JPH02245620A - Far-infrared ray measuring apparatus - Google Patents

Far-infrared ray measuring apparatus

Info

Publication number
JPH02245620A
JPH02245620A JP1066636A JP6663689A JPH02245620A JP H02245620 A JPH02245620 A JP H02245620A JP 1066636 A JP1066636 A JP 1066636A JP 6663689 A JP6663689 A JP 6663689A JP H02245620 A JPH02245620 A JP H02245620A
Authority
JP
Japan
Prior art keywords
sensor
far
gas
measuring apparatus
grip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1066636A
Other languages
Japanese (ja)
Other versions
JP2699531B2 (en
Inventor
Hidefumi Saito
英文 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1066636A priority Critical patent/JP2699531B2/en
Publication of JPH02245620A publication Critical patent/JPH02245620A/en
Application granted granted Critical
Publication of JP2699531B2 publication Critical patent/JP2699531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To realize a far-infrared ray measuring apparatus with a handy construction by setting the apparatus to apply far-infrared rays incident on a measuring apparatus body to a light receiving surface of a sensor effectively. CONSTITUTION:A working gas is sealed into a closed space between a compression chamber 65 and an expansion chamber 33 and a gas spring chamber 34 is filled with the same gas for energization. The gas for energization stores a repulsive force when the expansion chamber 33 is compressed with a piston 62 to attain a high pressure and reaches a value equivalent to such an intermediate pressure as to release the repulsive force when the expansion chamber 33 is reduced in pressure with the piston to a low level. Thus, when a motor 64 is driven at a low speed, a cold head 31a falls to a specified temperature to cool a sensor 4 efficiently. On the other hand, when the sensor 4 functions, an electrical signal is generated in the sensor 4 with a size thereof proportional to a quantity of light received. Thus, this signal is amplified with an amplifier 51 to be transmitted to a recorder 7 with a cable 82 thereby enabling a quantitative measurement with the recorder 7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、遠赤外線量を測定する際に好適に利用可能な
遠赤外線測定器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a far-infrared measuring device that can be suitably used when measuring the amount of far-infrared rays.

[従来の技術] 遠赤外線測定器に(:1サーモグラフイ装置を始めとす
るいくつかの種類がある。これらの装置では、心臓部で
ある遠赤外線センサに従来から熱型検出素子を使用して
きたが、応答速麿や検出能力等に問題があって測定精度
は決して高いものではなかった。しかし、近時になって
半導体製の光電型検出素子が開発され、それらの問題が
解決されたため、これに関わる技術分野で急速に応用が
進みつつある。
[Prior Art] There are several types of far-infrared measuring instruments, including thermography devices.These devices have traditionally used thermal detection elements in the far-infrared sensor, which is the heart of the device. However, the measurement accuracy was never high due to problems with response speed and detection ability.However, recently, semiconductor photoelectric detection elements were developed and these problems were solved. Applications are rapidly progressing in technical fields related to this.

ところで、この光電型検出素子は冷却しないと所期の悪
文が得られないため、現行測定器の多くはJ/T(ジュ
ール/トムソン)冷凍機を設備するようにしている。こ
の冷凍機は、取付台の上に真空のジュワー瓶を取付固定
し、ジュワー瓶内部に200 atm程度のN2ガスを
送り込み断熱膨張させることによって低温を得るように
したもので、センサはジュワー瓶の先端に取着するよう
になっている。
By the way, since this photoelectric type detection element cannot obtain the desired result unless it is cooled, most of the current measuring instruments are equipped with a J/T (Joule/Thomson) refrigerator. This refrigerator has a vacuum dewar bottle mounted and fixed on a mounting base, and N2 gas of about 200 atm is fed into the dewar bottle to cause adiabatic expansion to obtain a low temperature.The sensor is attached to the dewar bottle. It is designed to be attached to the tip.

[発明が解決しようとする課題] しかし、測定器がこのような構造であると、精度的には
良好となるが、取扱上で制約を叉けることが多くなる。
[Problems to be Solved by the Invention] However, if the measuring device has such a structure, although the accuracy is good, there are many restrictions on handling.

例えば、最近では生活に身近なもの(例えば布団・衣類
などの生活用品や各種電気製品など)の遠赤外線量を測
定して商品の研究開発や品質管理に役立てようとする試
みがあるが、従来の測定器は上述したように固定式のか
なり大掛りなものであるため、測定場所に簡単に持込む
ことができず、また、センシング方向が限られているた
め設定が難しい等の不都合が伴う。
For example, recently there have been attempts to measure the amount of far infrared rays in things that are familiar to daily life (for example, daily necessities such as futons and clothing, and various electrical products) to use it for product research and development and quality control. As mentioned above, the measuring device is fixed and quite large, so it cannot be easily carried to the measurement location, and it is difficult to set up because the sensing direction is limited. .

そこで、本発明は、簡易な構造の遠赤外線測定器を実現
して、これらの問題を好適に解決することを目的として
いる。
Therefore, an object of the present invention is to realize a far-infrared measuring device with a simple structure to suitably solve these problems.

[課題を解決するための手段] 本発明は、かかる目的を達成するために、集光機能を有
した測定器本体と、この測定器本体に一体に突設したグ
リップと、このグリップから前記測定器本体にかけて内
設したスプリットスターリング冷凍機の膨脹部と、この
膨脹部のコールドヘッドに取着した遠赤外線センサとを
具備してなり、測定器本体内に入射した遠赤外線がセン
サ受光面に有効に照射されるように設定したことを特徴
としている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a measuring instrument main body having a light condensing function, a grip protruding integrally from the measuring instrument main body, and a grip that allows the measurement to be carried out from the grip. It is equipped with an expansion part of a split Stirling refrigerator installed over the main body of the measuring instrument, and a far-infrared sensor attached to the cold head of this expansion part. It is characterized by being set so that it is irradiated with.

[作用] スプリットスターリング冷凍機は、圧縮部と膨脹部が分
離されているため、膨脹部だけを冷却箇所に取付ければ
よく、比較的配置条件が易しくて振動も小さくて済む利
点がある。しかも、数+W程度の入力があれば、センサ
を液体窒素温度近くまで十分冷却する能力を有している
。したがって、この冷凍機を利用すれば、膨脹部をグリ
ップから測定器本体にかけて内部に収容することは容易
であり、測定器をハンディタイプの手軽なものにするこ
とができる。また、センシングターゲットに向けてグリ
ップを把持して固定すると、グリップ内部に収容されて
いる膨脹部の振動が同時に抑止されるので、測定上好都
合となる。
[Function] Since the compression section and the expansion section are separated, the split Stirling refrigerator has the advantage that only the expansion section needs to be attached to the cooling location, and the arrangement conditions are relatively easy and vibrations are small. Moreover, it has the ability to sufficiently cool the sensor to near the temperature of liquid nitrogen with an input of approximately several watts. Therefore, if this refrigerator is used, it is easy to accommodate the expansion part from the grip to the measuring instrument body, and the measuring instrument can be made into a handy type. Further, when the grip is held and fixed toward the sensing target, vibration of the inflatable portion housed inside the grip is simultaneously suppressed, which is convenient for measurement.

[実施例] 以下、本発明の一実施例を第1図を参照して説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

この実施例の遠赤外線測定器は、集光機能を有した測定
器本体1と、この測定器本体1に一体に突設したグリッ
プ2と、このグリップ2から前記測定器本体1にかけて
内部に収容したスプリットスターリング冷凍機の膨脹部
3と、この膨脹部3のコールドヘッド31aに取着した
遠赤外線センサ4とを具備している。
The far-infrared measuring device of this embodiment includes a measuring device main body 1 having a light focusing function, a grip 2 integrally protruding from the measuring device main body 1, and a portion from the grip 2 to the measuring device main body 1 housed inside. The refrigerator is equipped with an expansion section 3 of a split Stirling refrigerator, and a far-infrared sensor 4 attached to a cold head 31a of the expansion section 3.

具体的に説明すると、測定器本体1とグリップ2には、
膨脹部3のケーシング3aに対応した断面形状の収容ス
ペースが確保してあり、そのスペースに膨脹部3が装着
されている。また、測定器本体1の前方には開口部11
が設けてあり、この開口部11に集光レンズ12を嵌装
している。そして、該集光レンズ12の光軸mに臨んで
膨脹部3のコールドヘッド31aを配置するようにして
いる。
To explain specifically, the measuring instrument main body 1 and the grip 2 include:
A housing space with a cross-sectional shape corresponding to the casing 3a of the expansion section 3 is secured, and the expansion section 3 is installed in this space. In addition, an opening 11 is provided in the front of the measuring instrument main body 1.
is provided, and a condenser lens 12 is fitted into this opening 11. The cold head 31a of the expansion section 3 is arranged facing the optical axis m of the condenser lens 12.

膨脹部3は、シリンダ31内に摺動可能にディスプレー
サ32を嵌装し、該ディスプレーサ32とシリンダ31
との間に膨脹室33、ガススプリング室34及びガスポ
ート35を閉成している。
The expansion section 3 has a displacer 32 slidably fitted into the cylinder 31, and the displacer 32 and the cylinder 31 are connected to each other.
An expansion chamber 33, a gas spring chamber 34, and a gas port 35 are closed between the two.

ディスプレーサ32は内部にリジェネレータ32a(蓄
冷器)を収容したもので、膨脹室33とガスボート35
とはこのリジェネレータ32a内部を通じて連通してい
る。
The displacer 32 houses a regenerator 32a (regenerator) inside, and has an expansion chamber 33 and a gas boat 35.
and are in communication through the inside of this regenerator 32a.

また、センサ4には、In5bS InAs5Pbなど
を材料につくられた各種の光電型検出素子のうち、測定
対象を勘案して適切なものを選択使用する。そして、集
光レンズ12を介して入射する遠赤外線に対しセンサ中
心がその光軸m上にあり、且つ、受光面が光軸mに対し
略垂直であるようにしてコールドヘッド31aに貼着す
る。このようにして取着されたセンサ4に遠赤外線が照
射されると、光電型本来の特性から、その照射量に比例
した大きさの電気信号が取出されることになる。そこで
、沖)定器本体1の後方にセンサアンプ51を設け、こ
こでセンサ出力を増幅するようにしている。また、グリ
ップ2の後方にはスイッチ52が装着してあり、投入と
同時にセンサアンプ51を機能させる。
Further, for the sensor 4, an appropriate one is selected from among various photoelectric detection elements made of materials such as In5bS, InAs5Pb, etc. in consideration of the object to be measured. Then, it is attached to the cold head 31a so that the sensor center is on the optical axis m of the far infrared rays incident through the condensing lens 12, and the light receiving surface is substantially perpendicular to the optical axis m. . When the sensor 4 attached in this manner is irradiated with far infrared rays, an electric signal having a magnitude proportional to the amount of irradiation is extracted due to the inherent characteristics of the photoelectric type. Therefore, a sensor amplifier 51 is provided at the rear of the meter body 1 to amplify the sensor output. Further, a switch 52 is attached to the rear of the grip 2, and the sensor amplifier 51 is activated at the same time as the grip is turned on.

なお、ケーシング3aとシリンダ31との間は、コール
ドヘッド31aの寒冷を逃がさないために真空断熱槽に
しである。また、ケーシング3aの球面状ヘッド3a1
は、遠赤外線を透過させるためにガラス材が用いである
。53はファイグである。
Note that a vacuum insulation tank is provided between the casing 3a and the cylinder 31 to prevent the cold from the cold head 31a from escaping. Moreover, the spherical head 3a1 of the casing 3a
A glass material is used to transmit far infrared rays. 53 is Fiig.

一方、この測定器本体1とは別体品として、圧縮部6と
記録計7とが設けである。圧縮部6は放熱形シリンダ6
1内に摺動可能に嵌装したピストン62と、このピスト
ン62に連結されたクランク63と、該クランク63を
介して前記ピストン62を往復動させる汎用モータ64
とからなっている。そして、ピストン62とシリンダ6
1との間に拡縮される圧縮室65をフレキシブルチュー
ブ81によって前記膨張部3のガスポート35に可撓的
に連通させている。
On the other hand, a compression section 6 and a recorder 7 are provided as separate items from the main body 1 of the measuring instrument. The compression part 6 is a heat radiation type cylinder 6
1, a crank 63 connected to the piston 62, and a general-purpose motor 64 that reciprocates the piston 62 via the crank 63.
It consists of Then, the piston 62 and the cylinder 6
A compression chamber 65 that expands and contracts between the expansion section 1 and the expansion section 3 is flexibly communicated with the gas port 35 of the expansion section 3 through a flexible tube 81.

また、記録計7は、例えばデイスプレィ表示やプロッタ
出力などの測定機能を有したもので、センサアンプ51
で増幅された検出信号を入力するために、該センサアン
プ51とケーブル82によって可撓的に接続しである。
Further, the recorder 7 has measurement functions such as display display and plotter output, and the sensor amplifier 51
The sensor amplifier 51 is flexibly connected to the sensor amplifier 51 by a cable 82 in order to input the amplified detection signal.

このような構成において、所期のスプリットスターリン
グサイクルを営ませるために、圧縮室65〜膨脹室33
間の密閉空間にHe等の作動ガスを封入し、ガススプリ
ング室34にも同様の付勢用ガスを充填する。付勢用ガ
スは、膨張室33がピストン62で圧縮されて高圧にな
った時に反発力を蓄勢し、該膨張室33がピストンで減
圧されて低圧になった時に反発力を放出するような中間
圧相当量にする。これにより、モータ64を低速駆動す
ると、コールドヘッド31aは所要温度(例えば77°
に以下)にまで降温し、センサ4の冷却を効率良く行う
ことになる。一方、これによってセンサ4が機能すると
、該センサ4には受光量に比例した大きさの電気信号が
発生するため、これがアンプ51によって増幅され、ケ
ーブル82で記録計7に伝送されることになる。このた
め、記録計7による定量的測定が可能になる。
In such a configuration, in order to perform the intended split Stirling cycle, the compression chamber 65 to the expansion chamber 33 are
A working gas such as He is sealed in the closed space between the two, and the gas spring chamber 34 is also filled with a similar biasing gas. The energizing gas stores repulsive force when the expansion chamber 33 is compressed by the piston 62 and becomes high pressure, and releases the repulsive force when the expansion chamber 33 is depressurized by the piston and becomes low pressure. Make the amount equivalent to intermediate pressure. As a result, when the motor 64 is driven at a low speed, the cold head 31a is heated to a required temperature (for example, 77°
The sensor 4 can be cooled efficiently. On the other hand, when the sensor 4 functions as a result, an electric signal proportional to the amount of light received is generated in the sensor 4, so this is amplified by the amplifier 51 and transmitted to the recorder 7 via the cable 82. . Therefore, quantitative measurement using the recorder 7 becomes possible.

しかして、このような構造の遠赤外線測定器であれば、
測定器本体1が図示の如くハンディタイプの手軽なもの
になるので、持運びに便利となり、第2図に示すように
測定方向も自由に設定することが可能になる。このため
、商品開発や品質管理など、特に厳格な精度が要求され
ない測定に対しては、簡易なものと1.て好適に利用し
得るものとなる。しかも、センシングターゲットに向け
てグリップ2を把持して固定すると、グリップ2の内部
に収容されているディスプレーサ32が往復動するとき
に生じる微振動がこれと同時に抑止されるので、センサ
4のブレが極力抑えられ、測定上好都合となる。
However, if the far infrared measuring device has this structure,
Since the measuring device main body 1 is a handy type as shown in the figure, it is convenient to carry, and the measuring direction can be freely set as shown in FIG. For this reason, for measurements that do not require particularly strict accuracy, such as product development or quality control, the simple method and 1. This makes it suitable for use. Moreover, when the grip 2 is held and fixed toward the sensing target, the slight vibrations generated when the displacer 32 housed inside the grip 2 reciprocates are simultaneously suppressed, so that the sensor 4 does not shake. This is suppressed as much as possible, making it convenient for measurement.

なお、測定器本体やグリップの断面形状や取付構造など
は図示実施例に限定されない。例えば、膨張部(又はグ
リップ)を光軸に対して略垂直に突設する等といった変
形は随所に行い得るものである。また、グリップに設け
たスイッチで冷凍機の0N−OFF操作を行うようにす
ると、測定中に膨張部の微振動による悪影響を防止する
ことができる。
Note that the cross-sectional shapes and mounting structures of the measuring instrument body and grip are not limited to the illustrated embodiments. For example, modifications such as protruding the expansion part (or grip) substantially perpendicularly to the optical axis can be made at any time. Further, if the refrigerator is turned on and off using a switch provided on the grip, it is possible to prevent the adverse effects of slight vibrations of the expansion section during measurement.

[発明の効果] 本発明は、以上のような構成によって、携帯用の手軽な
遠赤外線測定器を提供することができる。
[Effects of the Invention] With the above configuration, the present invention can provide a portable and easy-to-use far-infrared measuring device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一部を断面にして本発明の一実施例を示す構成
説明図、第2図は使用状態を示す正面図である。 1・・・測定器本体 3・・・膨張部 31a・・・コールドヘッド 2・・・グリップ 4・・・遠赤外線センサ
FIG. 1 is a partially sectional view showing the construction of an embodiment of the present invention, and FIG. 2 is a front view showing the state of use. 1...Measuring instrument body 3...Inflated part 31a...Cold head 2...Grip 4...Far infrared sensor

Claims (1)

【特許請求の範囲】[Claims] 集光機能を有した測定器本体と、この測定器本体に一体
に突設したグリップと、このグリップから前記測定器本
体にかけて内設したスプリットスターリング冷凍機の膨
脹部と、この膨脹部のコールドヘッドに取着した遠赤外
線センサとを具備してなり、測定器本体内に入射した遠
赤外線がセンサ受光面に照射されるように設定している
ことを特徴とする遠赤外線測定器。
A measuring instrument body having a light condensing function, a grip integrally protruding from the measuring instrument body, an expansion part of a split Stirling refrigerator installed internally from the grip to the measuring instrument body, and a cold head of this expansion part. 1. A far-infrared measuring device, comprising a far-infrared sensor attached to the measuring device, and configured so that far-infrared rays incident on the measuring device main body are irradiated onto a sensor light-receiving surface.
JP1066636A 1989-03-17 1989-03-17 Far-infrared measuring instrument Expired - Lifetime JP2699531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1066636A JP2699531B2 (en) 1989-03-17 1989-03-17 Far-infrared measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1066636A JP2699531B2 (en) 1989-03-17 1989-03-17 Far-infrared measuring instrument

Publications (2)

Publication Number Publication Date
JPH02245620A true JPH02245620A (en) 1990-10-01
JP2699531B2 JP2699531B2 (en) 1998-01-19

Family

ID=13321582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1066636A Expired - Lifetime JP2699531B2 (en) 1989-03-17 1989-03-17 Far-infrared measuring instrument

Country Status (1)

Country Link
JP (1) JP2699531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561294A (en) * 1993-11-18 1996-10-01 State Of Israel-Ministry Of Defense, Armament Development Authority-Rafael Hand-held infra red imaging probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561294A (en) * 1993-11-18 1996-10-01 State Of Israel-Ministry Of Defense, Armament Development Authority-Rafael Hand-held infra red imaging probe

Also Published As

Publication number Publication date
JP2699531B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US6572265B1 (en) In situ optical surface temperature measuring techniques and devices
US4895164A (en) Infrared clinical thermometer
FI932703A (en) Thermometer for measuring the high temperature temperature as well as for measuring the high temperature temperature under the calibration test
US3456490A (en) Differential thermal analysis
US5460450A (en) Cryogenic hygrometer
US2536111A (en) Dew point hygrometer
US4364398A (en) Individual gauge for the microclimate index
Chervin et al. Micro‐Raman at variable low‐temperature and very high pressure
JPH02245620A (en) Far-infrared ray measuring apparatus
US3568693A (en) Fluidic sensing device and method
Roberts An optical absorption cell for use at low temperatures
CN107703177B (en) A kind of microscope hot stage and micro melting point measuring instrument
ES487944A1 (en) Device for measuring the temperature of a thread, bar, tube or sheet by infrared thermometry.
JP2002510034A (en) Cooling device for infrared detector
JPH0541384Y2 (en)
CN215811255U (en) High-precision temperature detector
SU848639A1 (en) Device for investigating opto-electric properties of strained rock
JPH05187813A (en) Scanning tunnel microscope
JPH05196506A (en) Noncontact type temperature sensor and hair dryer provided therewith
Lidwell et al. A rapid response radiometer for the estimation of mean radiant temperature in environmental studies
JPH0541383Y2 (en)
JPH0566161A (en) Sensor calibration testing device
SU792098A1 (en) Optical investigation cuvette for interferometer
SU1441210A1 (en) Device for contactless measurement of temperature
CA2018189A1 (en) Low temperature infrared source