JPH02243981A - Magnetic field detecting device - Google Patents

Magnetic field detecting device

Info

Publication number
JPH02243981A
JPH02243981A JP1063649A JP6364989A JPH02243981A JP H02243981 A JPH02243981 A JP H02243981A JP 1063649 A JP1063649 A JP 1063649A JP 6364989 A JP6364989 A JP 6364989A JP H02243981 A JPH02243981 A JP H02243981A
Authority
JP
Japan
Prior art keywords
detectors
detector
magnetic field
regular
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1063649A
Other languages
Japanese (ja)
Inventor
Koichi Yokozawa
宏一 横澤
Takashi Onodera
小野寺 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1063649A priority Critical patent/JPH02243981A/en
Publication of JPH02243981A publication Critical patent/JPH02243981A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/022Measuring gradient

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To uniform the sensitivity of each detector by arranging all or some of detectors for brain magnetism measurement at the vertexes of a regular polyhedron. CONSTITUTION:The detectors which forms a gradiometer detects a signal of brain magnetism generated by a person 6 to be examined and inputted to a SQUID element through a transmission line 5. This signal is measured by a measuring instrument which uses, for example, a flux locked loop. Further, a controller controls the measuring instrument and a rotary mechanism. The detector 1 and transmission line are made of superconductors, so a mechanism part 100 has its inside dipped in a blocking material of liquid He when necessary. The detectors 1 are arranged all the vertexes of, for example, a regular dodecahedron 10. In this case, up to 20 detectors can be arranged, but there is a vertex where a detector can not be arranged because of mounting. Further, while the whole mechanism is rotated around the person 6 to be examined by selecting its axis properly, measurement is only carried out to obtain more measurement points. Thus, the detectors 1 can be arranged equally and spherically, so the detectors 1 can be equalized in sensitivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁場検出装置に係り、特に脳から発生する磁
場を高感度に検出する脳磁計測装置に好適な磁場検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic field detection device, and particularly to a magnetic field detection device suitable for a magnetoencephalography measurement device that detects magnetic fields generated from the brain with high sensitivity.

〔従来の技術〕[Conventional technology]

従来の脳磁計開用の多チヤネルスクイド磁束計について
は、バイオマグネテイズム’87(1988年)第43
0頁から第433頁(Bio −@agnetism8
7 (1987)p430−433)に記述がある。こ
の例は7チヤンネルであり、各検出器間の距離を等しく
するために曲面上に描かれた正六角形の頂点と中央に検
出器が配置されている。このように曲面上に配置したの
」よ頭蓋の曲面に合わせるためである。
Regarding the multi-channel Squid magnetometer used for conventional magnetoencephalography, see Biomagnetism '87 (1988) No. 43.
Pages 0 to 433 (Bio-@agnetism8
7 (1987) p. 430-433). This example has seven channels, and the detectors are arranged at the vertices and centers of a regular hexagon drawn on a curved surface to equalize the distance between each detector. It was placed on a curved surface like this to match the curved surface of the skull.

この従来例における検出器の配置を第4図に示す、この
例では各々の検出器は軸型グラジオメータの構成になっ
ている。即ち、頭蓋の球面に垂直な方向をZ方向、これ
に垂直な方向をXe’j方向Z るグラジオメータとしては、ジャーナル オブアプライ
ド フィツクス 58(11)(1985)第4322
頁から第4325頁(J 、 Appl Phyg。
The arrangement of the detectors in this conventional example is shown in FIG. 4. In this example, each detector is configured as an axial gradiometer. That is, as a gradiometer whose direction perpendicular to the spherical surface of the skull is the Z direction, and whose direction perpendicular to this is the
Pages 4325 to 4325 (J, Appl Phyg.

58(11) 1985 p4322−4325)に記
述がある。このような平面型グラジオメータでは、゛検
出コイルと薄膜スクイド素子が同一平面上に形成できる
ため構成が簡単になるうえ、検出器からスクイド素子ま
での信号の伝達効率がよいという利点がある。
58 (11) 1985 p4322-4325). Such a planar gradiometer has the advantage that the detection coil and the thin-film SQUID element can be formed on the same plane, which simplifies the configuration and also improves the efficiency of signal transmission from the detector to the SQUID element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記前者の従来技術において、脳磁計測装置
が蔽えるのは人体頭部のごく一部にすぎない(第5図)
、脳機能の計測を行って生理学的。
However, in the former conventional technology, the magnetoencephalography measuring device covers only a small part of the human head (Figure 5).
, physiological measurements of brain function.

医学的に応用するためには20チャネル以上のセンサー
を用いて頭部全体を蔽う必要がある。また。
For medical applications, it is necessary to cover the entire head using sensors with 20 channels or more. Also.

スクイド磁束計では各々の検出器の感度が他の検出器と
の距離によって変化するため、隣接する検出器との距離
は各々等しくなるように構成する必要がある。さらに、
各検出器のS/Nを向上させるためにはその受信する信
号量を大きくせねばならず、検出器の面積を大きくする
必要がある。
In the SQUID magnetometer, the sensitivity of each detector changes depending on the distance from other detectors, so it is necessary to configure the detector so that the distances from adjacent detectors are equal. moreover,
In order to improve the S/N of each detector, it is necessary to increase the amount of signal received by each detector, and it is necessary to increase the area of the detector.

本発明の目的は頭部を蔽う形で検出器を配置するため1
0個以上の検出器を球状に均等分布させた配置とするこ
とにある。
The object of the present invention is to arrange the detector in a manner that covers the head.
The purpose is to arrange zero or more detectors in a spherically evenly distributed arrangement.

本発明の他の目的は、このときの各検出器の面積を最大
限にとることにある。
Another object of the present invention is to maximize the area of each detector at this time.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明においては検出器の全
部または一部を、正多面体の頂点に配置したものである
In order to achieve the above object, in the present invention, all or part of the detector is arranged at the vertices of a regular polyhedron.

また、均等分布している各検出器のmMを最大にするた
め、検出器を正多面体の面上に配置し、その形状を正多
面体の各面と等しくすることにより各検出器の面積を技
術的にnf能な限り大きくすることができる。
In addition, in order to maximize the mm of each detector that is evenly distributed, the area of each detector is can be made as large as possible.

さらに平面型グラジオメータを球状に均等分布するため
、正多面体の隣接する二面を一つの平面型グラジオメー
タとし、zuri間の差分をとるようにしたものである
Furthermore, in order to uniformly distribute the planar gradiometers in a spherical shape, two adjacent surfaces of the regular polyhedron are used as one planar gradiometer, and the difference between the zuri is calculated.

〔作用〕[Effect]

、正多面体では各頂点間の距離は相等しく、ここに検出
器を配置すれば、球状に均等分布させることができる。
In a regular polyhedron, the distances between the vertices are equal, and if a detector is placed here, it can be distributed evenly in a spherical shape.

実装上すべての頂点に配置できなくても検出器間の距離
による感度のアンバランスは最低限にとどめることがで
きる。
Even if the detectors cannot be placed at all vertices due to implementation, the unbalance in sensitivity due to the distance between the detectors can be kept to a minimum.

また、各検出器の形状と面積を正多面体の各面に等しく
すれば等面積の検出器を球状に均等分布させる場合の一
個あたりの面積は最大になる。
Furthermore, if the shape and area of each detector are made equal to each face of a regular polyhedron, the area per detector when equal area detectors are uniformly distributed spherically becomes maximum.

さらに正多面体の隣接する2面を一つの平面型グラジオ
メータとすれば、平面型グラジオメータを球状に均等分
布させることができる。
Furthermore, if two adjacent faces of the regular polyhedron are used as one planar gradiometer, the planar gradiometers can be evenly distributed in a spherical shape.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に示したKA磁針によ
り説明する。被験者6から発生した脳磁の信号をグラジ
オメータをなす検出器1で検出し。
Hereinafter, one embodiment of the present invention will be explained using the KA magnetic needle shown in FIG. A magnetic brain signal generated from a subject 6 is detected by a detector 1 forming a gradiometer.

伝送線5を通じて5QUII)素子に人力する。この信
号を例えば?’LL(フラックス・ロックド・ループ)
を用いた計測器で計測する。また制御器は計測器や後に
説明する回転機構を制御する。
Power is applied to the 5QUII) element through the transmission line 5. For example, what is this signal? 'LL (Flux Locked Loop)
Measure with a measuring device that uses Further, the controller controls a measuring instrument and a rotation mechanism which will be explained later.

100は本脳磁計の機構部を表わす。検出器1や伝送線
5は超伝導体であり、5QUID素子も超伝導デバイス
であるため、必要に応じて100内部を液体ヘリウムま
たは液体窒素等の塞材に浸漬する。第1図の例では正1
2ifn体10のすべての頂点上に検出器1を配置した
例を示している。
Reference numeral 100 represents a mechanical section of the present magnetoencephalograph. Since the detector 1 and the transmission line 5 are superconductors, and the 5QUID element is also a superconductor device, the inside of the detector 100 is immersed in a filling material such as liquid helium or liquid nitrogen as necessary. In the example in Figure 1, positive 1
An example is shown in which the detectors 1 are placed on all vertices of the 2ifn body 10.

この場合、検出器1は最大20個配置できるが、実装上
配置できない頂点がある場合もある。正12面体10は
単に検出器を配置する位置を示すもので、実際に装置が
この形状を有する必要はない。
In this case, a maximum of 20 detectors 1 can be arranged, but there may be some vertices that cannot be arranged due to implementation. The regular dodecahedron 10 simply indicates the position where the detector is placed, and the device does not actually need to have this shape.

より多くの測定点が必要な場合は次の2つの方法がある
。一つは廟磁計の機構全体を適当な軸を選んで被験首の
回りに回転させながら測定を行う方法である。この方法
では全く等しい感度で任意の数の測定を行うことができ
る。
If more measurement points are required, there are two methods: One method is to select an appropriate axis and rotate the entire mechanism of the mausoleum magnetometer around the subject's neck while taking measurements. This method allows any number of measurements to be made with exactly equal sensitivity.

もう一つの検出器配置については第2図を用いて説明す
る。この配置は多10i体の頂点のほかに各面の中心を
通る、110に垂直な線上の点にも検出器を配置する方
法である。第2図では正12面体の一つの而である正5
角形ABCDEを示している。
Another detector arrangement will be explained with reference to FIG. In this arrangement, detectors are arranged not only at the vertices of the polygon 10i but also at points on a line perpendicular to 110 passing through the center of each face. In Figure 2, the regular 5 is one of the regular dodecahedrons.
A square ABCDE is shown.

面の中心Oを通る垂直線PQ上の点Sにも検出器を配置
する。点Sは、点S上の検出器の感度が、頂点上の検出
器の感度−と等しくなる点を選ぶ。
A detector is also placed at a point S on a vertical line PQ passing through the center O of the surface. The point S is selected such that the sensitivity of the detector on the point S is equal to the sensitivity of the detector on the vertex.

このとき例えばAB=ASとした場合について考察する
。このように配置した場合、頂点上の検出器の最近接検
出器数は6個であり、正12面体上に等価な点が12個
ある点S上の検出器の最近接検出器数は5個であるため
多少の差異はあるが、なおかなりの対称性を保って、検
出器数を増やすことができる。
At this time, consider, for example, the case where AB=AS. In this arrangement, the number of nearest detectors to the detector on the vertex is 6, and the number of nearest detectors to the detector at point S, which has 12 equivalent points on the regular dodecahedron, is 5. Although there are some differences because of the number of detectors, it is possible to maintain considerable symmetry and increase the number of detectors.

次に第3図により本発明の他の実施例を示す。Next, FIG. 3 shows another embodiment of the present invention.

第3図(a)に示す正20面体20の各面上に配置する
検出器や5QTJII)素子を第3図(b)〜(d)に
示しており、これ以外の部分は省略している。
The detectors and 5QTJII) elements arranged on each surface of the icosahedron 20 shown in FIG. 3(a) are shown in FIGS. 3(b) to (d), and other parts are omitted. .

第3図(a)は正20 thi体の20の各自に配置Z ためにコイルの形状を正三角形とし、正20面体20の
各面の面積と等しくしている。同図(b)は、平面上に
82を検出するマグネトメータ2と5QUIL)索子4
を一体で形成した例である。この場合も感度を上げるた
めマグネトメータの面積は正20面体20の各面の+f
+i積と等しくとっており、こ九を各向上に配置する。
In FIG. 3(a), the shape of the coil is an equilateral triangle, and the area of each face of the regular icosahedron 20 is made equal to the shape of the coil in order to arrange each of the 20 coils Z in a regular 20 thi body. The same figure (b) shows magnetometer 2 and 5QUIL) which detect 82 on a plane.
This is an example in which the two are integrally formed. In this case as well, in order to increase the sensitivity, the area of the magnetometer is +f of each face of the regular icosahedron 20.
It is taken equal to +i product, and this number is placed in each improvement.

また同図(c)は正20而体20の隣接する2 +f+
r間の差分をとる平面型グラジオメータ3と5QULI
)素子4を一体で形成した例である。これを多面体20
上に配置すると最大30個配置できる。これら第3図に
示す例でも適当な軸のまわりに機構群を同転させること
により等感度の測定を増やすことができるのはいうまで
もない。
Also, in the same figure (c), the adjacent 2 +f+ of the positive 20 physical body 20
Planar gradiometers 3 and 5QULI that take the difference between r
) This is an example in which the element 4 is integrally formed. This is polyhedron 20
If you place it on top, you can place up to 30 pieces. It goes without saying that even in the examples shown in FIG. 3, it is possible to increase the number of equal-sensitivity measurements by rotating the mechanism group around an appropriate axis.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、脳磁測定用の検出器を均等に球状に配
置できるため、各々の検出器の感度が等しくなる効果が
ある。また、このとき各々の検出器に入力する脳磁の信
号層が最大になる効果がある。
According to the present invention, since the detectors for magnetoencephalography measurement can be arranged evenly in a spherical shape, there is an effect that the sensitivity of each detector becomes equal. Further, at this time, there is an effect that the signal layer of the brain magnetic field input to each detector is maximized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の脳磁計測装置の模増やす場
合の配置方法を示す説明図、第3図は本発明の別の実施
例における検出器配置を示す多面体の斜視図および検出
器の斜視図ならびにグラジオメータと5QUID素子の
平面図、第4図、第5図は従来の装置の検出器配置の説
明図である。 1・・・検出器(@型グラジオメータ)、2・・・検出
器(平向型マグネットメータ)、3・・・検出器(平曲
型グラジオメータ)、4・・・5QUII)索子、5・
・・伝送線、6・・・被験者(頭部)、10・・・検出
器の配置を示す正121m体、20・・・検出器の配置
を示す正20面体、100・・・脳磁計+ll’l装置
の構造体。 竿 /i 猶 (幻 (C) 第 ■ (幻 (b) <b> (cl) 弔 ダ 凹
FIG. 1 is an explanatory diagram showing an arrangement method for increasing the number of magnetoencephalogram measuring devices according to an embodiment of the present invention, and FIG. 3 is a perspective view of a polyhedron showing a detector arrangement and detection in another embodiment of the present invention. A perspective view of the device, a plan view of the gradiometer and the 5QUID element, and FIGS. 4 and 5 are explanatory diagrams of the detector arrangement of the conventional device. 1... Detector (@-type gradiometer), 2... Detector (flat magnet meter), 3... Detector (flat curved gradiometer), 4... 5 QUII) cord, 5.
... Transmission line, 6... Subject (head), 10... Regular 121m body showing the arrangement of the detector, 20... Regular icosahedron showing the arrangement of the detector, 100... Magnetoencephalography +ll 'l device structure. Rod /i Yu (Illusion (C) No. ■ (Illusion (b) <b> (cl) Souda concave

Claims (1)

【特許請求の範囲】 1、複数の磁場検出器を有する磁場検出装置において検
出器の全部または一部を正多面体の頂点に配置したこと
を特徴とする磁場検出装置。 2、複数の検出器を有する磁場検出装置において検出器
の全部または一部を正多面体の面上に設置し、その形状
を正多面体の各面と等しくしたことを特徴とする磁場検
出装置。 3、複数の検出器を有する磁場検出装置において正多面
体の隣接する各々の2面に鎖交する磁気信号の差分を計
測する手段を有すること特徴とする磁場検出装置。 4、特許請求の範囲第1項乃至第3項記載の磁場検出装
置を用いたことを特徴とする脳磁計測装置。
[Scope of Claims] 1. A magnetic field detection device having a plurality of magnetic field detectors, characterized in that all or part of the detectors are arranged at vertices of a regular polyhedron. 2. A magnetic field detection device having a plurality of detectors, characterized in that all or part of the detectors are installed on the faces of a regular polyhedron, and the shape thereof is made equal to each face of the regular polyhedron. 3. A magnetic field detection device having a plurality of detectors, characterized in that it has means for measuring a difference between magnetic signals interlinking between two adjacent faces of a regular polyhedron. 4. A magnetoencephalography measurement device characterized by using the magnetic field detection device according to claims 1 to 3.
JP1063649A 1989-03-17 1989-03-17 Magnetic field detecting device Pending JPH02243981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1063649A JPH02243981A (en) 1989-03-17 1989-03-17 Magnetic field detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063649A JPH02243981A (en) 1989-03-17 1989-03-17 Magnetic field detecting device

Publications (1)

Publication Number Publication Date
JPH02243981A true JPH02243981A (en) 1990-09-28

Family

ID=13235409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063649A Pending JPH02243981A (en) 1989-03-17 1989-03-17 Magnetic field detecting device

Country Status (1)

Country Link
JP (1) JPH02243981A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479208A2 (en) * 1990-09-30 1992-04-08 Agency Of Industrial Science And Technology Method and apparatus for measuring vector magnetic flux
WO2010140484A1 (en) * 2009-06-01 2010-12-09 株式会社システムロード Device for measuring optical characteristic of light source, measuring method, and examining device provided with the measuring device
CN103536308A (en) * 2013-10-23 2014-01-29 许剑锋 Launching and imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479208A2 (en) * 1990-09-30 1992-04-08 Agency Of Industrial Science And Technology Method and apparatus for measuring vector magnetic flux
WO2010140484A1 (en) * 2009-06-01 2010-12-09 株式会社システムロード Device for measuring optical characteristic of light source, measuring method, and examining device provided with the measuring device
CN103536308A (en) * 2013-10-23 2014-01-29 许剑锋 Launching and imaging device

Similar Documents

Publication Publication Date Title
US5444372A (en) Magnetometer and method of measuring a magnetic field
US8155726B2 (en) Magnetic detection coil and apparatus for magnetic field measurement
FI89131C (en) MAGNETOMETER DETECTOR OVER DERAS MONTAGE I EN FLORKANALIG ANORDNING FOER MAETNING AV MAENSKANS HJAERNFUNKTIONER ALSTRANDE MAGNETFAELT
JP3204542B2 (en) Magnetic field source measurement device
US11317843B2 (en) Biomagnetism measuring device
CN109152545A (en) Biomagnetic measurement device
US5469056A (en) Planar gradiometers arranged on non-parallel surfaces for determination of a gradient tensor of a magnetic field
Uehara et al. Multi-channel SQUID systems for biomagnetic measurement
JPH02243981A (en) Magnetic field detecting device
Burghoff et al. A vector magnetometer module for biomagnetic application
JPH04309869A (en) Pickup coil
JP7227609B2 (en) Marker coil and magnetic measuring device
GB2171523A (en) Magnetic gradient detection
Kraus Jr et al. Performance of a novel SQUID-based superconducting imaging-surface magnetoencephalography system
Oyama et al. Evaluation of an isosceles-triangle-coil phantom for magnetoencephalography
Higuchi et al. System integration and trade-offs of SQUID system for biomagnetic applications
Ahlfors et al. A 24-SQUID gradiometer for magnetoencephalography
JPS62187267A (en) Measuring instrument for superconducting magnetic field
JPH045590A (en) Multichannel plane type gradiometer
JPH057561A (en) Magnetic measuring apparatus
Overton et al. Theoretical and experimental verification of the properties of superconductor surface imaging
JPH0295336A (en) Biomagnetic measuring device
Fagaly et al. Magnetometer Calibration Methods
JPH05297091A (en) Biomagnetism measuring device
JPH0499979A (en) Squid fluxmeter