JPH02245011A - Highly pure phenolic resin, composition containing same, its production, and electronic device made from the same resin - Google Patents

Highly pure phenolic resin, composition containing same, its production, and electronic device made from the same resin

Info

Publication number
JPH02245011A
JPH02245011A JP6562389A JP6562389A JPH02245011A JP H02245011 A JPH02245011 A JP H02245011A JP 6562389 A JP6562389 A JP 6562389A JP 6562389 A JP6562389 A JP 6562389A JP H02245011 A JPH02245011 A JP H02245011A
Authority
JP
Japan
Prior art keywords
resin
amount
less
ions
phenolic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6562389A
Other languages
Japanese (ja)
Other versions
JP2638191B2 (en
Inventor
Masaji Ogata
正次 尾形
Kuniyuki Eguchi
州志 江口
Yasuhide Sugawara
菅原 泰英
Osamu Horie
修 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1065623A priority Critical patent/JP2638191B2/en
Publication of JPH02245011A publication Critical patent/JPH02245011A/en
Application granted granted Critical
Publication of JP2638191B2 publication Critical patent/JP2638191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To obtain the title resin excellent in moldability, adhesiveness, electrical properties, etc., by adding an organic solvent to a resol phenolic resin obtained by the condensation of a phenolic compound with HCHO and subjecting the mixture to a specified washing treatment with deionized water. CONSTITUTION:An organic solvent (e.g. acetone) is added to a resol phenolic resin obtained by the condensation of a phenolic compound with HCHO, and the mixture is subjected to a washing treatment with deionized water (e.g. ion-exchanged water). This washing treatment is repeated until an extract obtained by extracting the treated resin with hot water of 120 deg.C in an amount of at least 10 folds in wt. resin for 100hr or longer has an electrical conductivity <=100muS/cm, a pH of 3-7 and a halide ion content and an ammonium or metallic incontinent each of which is 10ppm or below.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高純度フェノール樹脂に係り、特に成形性、
接着性、電気特性および耐熱性に優れたフェノール樹脂
組成物を与える高純度フェノール樹脂および該樹脂組成
物並びに該樹脂を用いた電子装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to high purity phenolic resin, and particularly to moldability,
The present invention relates to a high-purity phenol resin that provides a phenol resin composition with excellent adhesiveness, electrical properties, and heat resistance, the resin composition, and an electronic device using the resin.

〔従来の技術〕[Conventional technology]

電子装置や電気機器等の絶縁、接着、構造材料としては
、目的に応じてフェノール樹脂、不飽和ポリエステル樹
脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂な
どの熱硬化性樹脂、あるいはナイロン、ポリアセタール
、ポリカーボネート、ポリエステル、ポリスルホン、ポ
リエーテルスルホン、ポリアミドイミド、フッ素樹脂な
どの熱可塑性樹脂が用いられている。
Depending on the purpose, thermosetting resins such as phenol resin, unsaturated polyester resin, epoxy resin, silicone resin, polyimide resin, nylon, polyacetal, polycarbonate, etc. are used as insulation, adhesive, and structural materials for electronic devices and electrical equipment. Thermoplastic resins such as polyester, polysulfone, polyethersulfone, polyamideimide, and fluororesin are used.

しかし、高度な信頼性が要求される樹脂封止型半導体装
置や多層プリント回路板を例にとると、使用されている
樹脂は、エポキシ樹脂、シリコーン樹脂、ポリイミド樹
脂がほとんどである。
However, in resin-sealed semiconductor devices and multilayer printed circuit boards that require a high degree of reliability, most of the resins used are epoxy resins, silicone resins, and polyimide resins.

特に、トランジスタ、IC,LSI、VLSI等の半導
体製品の80%以上がエポキシ樹脂を主流とする熱硬化
性樹脂を用いてトランスファ成形した樹脂封止型である
In particular, more than 80% of semiconductor products such as transistors, ICs, LSIs, and VLSIs are resin-sealed products that are transfer-molded using thermosetting resins, mainly epoxy resins.

上記半導体製品の半導体チップは、年々その集積度が向
上し、それに伴ってチップサイズの大型化、配線の微細
化並びに多層化等が進んでいる。
The degree of integration of the semiconductor chips of the above-mentioned semiconductor products is increasing year by year, and along with this, the chip size is increasing, the wiring is becoming finer, and the number of layers is increasing.

上記に伴い、半導体チップの表面は繊細になり、封止樹
脂層は次第に薄肉化している。
Along with the above, the surfaces of semiconductor chips are becoming more delicate, and the sealing resin layers are gradually becoming thinner.

また、該パッケージは、ビン挿入型から表面実製型への
移行に伴い、実装時にこれまでよりも高温(200℃以
上)に曝されるようになってきている。そのため、熱的
ストレスを受けて、封止樹脂、半導体チップあるいはパ
ッシベーション膜のクラックの発生が問題となっている
Furthermore, with the shift from the bottle insertion type to the surface fabrication type, the packages are exposed to higher temperatures (200° C. or higher) than before during mounting. Therefore, cracking of the sealing resin, semiconductor chip, or passivation film due to thermal stress has become a problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、このような樹脂を用いた電子装置および電気機器
の使用条件が厳しくなるに従って、安全性に対する要求
も一段と厳しくなり、より高度な耐熱性、難燃性および
耐久性が要求されている。
In recent years, as the usage conditions for electronic devices and electrical equipment using such resins have become stricter, requirements for safety have become even more stringent, and higher heat resistance, flame retardance, and durability are required.

例えば、エポキシ系樹脂の難燃化には、ハロゲン系ある
いはりん系の化合物が難燃剤として用いられている。し
かし、これらの難燃剤は熱分解温度が比較的低いために
、成形加工時の加熱により熱分解し、その分解生成物に
よって電気特性が低下すると云う問題が発生している。
For example, halogen-based or phosphorus-based compounds are used as flame retardants to make epoxy resins flame retardant. However, since these flame retardants have a relatively low thermal decomposition temperature, they are thermally decomposed by heating during molding, and the decomposition products deteriorate the electrical properties.

特に、ハロゲン系の難燃剤の分解生成物は、有害物を含
むので問題となっている。
In particular, the decomposition products of halogen-based flame retardants are a problem because they contain harmful substances.

本発明はこうした状況にかんがみて成されたもので、そ
の目的とするところは、成形性、接着性。
The present invention was created in view of these circumstances, and its objectives are to improve moldability and adhesion.

電気特性、耐湿性、耐熱性等が良好で、特に電子装置や
電気機器等の封止材料として優れた特性を有する高純度
フェノール樹脂および該樹脂組成物並びにその製法を提
供するものである。
The present invention provides a high-purity phenol resin that has good electrical properties, moisture resistance, heat resistance, etc., and has excellent properties particularly as a sealing material for electronic devices, electrical equipment, etc., the resin composition, and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

従来、フェノール樹脂はイオン性不純物の含有量が多く
、また、硬化時あるいは硬化物が高温に曝された際に、
フリーフェノールやアンモニアガスを発生して、周辺の
金属材料を腐食させたり電気特性などを低下させるため
に電子部品用材料としては殆ど実用が不可能と考えられ
ていた。
Conventionally, phenolic resins have a high content of ionic impurities, and when cured or when the cured product is exposed to high temperatures,
It was considered almost impossible to put it to practical use as a material for electronic components because it generates free phenol and ammonia gas, which corrodes surrounding metal materials and degrades electrical properties.

本発明者らは、フェノール樹脂が難燃性に優れているこ
とに着目して、その電気特性の改良、成形材料への適用
性について検討した。
The present inventors focused on the fact that phenolic resin has excellent flame retardancy, and investigated the improvement of its electrical properties and its applicability to molding materials.

その結果、意外にもレゾール型フェノール樹脂が、高純
度精製によって、前記の諸特性を改善することができ、
特に、半導体装置の封止に用いた場合、半導体装置のは
んだ耐熱性や、高温長時間加熱しても、金線とアルミニ
ウム電極の接合部の信頼性等に悪影響を及ぼさないこと
を見出し1本発明に到った。
As a result, resol-type phenolic resin was surprisingly able to improve the above-mentioned properties through high-purity purification.
In particular, it has been found that when used for encapsulating semiconductor devices, there is no adverse effect on the soldering heat resistance of the semiconductor device or the reliability of the joint between the gold wire and aluminum electrode even when heated at high temperatures for long periods of time. I came up with an invention.

本発明の要旨は下記のとおりである。The gist of the present invention is as follows.

(1)フェノール化合物とホルムアルデヒドを縮合して
得られるレゾール型フェノール樹脂に、有機溶剤を加え
次いで純水で洗浄処理し、処理後の該樹脂を10倍量の
120℃の熱水で100時間以上加熱抽出した抽出液の
電気伝導度がl O O p S / c m以下、p
 Hが3〜7、ハロゲンイオン、アンモニウムイオンま
たは金属イオン量がそれぞれ10ppm以下となるまで
前記洗浄処理を繰返し行うことを特徴とする高純度フェ
ノール樹脂の製法。
(1) Add an organic solvent to a resol-type phenolic resin obtained by condensing a phenolic compound and formaldehyde, wash it with pure water, and soak the treated resin in 10 times the amount of hot water at 120°C for more than 100 hours. The electrical conductivity of the heated extract is less than l O O p S / cm, p
A method for producing a high-purity phenol resin, characterized in that the washing treatment is repeated until H is 3 to 7 and the amount of halogen ions, ammonium ions, or metal ions is each 10 ppm or less.

(2)前記レゾール型フェノール樹脂の数平均分子量が
400以上、該樹脂中の未反応フェノールが1重量%以
下であることを特徴とする前項(1)記載の高純度フェ
ノール樹脂の製法。
(2) The method for producing a high-purity phenolic resin according to the above item (1), wherein the resol type phenolic resin has a number average molecular weight of 400 or more, and the unreacted phenol in the resin is 1% by weight or less.

(3)有機溶剤と純水で洗浄処理されたレゾール型フェ
ノール樹脂が、その10倍量の120’Cの熱水で10
0時間以上加熱抽出した抽出液の電気伝導度が1 0 
0 p S / c m以下、PHが3〜7、ハロゲン
イオン、アンモニウムイオンまたは金属イオン量がそれ
ぞれ10ppm以下であることを特徴とする高純度フェ
ノール樹脂。
(3) The resol type phenol resin that has been washed with an organic solvent and pure water is washed with 10 times the amount of hot water at 120'C.
The electrical conductivity of the extract extracted by heating for more than 0 hours is 1 0
A high-purity phenol resin characterized by having a phenolic resin of 0 pS/cm or less, a pH of 3 to 7, and an amount of halogen ions, ammonium ions, or metal ions of 10 ppm or less.

(4)前記レゾール型フェノール樹脂の数平均分子量が
400以上、該樹脂中の未反応フェノールが1重量%以
下であることを特徴とする前項(3)記載の高純度フェ
ノール樹脂。
(4) The high-purity phenolic resin according to item (3) above, wherein the resol type phenolic resin has a number average molecular weight of 400 or more, and the unreacted phenol in the resin is 1% by weight or less.

(5)レゾール型フェノール樹脂が、下記の一般式[1
]で示される構造を有し、かつ、該樹脂の10倍量の1
20℃の熱水で100時間以上加熱抽出した抽出液の電
気伝導度が100μS/Qm以下、pHが3〜7,ハロ
ゲンイオン、アンモニウムイオンまたは金属イオン量が
それぞれ 10PPm以下であることを特徴とする高純
度フェノール樹脂。
(5) The resol type phenolic resin has the following general formula [1
], and 10 times the amount of the resin.
The extract extracted by heating with hot water at 20°C for 100 hours or more has an electrical conductivity of 100 μS/Qm or less, a pH of 3 to 7, and an amount of halogen ions, ammonium ions, or metal ions each of 10 PPm or less. High purity phenolic resin.

〔式中、R,はH,−CH20Hまたは=9− 示す、但し、少なくとも一〇 H2−0−CH2を含む
。nは3〜10の数を示す。〕 (6)フェノール化合物およびホルムアルデヒドを縮合
して得られるレゾール型フェノール樹脂と、該樹脂に2
5〜5重量%のエポキシ樹脂を配合して成る樹脂組成物
に有機溶剤を加え次いで純水で洗浄処理し、 処理後の該樹脂を10倍量の120℃の熱水で1. O
0時間以上加熱抽出した抽出液の電気伝導度が100 
p S / c m以下、p Hが3〜7、ハロゲンイ
オン、アンモニウムイオンまたは金属イオン量がそれぞ
れ10ppm以下となるまで前記洗浄処理を繰返し行い
、前記有機溶剤と水を除去することを特徴とする高純度
フェノール樹脂組成物の製法。
[In the formula, R represents H, -CH20H or =9-, provided that at least 10 H2-0-CH2 is included. n represents a number from 3 to 10. ] (6) A resol type phenol resin obtained by condensing a phenol compound and formaldehyde, and a
An organic solvent is added to a resin composition containing 5 to 5% by weight of epoxy resin, followed by washing with pure water, and the treated resin is washed with 10 times the amount of hot water at 120°C. O
The electrical conductivity of the extract extracted by heating for more than 0 hours is 100.
The cleaning process is repeated until pS/cm or less, pH is 3 to 7, and the amount of halogen ions, ammonium ions, or metal ions is each 10 ppm or less to remove the organic solvent and water. A method for producing a high purity phenolic resin composition.

(7)レゾール型フェノール樹脂が、前記一般式(Nで
示される構造を有し、かつ、該樹脂を10倍量の120
℃の熱水で100時間以上加熱抽出した抽出液の電気伝
導度が100μS/Qm以下、pHが3〜7、ハロゲン
イオン、アンモニウムイオンまたは金属イオン量がそれ
ぞれ10ppm以下であることを特徴とする高純度フェ
ノール樹脂であることを特徴とする前項(6)記載の樹
脂組成物の製法。
(7) The resol type phenolic resin has a structure represented by the general formula (N), and the resin is added to 120
The extract extracted by heating with hot water at ℃ for 100 hours or more has an electrical conductivity of 100 μS/Qm or less, a pH of 3 to 7, and an amount of halogen ions, ammonium ions, or metal ions of 10 ppm or less each. The method for producing a resin composition according to item (6) above, characterized in that the resin composition is a pure phenolic resin.

(8)25〜5重量%のエポキシ樹脂を含むレゾール型
フェノール樹脂組成物を有機溶剤と純水で洗浄処理され
たものが、その10倍量の120℃の熱水で100時間
以上加熱抽出した抽出液の電気伝導度が100μS /
 c m以下、pHが3〜7、ハロゲンイオン、アンモ
ニウムイオンまたは金属イオン量がそれぞれIQppm
以下であることを特徴とする高純度フェノール樹脂組成
物。
(8) A resol-type phenolic resin composition containing 25 to 5% by weight of epoxy resin that was washed with an organic solvent and pure water was heated and extracted with 10 times the amount of hot water at 120°C for more than 100 hours. The electrical conductivity of the extract is 100μS/
cm or less, pH 3-7, amount of halogen ions, ammonium ions or metal ions each IQppm
A high purity phenolic resin composition characterized by the following:

(9)レゾール型フェノール樹脂が、前記一般式〔I〕
で示される構造を有ことを特徴とする前項(8)記載の
樹脂組成物。
(9) The resol type phenolic resin has the general formula [I]
The resin composition as described in the preceding item (8), which has a structure shown in the following.

(10)前項(3)、 (4)、 (5L (8)およ
び(9)のいずれかに記載の樹脂または樹脂組成物を用
いて封止されていることを特徴とする電子装置。
(10) An electronic device sealed with the resin or resin composition according to any one of (3), (4), (5L) (8) and (9).

(11)前項(3)、 (4)、 (5)、 (8)お
よび(9)のいずれかに記載の樹脂または樹脂組成物を
用いて封止されていることを特徴とする半導体装置。
(11) A semiconductor device sealed with the resin or resin composition according to any one of (3), (4), (5), (8), and (9).

本発明のレゾール型フェノール樹脂は、各種フェノール
とアルデヒド類をアミンまたはアルカリ触媒や有機金属
塩等の存在下で縮合反応させることによって合成される
ものであるが、反応後、未反応の原料やイオン性の不純
物を除去するために。
The resol type phenolic resin of the present invention is synthesized by a condensation reaction of various phenols and aldehydes in the presence of an amine or an alkali catalyst, an organic metal salt, etc. After the reaction, unreacted raw materials and ions are removed. To remove sexual impurities.

縮合物を−たん有機溶剤に溶解し、更にこの溶液に多量
の純水を加えて激しく撹拌し、静置後、上澄液を除去す
ると云う洗浄処理を繰返すことによって、目的とする高
純度フェノール樹脂を得ることができる。
The desired high-purity phenol is obtained by dissolving the condensate in an organic solvent, adding a large amount of pure water to this solution, stirring vigorously, allowing it to stand, and then repeating the washing process to remove the supernatant. Resin can be obtained.

純度の目安は、該樹脂を10倍量の120℃の熱水で1
00時間以上加熱抽出した抽出液の電気伝導度が100
 p S / c m以下、pHが3〜7、ハロゲンイ
オン、アンモニウムイオンまたは金属イオン量がそれぞ
れ1oppm以下である。
A rough guide to purity is to dissolve the resin in 10 times the amount of hot water at 120°C.
The electrical conductivity of the extract extracted by heating for more than 00 hours is 100.
pS/cm or less, pH is 3 to 7, and the amount of halogen ion, ammonium ion, or metal ion is each 1 oppm or less.

レゾール型フェノール樹脂の高純度化は、本発明者らに
よれば、純水洗浄処理だけでも行うことができることを
確認している。
According to the present inventors, it has been confirmed that resol type phenolic resin can be highly purified by simply washing with pure water.

しかし、その場合には、洗浄処理の回数を多くする必要
がある。工業的見地からは、洗浄処理回数は少ないほう
が好ましい。
However, in that case, it is necessary to increase the number of cleaning treatments. From an industrial standpoint, it is preferable that the number of times of washing treatment be small.

本発明は、この洗浄効果を改善するために有機溶剤を用
いた点が特徴である。これによって、純水だけを用いた
洗浄処理の場合に比べて、洗浄処理回数を約半分に減ら
すことができる。
The present invention is characterized in that an organic solvent is used to improve this cleaning effect. This makes it possible to reduce the number of cleaning treatments by about half compared to cleaning treatments using only pure water.

特に、フェノール樹脂の最大の欠点である硬化物の電気
絶縁特性は、純水だけを用いて洗浄した場合1014Ω
Cm(無洗浄:1010Ωam)オーダであるのに対し
て、本発明の有機溶剤を用いた場合には xo14ΩQ
m以上に向上することができる。
In particular, the electrical insulation property of the cured product, which is the biggest drawback of phenolic resin, is 1014 Ω when washed only with pure water.
Cm (uncleaned: 1010Ωam) order, whereas when using the organic solvent of the present invention, xo14ΩQ
m or more.

また、同時に金属塩等が除去されるので、熱劣化もしに
くく、250℃加熱による重量減少率は、純水だけを用
いて洗浄したものに比べて、20〜30%少ない。
Furthermore, since metal salts and the like are removed at the same time, thermal deterioration is less likely, and the weight loss rate due to heating at 250° C. is 20 to 30% less than when cleaning using only pure water.

本発明において、洗浄処理に用いる有機溶剤の具体例と
しては、レゾール型フェノール樹脂を溶解できるもので
あれば特に限定されないが、水との相溶性がある溶剤の
方がよい。
In the present invention, a specific example of the organic solvent used for the cleaning treatment is not particularly limited as long as it can dissolve the resol type phenolic resin, but it is preferable to use a solvent that is compatible with water.

有機溶剤の具体例としては、アセトン、テトラヒドロフ
ラン、メチルエチルケトン、ヘキサン、シクロヘキサン
、エチルアセテート、ジオキサン、メチルイソブチルケ
トン等が用いられる。沸点が高い溶剤は後で除去するこ
とが容易でないので好ましくない。
Specific examples of the organic solvent include acetone, tetrahydrofuran, methyl ethyl ketone, hexane, cyclohexane, ethyl acetate, dioxane, methyl isobutyl ketone, and the like. Solvents with high boiling points are not preferred because they are difficult to remove later.

溶剤の使用量は、樹脂の溶解に必要な量あればよいが、
樹脂と等量あるいはそれよりも少し多口に加えるのがよ
い。
The amount of solvent used should be the amount necessary to dissolve the resin, but
It is best to add the same amount as the resin or a little more.

前記のレゾール型フェノール樹脂は、フェノールまたは
クレゾール等のフェノール類をホルマリンと、アミンま
たはアルカリMW、有機金属塩等の触媒の存在下で縮合
反応させることによって合成できるが、樹脂の硬化性や
流動性との関係から、分子量を数平均分子量で400以
上になるように反応条件を設定することが望ましい。
The above-mentioned resol type phenolic resin can be synthesized by condensation reaction of phenol or phenols such as cresol with formalin in the presence of a catalyst such as an amine or an alkali MW or an organic metal salt, but the curability and fluidity of the resin From the relationship, it is desirable to set the reaction conditions so that the number average molecular weight is 400 or more.

上記触媒ののアミン類としては、アンモニア、ジメチル
アミン、ジエチルアミン、アニリン、ヘキサメチレンテ
トラミン、トリエチルアミン、トリエタノールアミンが
、また、アルカリ触媒としては、水酸化ナトリウム、水
酸化カリウム、水酸化カルシウム、水酸化マグネシウム
、水酸化バリウム、酸化カルシウム、酸化マグネシウム
等がある。
The amines used in the above catalysts include ammonia, dimethylamine, diethylamine, aniline, hexamethylenetetramine, triethylamine, and triethanolamine, and the alkali catalysts include sodium hydroxide, potassium hydroxide, calcium hydroxide, and hydroxide. Magnesium, barium hydroxide, calcium oxide, magnesium oxide, etc.

有機金属塩としては、酢酸亜鉛、酢酸銅、酢酸鉄、酢酸
鉛、酢酸マグネシウム、酢酸カルシウム、酢酸バリウム
、酢酸ニッケル、酢酸コバルト、酢酸カドミウムのよう
な脂肪族カルボン酸の金属塩、安息香酸亜鉛、フタル酸
亜鉛のような芳香族カルボン酸の金属塩等を挙げること
ができる。
Examples of organic metal salts include metal salts of aliphatic carboxylic acids such as zinc acetate, copper acetate, iron acetate, lead acetate, magnesium acetate, calcium acetate, barium acetate, nickel acetate, cobalt acetate, cadmium acetate, zinc benzoate, Examples include metal salts of aromatic carboxylic acids such as zinc phthalate.

なお、未反応の原料やイオン性の不純物の除去には、酸
を用いた中和処理や水蒸気蒸留を、前記洗浄処理と併用
するのが有効である。
Note that in order to remove unreacted raw materials and ionic impurities, it is effective to use neutralization treatment using an acid or steam distillation in combination with the above-mentioned cleaning treatment.

こうして得られた本発明のレゾール型フェノール樹脂は
、分子内に反応性のメチロール基、ジメチレンエーテル
基および水酸基を有しているため単独でも加熱硬化する
ことができる。しかも、その反応性は硬化触媒を用いな
い場合でも、エポキシ樹脂のそれに比べるとかなり速い
The thus obtained resol type phenolic resin of the present invention has a reactive methylol group, dimethylene ether group, and hydroxyl group in the molecule, so that it can be cured by heating alone. Moreover, its reactivity is considerably faster than that of epoxy resins even when no curing catalyst is used.

特に、前記一般式〔I〕で示されるレゾール型フェノー
ル樹脂のうちで、R2で示されるジメチレンエーテル(
−CH,−0−CH2−)結合を多く有するものが、硬
化時に縮合水の生成が少ないので、硬化物として優れた
特性のものが与える。
In particular, among the resol type phenolic resins represented by the general formula [I], the dimethylene ether represented by R2 (
Those having many -CH, -0-CH2-) bonds produce less condensed water during curing, and therefore provide excellent properties as a cured product.

そのためには、一般式(1)において、全R2の2割以
上が−CH2−0−CH,−であることが必要である。
For this purpose, in general formula (1), it is necessary that 20% or more of all R2 be -CH2-0-CH,-.

なお、本発明の高純度レゾール型フェノール樹脂は、該
樹脂中の未反応フェノール分が1重量%以下であること
が望ましい。この程度の未反応フェノールであれば、硬
化時に反応するので問題とはならない。
In the high-purity resol type phenolic resin of the present invention, it is desirable that the unreacted phenol content in the resin is 1% by weight or less. This level of unreacted phenol does not pose a problem since it will react during curing.

また1本発明の高純度フェノール樹脂は、エポキシ樹脂
やマレイミド樹脂と硬化することもできる。特に、本発
明の目的を遺憾なく達成するためには、衆知のエポキシ
樹脂を硬化剤として用いることによって、硬化物の電気
特性を一段と向上することができる。この場合、レゾー
ル型フェノール樹脂75〜95重量%に対しエポキシ樹
脂25〜5重量%(硬化速度制御剤)配合する。エポキ
シ樹脂を25重量%よりも多く配合すると、硬化物の難
燃性が低下するので好ましくない。一方。
Furthermore, the high purity phenol resin of the present invention can also be cured with epoxy resin or maleimide resin. In particular, in order to fully achieve the object of the present invention, the electrical properties of the cured product can be further improved by using a well-known epoxy resin as a curing agent. In this case, 25 to 5% by weight of epoxy resin (curing rate control agent) is blended with 75 to 95% by weight of resol type phenolic resin. If the epoxy resin is added in an amount exceeding 25% by weight, the flame retardancy of the cured product will decrease, which is not preferable. on the other hand.

5重量%未満ではエポキシ樹脂配合の効果が十分得られ
ない。
If the amount is less than 5% by weight, the effect of the epoxy resin formulation cannot be sufficiently obtained.

上記エポキシ樹脂は、ビスフェノールAやフェノールノ
ボラック樹脂とエビクロロヒドリンとの縮合反応によっ
て得られる衆知の樹脂である。該エポキシ樹脂について
も、未反応の原料やイオン性不純物が、充分除去された
ものでなければならないことは云うまでもない。
The above-mentioned epoxy resin is a well-known resin obtained by a condensation reaction of bisphenol A or phenol novolac resin and shrimp chlorohydrin. It goes without saying that unreacted raw materials and ionic impurities must be sufficiently removed from the epoxy resin.

これらの樹脂成分に含まれるイオン性不純物は、本発明
のフェノール樹脂の場合と同様に、該樹脂を10倍量の
120℃熱水で100時間以上抽出した場合に、抽出液
の電気伝導度が100μS/am以下、pHが3〜7、
ハロゲンイオン、アンモニウムイオン、または金属イオ
ンの抽出量がそれぞれ10ppm以下でなければいけな
い。
The ionic impurities contained in these resin components are similar to the case of the phenolic resin of the present invention, and when the resin is extracted with 10 times the amount of 120°C hot water for 100 hours or more, the electrical conductivity of the extracted liquid increases. 100μS/am or less, pH 3-7,
The amount of extracted halogen ions, ammonium ions, or metal ions must be 10 ppm or less.

本発明の前記高純度フェノール樹脂および高純度フェノ
ール樹脂組成物は、無機質充填材を配合することができ
る。
The high purity phenol resin and high purity phenol resin composition of the present invention may contain an inorganic filler.

無機質充填材は硬化物の熱膨張係数や熱伝導率、弾性率
等の改良を目的として添加するもので、樹脂または組成
物全体に対して55〜80容量%の範囲で用いるのがよ
い。
The inorganic filler is added for the purpose of improving the coefficient of thermal expansion, thermal conductivity, modulus of elasticity, etc. of the cured product, and is preferably used in an amount of 55 to 80% by volume based on the entire resin or composition.

5S容量%未満では上記の特性を充分改良することがで
きず、また、80容量%を超えて添加した場合には材料
の粘度が著しく上昇し、流動性が低下するので、目的、
用途に応して配合するのがよい。無機質充填材としては
種々のものが挙げられるが、電子部品用としては、特に
熱的、化学的に安定な充填材を用いることが重要である
。具体的には、溶融シリカ、結晶性シリカ、アルミナ等
が望ましい。
If it is less than 5S by volume, the above characteristics cannot be sufficiently improved, and if it is added in excess of 80 volume%, the viscosity of the material will increase significantly and the fluidity will decrease.
It is best to mix them according to the purpose. Although there are various inorganic fillers, it is especially important to use thermally and chemically stable fillers for electronic components. Specifically, fused silica, crystalline silica, alumina, etc. are desirable.

最近、工業的に量産されるようになった球状の溶融シリ
カは、それ自体の熱膨張係数が小さい上に、樹脂に混合
した場合、該組成物の粘度上昇や流動性低下が少ないの
で有用である。
Spherical fused silica, which has recently been mass-produced industrially, is useful because it has a small coefficient of thermal expansion, and when mixed with resin, there is little increase in viscosity or decrease in fluidity of the composition. be.

なお、前記充填材の平均粒径は1〜30μmが望ましい
。これは、1μm未満であると樹脂組成物の粘度を上昇
させて流動性を著しく低下させる。
Note that the average particle size of the filler is preferably 1 to 30 μm. If it is less than 1 μm, it increases the viscosity of the resin composition and significantly reduces the fluidity.

また、30μmを超えると成形時に樹脂と充填材が分離
し易く、硬化物内に不均一層が形成されるので、硬化物
の特性がばらつき、また、狭い隙間への充填性を悪くす
るなどの弊害があるので好ましくない。
In addition, if it exceeds 30 μm, the resin and filler will easily separate during molding, forming an uneven layer within the cured product, resulting in variations in the properties of the cured product and poor filling properties into narrow gaps. I don't like it because it has harmful effects.

本発明の高純度フェノール樹脂または該組成物には、必
要に応じ、樹脂の硬化反応促進のための硬化触媒、硬化
物の強じん化や低弾性率化のための可どう他剤、樹脂と
充填材との接着性を高めるためのカシプリング剤、着色
のための染料や顔料、硬化成形時の金型からの離形性を
改善するための離型剤等各種添加剤を、本発明の目的を
損なわない範囲内において併用することができる。
The high-purity phenolic resin of the present invention or the composition may optionally contain a curing catalyst for accelerating the curing reaction of the resin, a plasticizer for toughening the cured product and lowering the elastic modulus, and a resin. The purpose of the present invention is to add various additives such as a capping agent to improve adhesion to fillers, dyes and pigments for coloring, and a mold release agent to improve release properties from a mold during curing molding. They can be used together within a range that does not impair the properties.

充填材やこれらの各種添加剤も同様に、イオン性不純物
を多量に含むと、製品の各種信頼性を著しく低下させる
ので、これらの添加剤についても前記フェノール樹脂と
同様に、10倍量の120℃熱水で100時間以上の抽
出を行った場合、抽出液の電気伝導度が100μS /
 c m以下、p Hが3〜7、ハロゲンイオン、アン
モニウムイオン、または金属イオンの抽出量がそれぞれ
10ppm以下であることが必要である。
Similarly, if fillers and these various additives contain large amounts of ionic impurities, the reliability of various products will be significantly reduced. When extraction is performed with hot water for 100 hours or more, the electrical conductivity of the extract is 100μS/
It is necessary that the pH is 3 to 7, and the amount of extracted halogen ions, ammonium ions, or metal ions is 10 ppm or less.

なお、前記のようなイオン性不純物が、製品の各種信頼
性に及ぼす影響を低減するため、樹脂中に直接イオン交
換樹脂やイオン交換体の微粉末を配合することも有効で
ある。
In addition, in order to reduce the influence of the above-mentioned ionic impurities on various reliability of the product, it is also effective to directly blend ion exchange resin or fine powder of ion exchanger into the resin.

特に、アンチモンあるいはビスマスの水酸化物、含水酸
化物、リンアンチモン酸、アンチモン酸ジルコニウム、
アンチモン酸チタン、アンチモン酸スズ、アンチモン酸
クロム、アンチモン酸タンタル等のいわゆる無機イオン
交換体を樹脂または樹脂組成物100重量部に対して0
.01〜5重量部、好ましくは0.1〜1重量部配合す
ることにより、樹脂封止半導体装置の耐湿試験時のアル
ミニウム配線や、電極部の腐食断線、並びに樹脂封2〇
− 止型半導体装置の高温放置試験時における金線とアルミ
ニウム電極との接合部の腐食断線等の防止に効果がある
In particular, antimony or bismuth hydroxide, hydrated oxide, phosphorus antimonic acid, zirconium antimonate,
0 so-called inorganic ion exchangers such as titanium antimonate, tin antimonate, chromium antimonate, tantalum antimonate, etc. per 100 parts by weight of the resin or resin composition.
.. By blending 01 to 5 parts by weight, preferably 0.1 to 1 part by weight, corrosion and breakage of aluminum wiring and electrode parts during moisture resistance tests of resin-sealed semiconductor devices, as well as resin-sealed semiconductor devices. It is effective in preventing corrosion and disconnection of the joint between the gold wire and aluminum electrode during high-temperature storage tests.

〔作用〕[Effect]

本発明の高純度レゾール型フェノール樹脂の電気特性並
びにその他の特性が優れているのは、高度精製により、
各種のイオン性不純物が除去されたためである。また、
フェノール樹脂の難熱性が優れている理由は、戻素含量
の多いベンゼン環やフェノール性の水酸基の存在、ある
いは硬化樹脂の耐熱性が優れているためと考える。
The reason why the high purity resol type phenolic resin of the present invention has excellent electrical properties and other properties is due to the high degree of purification.
This is because various ionic impurities were removed. Also,
The reason why phenolic resins have excellent heat resistance is thought to be due to the presence of benzene rings and phenolic hydroxyl groups with a high return element content, or the excellent heat resistance of cured resins.

次に、本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例1 (レゾール型フェノール樹脂の合成) 5Qのフラスコにフェノール500g、30%ホルマリ
ン550g+硬化剤として酢酸亜鉛5gを加え、撹拌し
ながら徐々に加熱し、90℃、60分間還流しながら加
熱した後、フラスコ内を20mmHgに減圧し、縮合水
および未反応成分を除去した。
Example 1 (Synthesis of resol-type phenolic resin) 500 g of phenol, 550 g of 30% formalin + 5 g of zinc acetate as a hardening agent were added to a 5Q flask, and the mixture was gradually heated while stirring, and heated at 90°C for 60 minutes under reflux. The pressure inside the flask was reduced to 20 mmHg to remove condensed water and unreacted components.

次に、洗浄処理として、上記反応生成物に300gのア
セトンを加えて溶解し、これに、イオン交換水3Qを加
えて50℃、30分間激しく撹拌し、室温に冷却後、上
部の水層を除去した。この洗浄処理を7回繰り返した。
Next, as a cleaning treatment, 300 g of acetone was added to the above reaction product to dissolve it, and ion-exchanged water 3Q was added thereto and vigorously stirred at 50°C for 30 minutes. After cooling to room temperature, the upper aqueous layer was removed. Removed. This washing process was repeated seven times.

各洗浄処理を行う毎に、反応生成物の一部を採取し、減
圧下、4.0”Cで48時間加熱乾燥し未洗浄処理のも
の、および洗浄処理の度合いが異なる6種のレゾール型
フェノール樹脂を得た。
After each cleaning treatment, a portion of the reaction product was collected and dried by heating at 4.0"C under reduced pressure for 48 hours to obtain unwashed and six types of resol types with different degrees of cleaning treatment. A phenolic resin was obtained.

得られたレゾール型フェノール樹脂の洗浄処理回数と溶
融粘度、硬化特性並びにこのレゾール型フェノール樹脂
5gにイオン交換水50gを加え120℃で120時間
加熱した後の水のp I(、電気伝導度並びに抽出され
たイオン性不純物濃度の分析結果を第1表に示す。
The number of washing treatments, melt viscosity, and curing properties of the obtained resol type phenolic resin, as well as the pI (, electrical conductivity, and Table 1 shows the analysis results of the extracted ionic impurity concentrations.

第1表から明らかなように、レゾール型フェノール樹脂
は、上記洗浄処理を5回行なうことのよって、抽出液の
電気伝導度が約20 p S / c mとなり、イオ
ン性不純物が極めて少なく、洗浄効果が顕著であること
が分かる。 これに対し、純水のみで洗浄した場合には
、イオン性不純物の含有率が、有機溶剤を用いた場合に
比べて高い。
As is clear from Table 1, when the resol type phenolic resin is subjected to the above washing treatment five times, the electrical conductivity of the extract becomes approximately 20 pS/cm, and the ionic impurities are extremely small. It can be seen that the effect is significant. On the other hand, when cleaning with only pure water, the content of ionic impurities is higher than when using an organic solvent.

実施例2〜7 レゾール型フェノール樹脂として上記洗浄処理を5回行
ったもの(数平均分子量ニア1o、軟化3度ニア3℃、
フリーフェノール含有量70.3重量%)、および0−
クレゾールノボラック型エポキシ樹脂(軟化温度ニア5
℃、エポキシ当量:198)に、硬化促進剤として2−
フェニル−4−メチル−5−ヒドロキシメチルイミダゾ
ール、充填剤として、平均粒径15μmの球形溶融シリ
カ、カップリング剤としてエポキシシラン、離型剤とし
てモンタン酸エステルロウ、着色剤としてカーボンブラ
ックを用い、第2表に示す割合で配合した。
Examples 2 to 7 Resol type phenolic resins subjected to the above washing treatment 5 times (number average molecular weight near 1o, softening 3 degrees near 3°C,
Free phenol content 70.3% by weight), and 0-
Cresol novolak type epoxy resin (softening temperature near 5
℃, epoxy equivalent: 198), 2-
Using phenyl-4-methyl-5-hydroxymethylimidazole, spherical fused silica with an average particle size of 15 μm as a filler, epoxy silane as a coupling agent, montanic acid ester wax as a mold release agent, and carbon black as a coloring agent, They were blended in the proportions shown in Table 2.

各組成物は、直径20インチの二軸ロール(ロル表面温
度約60℃)で10分間、混練した後、粉砕し成形用樹
脂組成物を作成した。
Each composition was kneaded for 10 minutes with a 20-inch diameter twin-screw roll (roll surface temperature of about 60°C), and then ground to prepare a molding resin composition.

比較例1〜3 未精製のレゾール型フェノール樹脂(第1表の初期(未
洗浄のもの。数平均分子量:550.軟化温度:62℃
、フリーフェノール含有量=3.2重量%)のものを用
い、第2表に示す配合割合の組成物を実施例2と同様に
作成した。
Comparative Examples 1 to 3 Unpurified resol type phenolic resin (initial stage in Table 1 (unwashed). Number average molecular weight: 550. Softening temperature: 62°C
, free phenol content = 3.2% by weight), and a composition having the blending ratio shown in Table 2 was prepared in the same manner as in Example 2.

比較例4 樹脂として0−クレゾールノボラック型エポキシ樹脂(
軟化温度ニア5℃、エポキシ当量1.95 )90重量
部、臭素化ビスフェノールA型エポキシ樹脂(軟化温度
二65℃、エポキシ当量394)10重量部、硬化剤と
してフェノールノボラック樹脂(軟化温度二り5℃、水
酸基当量:106)55重量部、硬化促進剤としてトリ
フェニルホスフィン10重量部、充填剤として平均粒径
15μmの球形の溶融シリカ470重量部、難燃化助剤
として二酸化アンチモン10重量部、カップリング剤と
してエポキシシラン3.0重量部、離型剤としてモンタ
ン酸エステルロウ10重量部、着色剤としてカーボンブ
ラック10重量部を配合した組成物を、実施例2と同様
に二軸ロールを用いて混練し、成形用樹脂組成物を作成
した。
Comparative Example 4 0-cresol novolac type epoxy resin (
90 parts by weight of brominated bisphenol A epoxy resin (softening temperature 265°C, epoxy equivalent 394), phenol novolac resin as a hardening agent (softening temperature 25°C) °C, hydroxyl equivalent: 106) 55 parts by weight, 10 parts by weight of triphenylphosphine as a curing accelerator, 470 parts by weight of spherical fused silica with an average particle size of 15 μm as a filler, 10 parts by weight of antimony dioxide as a flame retardant aid, A composition containing 3.0 parts by weight of epoxy silane as a coupling agent, 10 parts by weight of montanic acid ester wax as a mold release agent, and 10 parts by weight of carbon black as a coloring agent was prepared using a twin-screw roll in the same manner as in Example 2. The mixture was kneaded to prepare a molding resin composition.

比較例5 樹脂として0−クレゾールノボラック型エポキシ樹脂(
軟化温度ニア5℃、エポキシ当量195)100重量部
、硬化剤としてフェノールノボラック樹脂(軟化温度=
65℃、水酸基当量:106)58重量部、硬化促進剤
としてトリフェニルホスフィン10重量部、充填剤とし
て平均粒径15μmの球形の溶融シリカ480重量部、
難燃他動=5= 剤として二酸化アンチモン10重量部、カップリング剤
としてエポキシシラン3.0重量部、離型剤としてモン
タン酸エステルロウ1゜0重量部、着色剤としてカーボ
ンブラック10重量部を配合した組成物を実施例1と同
様に二軸ロールを用いて混練し、成形用樹脂組成物を作
成した。
Comparative Example 5 0-cresol novolac type epoxy resin (
Softening temperature near 5°C, epoxy equivalent 195) 100 parts by weight, phenol novolak resin as a hardening agent (softening temperature =
65°C, hydroxyl equivalent: 106) 58 parts by weight, 10 parts by weight of triphenylphosphine as a curing accelerator, 480 parts by weight of spherical fused silica with an average particle size of 15 μm as a filler,
Flame retardant = 5 = 10 parts by weight of antimony dioxide as an agent, 3.0 parts by weight of epoxy silane as a coupling agent, 1.0 parts by weight of montanic acid ester wax as a mold release agent, 10 parts by weight of carbon black as a coloring agent. The blended composition was kneaded using a twin-screw roll in the same manner as in Example 1 to prepare a molding resin composition.

前記の実施例2〜7および比較例1〜5の各樹脂組成物
の成形性、および金型温度180℃、圧カフ0kg/c
m2、時間90秒で成形したものを180℃、6時間の
後硬化を行った成形品の諸特性について比較を行った。
Moldability of each resin composition of Examples 2 to 7 and Comparative Examples 1 to 5, mold temperature 180°C, pressure cuff 0 kg/c
Comparisons were made regarding various properties of molded products that were molded at m2 for 90 seconds and post-cured at 180° C. for 6 hours.

更にまた、該成形品を100メツシユ以下に粉砕した粉
末5gに50mQのイオン交換水を加えて、120℃で
120時間加熱後の水の諸特性を比較した。結果を第2
表にまとめて示す。
Furthermore, 50 mQ of ion-exchanged water was added to 5 g of powder obtained by pulverizing the molded product into 100 meshes or less, and the various properties of the water after heating at 120° C. for 120 hours were compared. Second result
They are summarized in the table.

第2表より、本発明の高純度レゾール型フェノル樹脂を
用いた実施例2〜7のものは、未精製のレゾール型フェ
ノール樹脂を用いた比較例1〜3のものに比較して、硬
化物の電気特性が優れており、イオン性不純物の抽出量
が極めて少ないことが分かる。
From Table 2, it can be seen that the cured products of Examples 2 to 7 using the high-purity resol type phenolic resin of the present invention were higher than those of Comparative Examples 1 to 3 using unpurified resol type phenolic resin. It can be seen that the electrical properties are excellent and the amount of ionic impurities extracted is extremely small.

また、比較例4.5に示した従来のエポキシ系樹脂のも
のと比較すると、成形性はほぼ同等であるが、硬化物の
耐熱性(ガラス転移温度、高温曲げ強度)が、極めて優
れていることが分かる。
Furthermore, when compared with the conventional epoxy resin shown in Comparative Example 4.5, the moldability is almost the same, but the heat resistance (glass transition temperature, high temperature bending strength) of the cured product is extremely superior. I understand that.

更に、実施例2〜7に示した成形用樹脂組成物は、比較
例4のエポキシ系樹脂組成物のように、雛燃化助剤が配
合されていなくとも、UL規格の難燃グレード:V−O
を満足することができる。
Furthermore, the molding resin compositions shown in Examples 2 to 7, like the epoxy resin composition of Comparative Example 4, have a flame retardant grade of V according to the UL standard, even though they do not contain a broiler flame retardant. -O
can be satisfied.

上記の各樹脂組成物で封止した半導体装置の信頼性試験
の結果を第3表に示す。
Table 3 shows the results of reliability tests on semiconductor devices sealed with each of the above resin compositions.

なお、前記試験用半導体装置は、表面にアルミニウム配
線をジグザグに形成したシリコンチップを、銅系のリー
ドフレームに搭載し、更にチップ表面のアルミニウム電
極とリードフレーム間を金線(直径30μm)で接続し
、前記樹脂組成物で封止したものである。
The test semiconductor device has a silicon chip with aluminum wiring formed in a zigzag pattern on its surface, mounted on a copper lead frame, and a gold wire (30 μm in diameter) connected between the aluminum electrode on the chip surface and the lead frame. and sealed with the resin composition.

第3表より、本発明の樹脂組成物を用いたものは、耐湿
信頼性、耐熱性、実装(リフロー)時のパッケージの耐
クラツク性が、極めて優れていることが分かる。
From Table 3, it can be seen that the products using the resin composition of the present invention have extremely excellent moisture resistance reliability, heat resistance, and package crack resistance during mounting (reflow).

次に、本発明の樹脂組成物を電子装置に用いた例につい
て、図面を用いて具体的に説明する。
Next, an example in which the resin composition of the present invention is used in an electronic device will be specifically described with reference to the drawings.

第1図は、本発明のプレーナ型トランジスタの構造を示
す断面図である。
FIG. 1 is a sectional view showing the structure of a planar transistor according to the present invention.

シリコンの半導体基板1の表面層にpnp型のトランジ
スタが形成されている。該基板1の表面に形成したエミ
ッタ、ベース、コレクタ間の絶縁には二酸化珪素膜2が
形成され、さらにベース電極3、エミッタ電極4がアル
ミニウム蒸着膜により形成されている。該基板1をタブ
リード7の先端に固定し、金(またはアルミニウム)の
ワイヤ5によりボンディングし、アンダーコート6用樹
脂で被覆保護した素子を、タブリード7の先端部も含め
て高純度フェノール樹脂組成物8によりi・ランスファ
モールドした。
A pnp transistor is formed on the surface layer of a silicon semiconductor substrate 1. A silicon dioxide film 2 is formed as an insulator between an emitter, a base, and a collector formed on the surface of the substrate 1, and a base electrode 3 and an emitter electrode 4 are formed of an aluminum vapor-deposited film. The substrate 1 is fixed to the tip of the tab lead 7, bonded with a gold (or aluminum) wire 5, and the element coated and protected with a resin for the undercoat 6 is coated with a high-purity phenol resin composition, including the tip of the tab lead 7. 8. i.transform molding was carried out.

第2図は、集積回路を有する半導体装置の構造を示す断
面図である。
FIG. 2 is a cross-sectional view showing the structure of a semiconductor device having an integrated circuit.

半導体集積回路11はセラミックから成るパッケージ1
5上に固定され、集積回路11の周囲に設けられたポン
ディングパッド14とパッケージの外部接続リード端子
12とはボンディングワイヤ13で接続されている。上
記集積回路11.ボンディングワイヤ13、外部接続リ
ード端子12並びにポンディングパッド14を耐湿性ポ
リイミドでアンダーコト9して、更にその上を高純度フ
ェノール樹脂組成物8で封止した。
A semiconductor integrated circuit 11 is a package 1 made of ceramic.
A bonding pad 14 fixed on the package 5 and provided around the integrated circuit 11 is connected to an external connection lead terminal 12 of the package by a bonding wire 13. The above integrated circuit 11. The bonding wires 13, external connection lead terminals 12, and bonding pads 14 were undercoated 9 with moisture-resistant polyimide, and further sealed with a high-purity phenolic resin composition 8.

第3図は半導体メモリー素子の構造を示す断面斜視図で
ある。
FIG. 3 is a cross-sectional perspective view showing the structure of a semiconductor memory element.

シリコンチップから成るメモリー素子71がチップ支持
体72に固着され、外部リード73とメモリー素子71
の電極パッド77とはボンディングワイヤ74で接続さ
れている。上記メモリー素子の表面はウラン、トリウム
の含有量がIPPb以下である樹脂組成物からなるα線
遮蔽176を設けた。これを高純度フェノール樹脂組成
物8でトランスファモールドした。
A memory element 71 made of a silicon chip is fixed to a chip support 72, and an external lead 73 and a memory element 71 are connected to each other.
is connected to the electrode pad 77 by a bonding wire 74. The surface of the memory element was provided with an α-ray shield 176 made of a resin composition containing uranium and thorium of less than IPPb. This was transfer molded with high purity phenolic resin composition 8.

第4図は、半導体基板表面に27Flの配線構造を有し
て成る半導体装置の構造を示す断面図である。
FIG. 4 is a sectional view showing the structure of a semiconductor device having a 27Fl wiring structure on the surface of a semiconductor substrate.

表面に、二酸化珪素膜42を有する半導体基板41に金
属被膜を形成し、これを公知のエッッチング法で不要部
分の金属被膜を除去して、所望の配線パターンを有する
第1の導体層43を設ける。
A metal coating is formed on the semiconductor substrate 41 having a silicon dioxide film 42 on its surface, and unnecessary portions of the metal coating are removed by a known etching method to provide a first conductor layer 43 having a desired wiring pattern. .

該導体層43は二酸化珪素膜42の所定の個所に設けた
スルホール48を介して半導体素子と電気的に接続され
る。次に、二酸化珪素膜42を化学気相成長法(または
高周波スパッタリング法などの公知の方法)によって、
眉43の上に被覆した後、導体接続部の二酸化珪素膜に
スルーホール49を形成した。
The conductor layer 43 is electrically connected to the semiconductor element through through holes 48 provided at predetermined locations in the silicon dioxide film 42. Next, the silicon dioxide film 42 is formed by chemical vapor deposition (or a known method such as high frequency sputtering).
After covering the eyebrows 43, through holes 49 were formed in the silicon dioxide film at the conductor connection portions.

次に、アミノシラン化合物の膜44を形成した。Next, a film 44 of an aminosilane compound was formed.

更に、ポリイミド膜45を形成し、該ポリイミド膜の所
定の部分をエツチングして第1導体!43の一部を露出
させた。この上に第2導体層46を同様にして形成し、
2層の配線構造を有する半導体素子を作成した。更に該
素子を高純度フェノール樹脂組成物8でコートした。
Furthermore, a polyimide film 45 is formed, and a predetermined portion of the polyimide film is etched to form the first conductor! Part of 43 was exposed. A second conductor layer 46 is formed on this in the same manner,
A semiconductor device having a two-layer wiring structure was created. Furthermore, the device was coated with high purity phenolic resin composition 8.

前記本発明の電子装置はいずれも優れた耐熱性、耐湿性
および難燃性を示した。
All of the electronic devices of the present invention exhibited excellent heat resistance, moisture resistance, and flame retardance.

〔発明の効果〕〔Effect of the invention〕

本発明は、高純度フェノール樹脂の精製に有機溶剤と水
を用いることによって、洗浄処理回数を約半減できるの
で、工業的に極めて優れた方法である。
The present invention is an extremely excellent method industrially because the number of cleaning treatments can be reduced by approximately half by using an organic solvent and water for purifying high-purity phenolic resin.

また、該方法により得られた高純度フェノール樹脂また
は該樹脂組成物は、成形性、耐熱性、難燃性等に優れて
おり、電子部品の封止樹脂として有効である。
Furthermore, the high purity phenol resin or resin composition obtained by this method has excellent moldability, heat resistance, flame retardancy, etc., and is effective as a sealing resin for electronic components.

特に、該樹脂組成物によって封止された半導体装置は耐
熱性、耐湿性、難燃性にすぐれている。
In particular, semiconductor devices sealed with the resin composition have excellent heat resistance, moisture resistance, and flame retardance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプレーナ型トランジスタの構造を示す
断面図、第2図は集積回路を有する半導体装置の構造を
示す断面図、第3図は半導体基板表面に2層の配線構造
を有する半導体装置の構造を示す断面図、第4図は半導
体メモリー素子の構造を示す断面斜視図である。 1.11,41.71・・・シリコンの半導体素子基板
、2,4.2.47・・・二酸化珪素膜、3・・・ベー
ス電極、4・・・エミッタ電極、5,13.74・・ワ
イヤ、6,9・・・アンダーコート、7・・タブリード
。 8・・・高純度フェノール樹脂組成物、12・・・外部
接続リード端子、14.77・・・ポンディングパッド
。 15・・・セラミックパッケージ、43.46・・・導
体層、44・・・アミノシラン化合物膜、48.49・
・・スルホール、45・・・ポリイミド膜、76・・・
α線遮蔽層。 以上
FIG. 1 is a sectional view showing the structure of a planar transistor of the present invention, FIG. 2 is a sectional view showing the structure of a semiconductor device having an integrated circuit, and FIG. 3 is a semiconductor device having a two-layer wiring structure on the surface of a semiconductor substrate. FIG. 4 is a cross-sectional view showing the structure of the device, and FIG. 4 is a cross-sectional perspective view showing the structure of the semiconductor memory element. 1.11,41.71...Silicon semiconductor element substrate, 2,4.2.47...Silicon dioxide film, 3...Base electrode, 4...Emitter electrode, 5,13.74...・Wire, 6, 9...undercoat, 7...tab lead. 8... High purity phenol resin composition, 12... External connection lead terminal, 14.77... Bonding pad. 15...Ceramic package, 43.46...Conductor layer, 44...Aminosilane compound film, 48.49.
...Through hole, 45...Polyimide membrane, 76...
α-ray shielding layer. that's all

Claims (1)

【特許請求の範囲】 1、フェノール化合物とホルムアルデヒドを縮合して得
られるレゾール型フェノール樹脂に、有機溶剤を加え次
いで純水で洗浄処理し、 処理後の該樹脂を10倍量の120℃の熱水で100時
間以上加熱抽出した抽出液の電気伝導度が100μS/
cm以下、pHが3〜7、ハロゲンイオン、アンモニウ
ムイオンまたは金属イオン量がそれぞれ10ppm以下
となるまで前記洗浄処理を繰返し行うことを特徴とする
高純度フェノール樹脂の製法。 2、前記レゾール型フェノール樹脂の数平均分子量が4
00以上、該樹脂中の未反応フェノールが1重量%以下
であることを特徴とする請求項第1項記載の高純度フェ
ノール樹脂の製法。 3、有機溶剤と純水で洗浄処理されたレゾール型フェノ
ール樹脂が、その10倍量の120℃の熱水で100時
間以上加熱抽出した抽出液の電気伝導度が100μS/
cm以下、pHが3〜7、ハロゲンイオン、アンモニウ
ムイオンまたは金属イオン量がそれぞれ10ppm以下
であることを特徴とする高純度フェノール樹脂。 4、前記レゾール型フェノール樹脂の数平均分子量が4
00以上、該樹脂中の未反応フェノールが1重量%以下
であることを特徴とする請求項第3項記載の高純度フェ
ノール樹脂。 5、レゾール型フェノール樹脂が、下記の一般式〔 I
〕で示される構造を有し、かつ、該樹脂の10倍量の1
20℃の熱水で100時間以上加熱抽出した抽出液の電
気伝導度が100μS/cm以下、pHが3〜7、ハロ
ゲンイオン、アンモニウムイオンまたは金属イオン量が
それぞれ10ppm以下であることを特徴とする高純度
フェノール樹脂。 ▲数式、化学式、表等があります▼[ I ] 〔式中、R_1はH、−CH_2OHまたは▲数式、化
学式、表等があります▼Rを(RはHまたは−CH_2
OH)、R_2は−CH_2−または−CH_2−O−
CH_2−を示す、但し、少なくとも−CH_2−O−
CH_2−を含む。nは3〜10の数を示す。〕 6、フェノール化合物およびホルムアルデヒドを縮合し
て得られるレゾール型フェノール樹脂と、該樹脂に25
〜5重量%のエポキシ樹脂を配合して成る樹脂組成物に
有機溶剤を加え次いで純水で洗浄処理し、 処理後の該樹脂を10倍量の120℃の熱水で100時
間以上加熱抽出した抽出液の電気伝導度が100μS/
cm以下、pHが3〜7、ハロゲンイオン、アンモニウ
ムイオンまたは金属イオン量がそれぞれ10ppm以下
となるまで前記洗浄処理を繰返し行い、前記有機溶剤と
水を除去することを特徴とする高純度フェノール樹脂組
成物の製法。 7、レゾール型フェノール樹脂が、前記一般式〔 I 〕
で示される構造を有し、かつ、該樹脂を10倍量の12
0℃の熱水で100時間以上加熱抽出した抽出液の電気
伝導度が100μS/cm以下、pHが3〜7、ハロゲ
ンイオン、アンモニウムイオンまたは金属イオン量がそ
れぞれ10ppm以下であることを特徴とする高純度フ
ェノール樹脂であることを特徴とする請求項第6項記載
の樹脂組成物の製法。 8、25〜5重量%のエポキシ樹脂を含むレゾール型フ
ェノール樹脂組成物を有機溶剤と純水で洗浄処理された
ものが、その10倍量の120℃の熱水で100時間以
上加熱抽出した抽出液の電気伝導度が100μS/cm
以下、pHが3〜7、ハロゲンイオン、アンモニウムイ
オンまたは金属イオン量がそれぞれ10ppm以下であ
ることを特徴とする高純度フェノール樹脂組成物。 9、レゾール型フェノール樹脂が、前記一般式〔 I 〕
で示される構造を有ことを特徴とする請求項第8項記載
の樹脂組成物。 10、請求項第3、第4、第5、第8および第9項のい
ずれかに記載の樹脂または樹脂組成物を用いて封止され
ていることを特徴とする電子装置。 11、請求項第3、第4、第5、第8および第9項のい
ずれかに記載の樹脂または樹脂組成物を用いて封止され
ていることを特徴とする半導体装置。
[Claims] 1. An organic solvent is added to a resol type phenol resin obtained by condensing a phenol compound and formaldehyde, and then washed with pure water, and the treated resin is heated at 120°C in an amount ten times the amount The electrical conductivity of the extract heated and extracted with water for over 100 hours is 100μS/
1. A method for producing a high-purity phenol resin, which comprises repeating the washing process until the amount of halogen ions, ammonium ions, or metal ions is 10 ppm or less, pH is 3 to 7, and the amount of halogen ions, ammonium ions, or metal ions is each 10 ppm or less. 2. The number average molecular weight of the resol type phenolic resin is 4.
00 or more, and the amount of unreacted phenol in the resin is 1% by weight or less. 3. The electrical conductivity of the extract obtained by heating and extracting the resol type phenol resin that has been washed with an organic solvent and pure water with 10 times the amount of hot water at 120°C for over 100 hours is 100μS/
A high-purity phenol resin characterized in that it has a pH of 3 to 7, and an amount of halogen ions, ammonium ions, or metal ions of 10 ppm or less. 4. The number average molecular weight of the resol type phenolic resin is 4.
4. The high-purity phenol resin according to claim 3, wherein the unreacted phenol in the resin is 1% by weight or less. 5. The resol type phenolic resin has the following general formula [I
], and 10 times the amount of the resin.
The extract extracted by heating with hot water at 20°C for 100 hours or more has an electrical conductivity of 100 μS/cm or less, a pH of 3 to 7, and an amount of halogen ions, ammonium ions, or metal ions each of 10 ppm or less. High purity phenolic resin. ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [I] [In the formula, R_1 is H, -CH_2OH or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
OH), R_2 is -CH_2- or -CH_2-O-
CH_2-, provided that at least -CH_2-O-
Contains CH_2-. n represents a number from 3 to 10. ] 6. A resol-type phenol resin obtained by condensing a phenol compound and formaldehyde, and 25
An organic solvent was added to a resin composition containing ~5% by weight of epoxy resin, followed by washing treatment with pure water, and the treated resin was heated and extracted with 10 times the amount of hot water at 120°C for over 100 hours. The electrical conductivity of the extract is 100μS/
cm or less, pH is 3 to 7, and the cleaning treatment is repeated until the amount of halogen ion, ammonium ion, or metal ion is each 10 ppm or less to remove the organic solvent and water. How to make things. 7. The resol type phenolic resin has the above general formula [I]
The resin has the structure shown in 12
The extract extracted by heating with hot water at 0°C for 100 hours or more has an electrical conductivity of 100 μS/cm or less, a pH of 3 to 7, and an amount of halogen ions, ammonium ions, or metal ions each of 10 ppm or less. 7. The method for producing a resin composition according to claim 6, wherein the resin composition is a high-purity phenolic resin. 8. Extraction in which a resol-type phenolic resin composition containing 25 to 5% by weight of epoxy resin, which has been washed with an organic solvent and pure water, is heated and extracted with 10 times the amount of hot water at 120°C for 100 hours or more. The electrical conductivity of the liquid is 100μS/cm
Hereinafter, a high purity phenol resin composition characterized by having a pH of 3 to 7 and an amount of halogen ion, ammonium ion or metal ion of 10 ppm or less. 9. The resol type phenolic resin has the above general formula [I]
9. The resin composition according to claim 8, having a structure represented by: 10. An electronic device sealed with the resin or resin composition according to any one of claims 3, 4, 5, 8, and 9. 11. A semiconductor device sealed with the resin or resin composition according to any one of claims 3, 4, 5, 8, and 9.
JP1065623A 1989-03-17 1989-03-17 Method for producing high-purity phenolic resin, method for producing the resin composition, and method for producing a semiconductor device using the resin composition Expired - Fee Related JP2638191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065623A JP2638191B2 (en) 1989-03-17 1989-03-17 Method for producing high-purity phenolic resin, method for producing the resin composition, and method for producing a semiconductor device using the resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065623A JP2638191B2 (en) 1989-03-17 1989-03-17 Method for producing high-purity phenolic resin, method for producing the resin composition, and method for producing a semiconductor device using the resin composition

Publications (2)

Publication Number Publication Date
JPH02245011A true JPH02245011A (en) 1990-09-28
JP2638191B2 JP2638191B2 (en) 1997-08-06

Family

ID=13292333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065623A Expired - Fee Related JP2638191B2 (en) 1989-03-17 1989-03-17 Method for producing high-purity phenolic resin, method for producing the resin composition, and method for producing a semiconductor device using the resin composition

Country Status (1)

Country Link
JP (1) JP2638191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047700A1 (en) 2006-10-20 2008-04-24 Air Water Inc. Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200444A (en) * 1983-04-27 1984-11-13 Hitachi Chem Co Ltd Epoxy resin sealed type semiconductor device
JPS59227146A (en) * 1983-06-07 1984-12-20 Sharp Corp Resin-molded semiconductor device
JPS6053516A (en) * 1983-09-05 1985-03-27 Sumitomo Bakelite Co Ltd High-purity phenolic resin and its preparation
JPS61152725A (en) * 1984-12-26 1986-07-11 Sumitomo Bakelite Co Ltd Phenolic resin molding material
JPS62227914A (en) * 1986-03-28 1987-10-06 Hitachi Chem Co Ltd Washing of phenolic resin synthesis solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200444A (en) * 1983-04-27 1984-11-13 Hitachi Chem Co Ltd Epoxy resin sealed type semiconductor device
JPS59227146A (en) * 1983-06-07 1984-12-20 Sharp Corp Resin-molded semiconductor device
JPS6053516A (en) * 1983-09-05 1985-03-27 Sumitomo Bakelite Co Ltd High-purity phenolic resin and its preparation
JPS61152725A (en) * 1984-12-26 1986-07-11 Sumitomo Bakelite Co Ltd Phenolic resin molding material
JPS62227914A (en) * 1986-03-28 1987-10-06 Hitachi Chem Co Ltd Washing of phenolic resin synthesis solution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047700A1 (en) 2006-10-20 2008-04-24 Air Water Inc. Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2141184A1 (en) 2006-10-20 2010-01-06 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2145906A1 (en) 2006-10-20 2010-01-20 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8158095B2 (en) 2006-10-20 2012-04-17 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8293860B2 (en) 2006-10-20 2012-10-23 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8409756B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8411415B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8658120B2 (en) 2006-10-20 2014-02-25 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor

Also Published As

Publication number Publication date
JP2638191B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JPH08188638A (en) Resin-sealed semiconductor device and its production
JP2701695B2 (en) Epoxy resin composition and semiconductor device
JP5034500B2 (en) Epoxy resin composition and semiconductor device
JPH03259914A (en) Resin composition for sealing semiconductor and semiconductor device sealed therewith
JP4765151B2 (en) Epoxy resin composition and semiconductor device
JP2002040663A (en) Solder resist composition and its hardened product
JPH02245011A (en) Highly pure phenolic resin, composition containing same, its production, and electronic device made from the same resin
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP2860960B2 (en) Epoxy resin composition and semiconductor device encapsulated with the composition
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JPH10158360A (en) Epoxy resin composition
JPH11181238A (en) Epoxy resin composition and semiconductor device
JPH04337316A (en) Epoxy resin composition
JPH04300915A (en) Epoxy resin composition and semiconductor device
JP3223012B2 (en) Phenolic resin, its production method and use
KR100471632B1 (en) New manufacturing method of functional phenolic resin and epoxy resin composition for semiconductor encapsulation material containing it
JP2002284844A (en) Epoxy resin composition and semiconductor device
JPH03177057A (en) Semiconductor coated with resin composition
JPH021754A (en) Phenol resin composition for molding and production thereof and semiconductor device sealed with the same composition
JPH05132543A (en) Epoxy resin composition
JP2001329142A (en) Epoxy resin composition and semiconductor device
JP4743932B2 (en) Epoxy resin composition and semiconductor device
JP4639461B2 (en) Epoxy resin composition and semiconductor device
JPH03258830A (en) Epoxy resin composition for sealing semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees