° (C=0.34, H 2 O) NMR spectrum (D 2 O) δppm: 1.30 (3H,
d, J=6Hz), 1.34 (3H, d, J=7Hz), 3.2
~3.7 (3H, m), 3.90 (1H, dd, J=6, 1.5
Hz), 4.26 (1H, m) 5.72 (1H, d, J = 1.5
Hz), 7.83 (1H, s) Reference example 1 (3S,4R)-3-[(S)-1-hydroxyethyl]-1-(1-methoxycarbonyl-2-methylprop-1-enyl)-4- Methylthio-azetidin-2-one (3S,4R)-3-bromo-1-(1-methoxycarbonyl-2-methylprop-1-enyl)-
4-methylthioazetidin-2-one (1.96g,
6.38 mmol), acetaldehyde (843 mg, 3 equivalents)
was dissolved in 20 ml of tetrahydrofuran, and this solution was mixed with zinc (625 mg, 1.5 equivalents) and diethylaluminum chloride (6.68 ml, 1.5 equivalents, 15% hexane solution).
into a solution of 15 ml of tetrahydrofuran under stirring, 15 ~
Add for 40 min at 20°C. After stirring for 1 hour, water and then ethyl acetate were added, the resulting white precipitate was separated using Celite, and the liquid was extracted with ethyl acetate. Processed by conventional methods, crude target material
2.05 g are obtained as an oil. This was separated by silica gel column chromatography (approximately 30 g, developed with chloroform-ethyl acetate (5:1)) to obtain 1.04 g (yield, 60%) of the desired product as a colorless oil. This product is a mixture of 1'S and 1'R coordination for the 3-position side chain, and the ratio is 4:1. Elemental analysis value C 12 H 19 O 4 As NS Calculated value: C, 52.74; H, 6.96; N, 5.13; S, 11.72 Actual value: C, 52.81; H, 7.21; N, 5.43; S, 11.78 IR spectrum ν liq nax cm -1 : 3450, 1760, 1710,
1380, 1360, 1225 nmr spectrum (CDCl 3 ) δppm, 1′S system:
1.30 (3H, d, J=6Hz), 1.93 (3H, s),
2.05 (3H, s), 3.14 (1H, dd, J=6.3Hz),
3.72 (3H, s), 4.12 (1H, m), 4.92 (1H, d,
J = 3Hz); 1'R system: 1.26 (3H, d, J = 6Hz),
1.93 (3H, s), 2.05 (3H, s), 2.16 (3H, s),
3.14 (1H, dd, J=6.3Hz), 3.72 (3H, s),
4.12 (1H, m), 5.04 (1H, d, J = 3Hz). Reference example 2 (3S,4R)-3-[(R)-1-benzoyloxyethyl]-1-(1-methoxycarbonyl-
2-Methylprop-1-enyl)-4-methylthioazetidin-2-one (3S,4R)-3-[(S)-1-hydroxyethyl]-1-(1-methoxycarbonyl-2-methylprop-1-enyl)-4-methylthio-azetidin-2-one (105mg, 0.38mmol ), triphenylphosphine (201 mg, 2 equivalents), benzoic acid (94
mg, 2 equivalents) was dissolved in 2 ml of tetrahydrofuran, and azodicarboxylic acid diethyl ester (134 mg, 2 equivalents) was dissolved in tetrahydrofuran (1 ml).
Add the solution gradually over 10 minutes at 20℃ and leave it as is.
Continue stirring for 1.5 hours. The solvent was distilled off, and the residue was dissolved in 3 ml of a mixed solution of benzene-ethyl acetate (6:1).
Dissolve it in a cold place, separate the crystals that precipitate, and separate the liquid by thin layer chromatography (developing agent, benzene: ethyl acetate = 5:1) to obtain the desired product.
119 mg (yield, 82%) was obtained as an oil. This product contains a small amount of the 1' isomer. Elemental analysis value C 19 H 23 NO 5 Calculated value as S: C, 60.48; H, 6.10; N, 3.71; S, 8.49. Actual value: C, 59.20; H, 6.36; N, 3.52; S, 8.68. IR Spectrum ν liq nax cm -1 : 1765, 1720, 1380,
1360, 1270. nmr spectrum (CDCl 3 ) δppm, principal component (1'R system): 1.49 (3H, d, J = 6Hz), 1.95 (3H,
s), 2.03 (3H, s), 2.17 (3H, s), 3.33 (1H,
dd, J=7.3Hz), 3.74 (3H, s), 5.14 (1H,
d, J = 3Hz), 5.63 (1H, dq, J = 7.6Hz),
7.54 (3H, m), 8.10 (2H, m); subcomponent (1′S
system): 1.52 (3H, d, J = 6Hz), 1.95 (3H,
s), 2.03 (3H, s), 2.17 (3H, s), 3.33 (1H,
dd, J=7.3Hz), 3.74 (3H, s), 4.96 (1H,
d, J = 3Hz), 5.63 (1H, dq, J = 7.6Hz),
7.54 (3H, m), 8.10 (2H, m). Reference example 3 (3S,4R)-3-[(R)-1-hydroxyethyl]-1-(1-methoxycarbonyl-2-methylprop-1-enyl)-4-methylthioazetidin-2-one (3S,4R)-3[(R)-1-benzoyloxyethyl]-1-(1-methoxycarbonyl-2-methylprop-1-enyl)-4-methylthioazetidin-2-one 91 mg (0.24 mmol) Dissolve in methanol and add 7.17 mg of sodium to this.
A solution of (0.31 mmol) dissolved in 0.65 ml of methanol was added at 0°, and the mixture was stirred at room temperature (18° to 20°C) for 5 hours. After the reaction is complete, make it slightly acidic with acetic acid, add 20 ml of ethyl acetate, and wash with water. After drying,
Distill the solvent. The obtained residue is purified by preparative thin layer chromatography using silica gel [developing solvent: benzene-ethyl acetate (2:1)] to obtain a pure product. According to the nmr spectrum, this product is a mixture of 1′R and 1′S, and the ratio is approximately 4:1.
It is. Obtain 50 mg (yield, 74.4%) as an oil. Elemental analysis value as C 12 H 19 NO 4 S Calculated value: C, 52.74; H, 6.96; N, 5.13; S, 11.72 Experimental value: C, 53.03; H, 7.33; N, 4.68; S, 11.39 IR spectrum ν liq nax cm -1 : 3450 (br), 1750, 1720 nmr spectrum (CDCl 3 ) δppm, Principal component (1'R system): 1.26 (3H, d, J = 6Hz),
1.93 (3H, s), 2.05 (3H, s) 2.15 (3H, s),
3.10 (1H, dd, J=6.3Hz), 3.72 (3H, s),
4.23 (1H, dq, J = 6.6Hz), 5.03 (1H, d, J
= 3 Hz); Subcomponent (1'S system): 1.29 (3H, d, J
=6Hz), 1・93 (3H, s), 2.05 (3H, s),
2.15 (3H, s), 3.10 (1H, dd, J=6.3Hz),
3.72 (3H, s), 4.23 (1H, dq, J=6.6Hz),
4.90 (1H, d, J=3Hz). Reference example 4 (3S,4R)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1-(1-methoxycarbonyl-2-methylprop-1-enyl)-4-methylthioazetidine- 2-on (3S,4R)-3[(R)-1 obtained in Reference Example 3
-hydroxyethyl]-1-(1-methoxycarbonyl-2-methylprop-1-enyl)-4-methylthioazetidin-2-one 5.65 g (20.8 mmol), imidazole 2.54 g
(37.3 mmol) was dissolved in 110 ml of dimethylformamide, and 53.3 g (35.3 mmol) of tert-butyldimethylchlorosilane was added at 0°C, followed by stirring overnight at room temperature. After the reaction is complete, add 200ml of benzene and wash with water. After drying, the solvent was distilled off and the resulting residue was
The product was subjected to column chromatography using double the amount of silica gel and eluted with a mixed solvent of benzene-ethyl acetate (10:1) to obtain 7.95 g (yield 94%) of the desired product as a colorless oil. At the same time, 370mg (6%) of raw materials
was recovered. From the nmr spectrum, the product is 3
It is a mixture of 1'R and 1'S coordination isomers of the side chain, and the ratio is about 4:1. Elemental analysis value C 18 H 33 NO 4 As SSi Calculated value: C, 55.81; H, 8.53; N, 3.62; S, 8.29 Actual value: C, 55.44; H, 8.70; N, 3.42; S, 8.45 IR spectrum ν liq nax cm -1 : 1760, 1720 nmr spectrum (CDCl 3 ) δppm; Principal component (1'R system): 0.10 (6H, s), 0.84 (9H, s), 1.23
(3H, d, J=6Hz), 1.92 (3H, s), 2.05
(3H, s) 2.16 (3H, s) 3.05 (1H, dd, J=
5.3Hz) 3.71 (3H, s) 4.23 (1H, m)), 5.09
(1H, d, J=2Hz); Subcomponent (1′S system): 0.10
(6H, s), 0.84 (9H, s) 1.28 (3H, d, J=
6Hz) 1.92 (3H, s), 2.05 (3H, s) 2.16 (3H,
s), 3.20 (1H, m), 3.71 (3H, s), 4.23 (1H,
m) 4.96 (1H, d, J = 3Hz). Reference example 5 (3S,4R)-4-acetoxy-3[(R)-1-
tert-butyldimethylsilyloxyethyl]-
1-(1-methoxycarbonyl-2-methylprop-1-enyl)azetidin-2-one (3S,4R)-3[(R)- obtained in Reference Example 4
tert-butyldimethylsilyloxyethyl]-1
-(1-methoxycarbonyl-2-methylprop-1-enyl)-4-methylthioazetidine-2
-3.85g of mixture mainly composed of
(9.95mmol), mercuric acetate 5.08g (15.9mmol)
Dissolve in 38 ml of acetic acid under a nitrogen atmosphere at a bath temperature of 95 to 100℃.
Heat and stir for 20 minutes. After the reaction is completed, acetic acid is distilled off under reduced pressure, and the resulting white residue is stirred at 0°C with the addition of a mixed solvent of water and ethyl acetate (approximately 1:1). The ethyl acetate layer was washed with water, and after drying, the solvent was distilled off. The resulting residue was subjected to column chromatography using 30 g of silica gel, and eluted with a mixed solvent of benzene-ethyl acetate (5:1). , objective 3.50
g (yield, 88%) was obtained as an oil. This product contains a small amount of the 1'S coordination isomer at the 3-position side chain as shown by the nmr spectrum. Elemental analysis value as C 19 H 33 NO 6 Si Calculated value: C, 57.14; H, 8.27; N, 3.51 Actual value: C, 56.80; H, 8.44; N, 3.29 IR spectrum ν liq nax cm -1 : 1780, 1755, 1725 nmr spectrum (CDCl 3 ) δppm; Principal component (1'R system); 0.10 (6H, s), 0.90 (9H, s), 1.32
(3H, d, J=6Hz), 1.94 (3H, s), 2.06
(3H, s), 2.22 (3H, s), 3.23 (1H, dd, J
=6.15Hz), 3.80 (3H, s), 4.26 (1H, m),
6, 32 (1H, d, J = 1.5Hz); Subcomponent (1'S system); 0.10 (6H, s), 0.90 (9H,
s), 1.34 (3H, d, J=6Hz), 1.94 (3H,
s), 2.06 (3H, s), 2.22 (3H, s), 3.34 (1H,
m), 3.80 (3H, s), 4.26 (1H, m), 6.25 (1H,
d, J=1.5Hz) Reference example 6 (3S,4R)-4-acetoxy-3[(R)-1-
tert-butyldimethylsilyloxyethyl]azetidin-2-one (3S,4R)-4-acetoxy-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1-(1-methoxycarbonyl-2-methylprop-1-enyl) obtained in Reference Example 5 Azetidine-
3 g (7.5 mmol) of a mixture containing 2-one as the main component
was dissolved in 300 ml of acetone, and 6.43 g (30.1 mmol) of sodium metaperiodate and 120 mg of potassium permanganate were dissolved in 150 ml of water and 150 ml of 0.1M phosphate buffer (PH7.02). Around ℃
Add over 30 minutes and stir at the same temperature for 4 hours. After the reaction is complete, the precipitate is separated, about 25 ml of buffer is added to the solution to adjust the pH to 6.8, and the acetone is removed at low temperature under reduced pressure, followed by extraction with benzene. The benzene layer is collected, dried, and the solvent is distilled off to obtain a crystalline solid. Recrystallization from n-hexane yielded 0.934 g (43.3%) of the desired product as needle crystals having a melting point of 104-106°C. Elemental analysis value as C 13 H 25 O 4 Si Calculated value: C, 54.32; H, 8.77; N, 4.87 Actual value: C, 54.04; H, 8.79; N, 4.71 IR spectrum ν nujol nax cm -1 : 3175, 1783, 1743. Specific rotation [α] 20 D +48.8° (C = 0.41, CHCl 3 ) nmr spectrum (CDCl 3 ) δppm: 0.07 (6H,
s), 0.88 (9H, s), 1.25 (3H, d, J=6.5
Hz), 2.13 (3H, s), 3.20 (1H, dd, J=3.5,
1.5Hz), 4.3 (1H, m) 5.98 (1H, d, J = 1.5
Hz), 7.24 (1H, br).

Claims (1)

【特許請求の範囲】 1 式 を有するペネム−3−カルボン酸誘導体及びその
薬理上許容される塩 式中、R1は1−ヒドロキシ低級アルキル基、
1−アシルオキシ低級アルキル基、1−アルキル
スルホニルオキシ低級アルキル基、1−アリール
スルホニルオキシ低級アルキル基または1−トリ
アルキルシリルオキシ低級アルキル基を示し、 R2は水素原子または低級アルキル基を示し、
R3は水素原子、アミノ基の保護基または−CR6
NR5基(式中、R5およびR6は同一または異なつ
て水素原子または低級アルキル基を示す。)を示
し、Aは分枝鎖状の低級アルキレン基を示し、
R4は水素原子またはカルボキシル基の保護基を
示す。 2 R1が1−ヒドロキシエチル基であり、R2
水素原子であり、R3が水素原子、ホルムイミド
イル基またはアセトイミドイル基であり、Aが炭
素数1乃至2個のメチル若しくはエチル分枝を有
するエチレン基、トリメチレン基またはテトラメ
チレン基であり、R4が水素原子またはピバロイ
ルオキシメチル基である特許請求範囲第1項記載
のペネム−3−カルボン酸誘導体及びその薬理上
許容される塩。
[Claims] 1 formula Penem-3-carboxylic acid derivatives and pharmacologically acceptable salts thereof, wherein R 1 is a 1-hydroxy lower alkyl group,
1-acyloxy lower alkyl group, 1-alkylsulfonyloxy lower alkyl group, 1-arylsulfonyloxy lower alkyl group or 1-trialkylsilyloxy lower alkyl group, R 2 represents a hydrogen atom or a lower alkyl group,
R 3 is a hydrogen atom, a protecting group for an amino group, or −CR 6 =
NR 5 group (in the formula, R 5 and R 6 are the same or different and represent a hydrogen atom or a lower alkyl group), A represents a branched lower alkylene group,
R 4 represents a hydrogen atom or a carboxyl group protecting group. 2 R 1 is a 1-hydroxyethyl group, R 2 is a hydrogen atom, R 3 is a hydrogen atom, formimidoyl group or acetimidoyl group, and A is methyl or ethyl having 1 to 2 carbon atoms. The penem-3-carboxylic acid derivative according to claim 1, which is an ethylene group, trimethylene group or tetramethylene group having a branch, and R 4 is a hydrogen atom or a pivaloyloxymethyl group, and its pharmacologically acceptable salt.
JP7612880A 1980-06-06 1980-06-06 Penem-3-carboxylic derivative and its preparation Granted JPS572291A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP7612880A JPS572291A (en) 1980-06-06 1980-06-06 Penem-3-carboxylic derivative and its preparation
FR8111191A FR2483924A1 (en) 1980-06-06 1981-06-05 PENEME-3-CARBOXYLIC ACID DERIVATIVES, PROCESSES FOR THEIR PREPARATION AND THERAPEUTIC USE THEREOF
NL8102736A NL8102736A (en) 1980-06-06 1981-06-05 PENEM-3-CARBONIC ACID COMPOUNDS AND THEIR PREPARATION.
CH3723/81A CH651037A5 (en) 1980-06-06 1981-06-05 PENEM-3-CARBONIC ACID DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF.
DE19813122523 DE3122523A1 (en) 1980-06-06 1981-06-05 PENEM-3-CARBONIC ACID DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND MEDICINAL PRODUCTS CONTAINING THE SAME
ES502828A ES8300769A1 (en) 1980-06-06 1981-06-05 Penem-3-carboxylic acid derivatives
US06/271,010 US4395418A (en) 1980-06-06 1981-06-05 Penem-3-carboxylic acid derivatives
IT67783/81A IT1144602B (en) 1980-06-06 1981-06-08 DERIVATIVES OF PENICIL 3 CARBOXYLIC ACID AND PROCEDURE FOR THEIR PREPARATION
GB8117447A GB2078220B (en) 1980-06-06 1981-06-08 Penem-3-carboxylic acid derivatives and their preparation
BE0/205047A BE889151A (en) 1980-06-06 1981-06-09 PENEME-3-CARBOXYLIC ACID DERIVATIVES, PREPARATION METHODS THEREOF AND THERAPEUTIC APPLICATION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7612880A JPS572291A (en) 1980-06-06 1980-06-06 Penem-3-carboxylic derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS572291A JPS572291A (en) 1982-01-07
JPH0224832B2 true JPH0224832B2 (en) 1990-05-30

Family

ID=13596288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7612880A Granted JPS572291A (en) 1980-06-06 1980-06-06 Penem-3-carboxylic derivative and its preparation

Country Status (2)

Country Link
JP (1) JPS572291A (en)
BE (1) BE889151A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115308A3 (en) * 1983-01-25 1984-10-10 Merck & Co. Inc. 2-unsaturated alkylthio-pen-2-em-3-carboxylic acids and process for preparing substituted 2-thioxopenams and 2-substituted thiopenems
GB8500831D0 (en) * 1985-01-14 1985-02-20 Erba Farmitalia Preparing azetidinone intermediates

Also Published As

Publication number Publication date
BE889151A (en) 1981-12-09
JPS572291A (en) 1982-01-07

Similar Documents

Publication Publication Date Title
US4350631A (en) 6- and 4-Substituted-1-azabicyclo[3.2.0]heptan-3,7-dione-2-carboxylates
EP0090366B1 (en) 1-azabicyclo(3.2.0)hept-2-ene-2-carboxylic acid derivatives, processes for the preparation thereof and pharmaceutical compositions containing them
HU182017B (en) Process for preparing 6-substituted thia-aza-derivatives
JPH0372630B2 (en)
EP0336143B1 (en) A new process for carbapenem intermediates
EP0239853B1 (en) 3,4-disubstituted-2-azetidinone derivatives and processes for the preparation thereof
US4395418A (en) Penem-3-carboxylic acid derivatives
JPH03395B2 (en)
IE842848L (en) Producing penems
JPH0631254B2 (en) Manufacturing method of penem compound
EP0080162B1 (en) 2-(fluoroalkylthio)substituted penems, processes for preparing them, and pharmaceutical compositions containing them
JPS6355514B2 (en)
US4600713A (en) 1-, 6- and 2-substituted-1-carba-2-penem-3-carboxylic acids
US4224336A (en) 3-(2-Aminoethylthio)-6-amido-7-oxo-1-azabicyclo[3.2.0]-hept-2-ene-2-carboxylic acid
NL8200217A (en) BICYCLIC COMPOUNDS, METHODS FOR PREPARING THE SAME, AND PHARMACEUTICAL PREPARATIONS CONTAINING THESE BICYCLIC COMPOUNDS.
GB2160865A (en) Antibacterial penem derivatives
JPH0224832B2 (en)
EP0305111A2 (en) Cephalosporin compounds, process for their preparation and their pharmaceutical compositions
FI69845C (en) PROCEDURE FOR THE PREPARATION OF ANTIBACTERIAL ANTIBACTERIA
EP0091576B1 (en) 7-oxo-4-thia-1-azabicyclo(3,2,0)heptane derivatives
JPH0532668A (en) Preparation of substituted 2-thioxopenam and 2-substituted thiopenem
JPS642118B2 (en)
US4994568A (en) 6- and 4-substituted-1-azabicyclo(3.2.0)heptan-3, 7-dione-2-carboxylates
JPH0524155B2 (en)
JPH06104672B2 (en) Penems production method