JPH02242222A - Production of optical liquid crystal device - Google Patents

Production of optical liquid crystal device

Info

Publication number
JPH02242222A
JPH02242222A JP6220289A JP6220289A JPH02242222A JP H02242222 A JPH02242222 A JP H02242222A JP 6220289 A JP6220289 A JP 6220289A JP 6220289 A JP6220289 A JP 6220289A JP H02242222 A JPH02242222 A JP H02242222A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
roll
adhesive
gravure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6220289A
Other languages
Japanese (ja)
Inventor
Kenji Hashimoto
橋本 憲次
Koyo Yuasa
公洋 湯浅
Tetsuo Fujimoto
哲男 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP6220289A priority Critical patent/JPH02242222A/en
Publication of JPH02242222A publication Critical patent/JPH02242222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To continuously produce optical liq. crystal devices of a large area and to enhance productivity by using a gravure coater when a substrate is coated with a liq. crystal material and an adhesive. CONSTITUTION:When a substrate is coated with a liq. crystal material and an adhesive, pattern printing is carried out with a gravure coater fitted with a gravure roll A. The roll A is rotated in a direction reverse to the direction of travelling of the substrate and the linear velocity of the roll A is regulated to 1.5-100 times, preferably 2-50 times as high as the speed of the substrate so as to control the thickness of a coating layer. A roll B is set vertically movably with an air cylinder, brings the substrate into contact with the roll A and enables intermittent coating. A roll C presses the substrate against the roll A and can evaporate a solvent when heated to about 100 deg.C. Such coated substrates are laminated and orientation is carried out by bending or other method. Optical liq. crystal devices is continuously produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶光学素子の製造法に関し、より詳しくは
、液晶表示素子、液晶記録素子等として好適に利用でき
る液晶光学素子の連続製造を容易に可能とする液晶光学
素子の製造法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a liquid crystal optical element, and more specifically, to a method for continuously manufacturing a liquid crystal optical element that can be suitably used as a liquid crystal display element, a liquid crystal recording element, etc. The present invention relates to a method for easily manufacturing liquid crystal optical elements.

〔従来の技術〕[Conventional technology]

液晶の電気光学的効果や熱光学的効果を応用した液晶光
学素子は、液晶デイスプレー、液晶シャッターアレイ、
液晶プリンター等として広く利用されている。従来、液
晶光学素子を作製する方法として、液晶光学素子を構成
する2枚の基板をスペーサーを介して重ねあわせ、液晶
注入孔を残して周辺を接着、シールした後に液晶を注入
する方法が行ねていた。しかしこの方法は液晶層の厚さ
を数μmに保持することが困難であり、また液晶の注入
も困難である等の問題があり、例えば特開昭62−26
7720号公報等に記載されているような改良法が提案
されている。この方法はスペーサーを含有する液晶物質
をスクリーン印刷法により減圧下で基板に塗布している
が、スクリーン印刷法では連続化が困難であり、また、
減圧室内での操作のため工程が複雑化するという問題点
がある。
Liquid crystal optical elements that utilize the electro-optic and thermo-optic effects of liquid crystals are used in liquid crystal displays, liquid crystal shutter arrays,
Widely used in liquid crystal printers, etc. Conventionally, the method for manufacturing liquid crystal optical elements was to stack the two substrates that make up the liquid crystal optical element with a spacer in between, glue and seal the periphery leaving a liquid crystal injection hole, and then inject liquid crystal. was. However, this method has problems such as it is difficult to maintain the thickness of the liquid crystal layer at several micrometers, and it is also difficult to inject the liquid crystal.
Improved methods such as those described in Japanese Patent No. 7720 have been proposed. In this method, a liquid crystal material containing a spacer is applied to a substrate under reduced pressure by screen printing, but it is difficult to achieve continuity with screen printing, and
There is a problem in that the process is complicated because it is operated in a reduced pressure chamber.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記事情に基づいてなされたもので、液晶光
学素子を簡単な操作により連続的に製造することができ
る液晶光学素子の製造法を提供することを目的とする。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a method for manufacturing a liquid crystal optical element, which allows liquid crystal optical elements to be manufactured continuously by simple operations.

本発明はまた、大面積、大容量表示の均一な液晶薄膜を
有する液晶光学素子を製造する方法を提供することを目
的とする。
Another object of the present invention is to provide a method for manufacturing a liquid crystal optical element having a uniform liquid crystal thin film with a large area and large capacity display.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記課題を解決するために鋭意研究を重
ねた結果、液晶材料及び/又は接着剤の基板への塗布を
グラビアコータを用いて行うことにより、液晶材料の基
板への大面積かつ均一な塗布が容易に行え、液晶光学素
子の連続製造が可能となることを見出し、この知見に基
づいて本発明を完成するに至った。
As a result of extensive research in order to solve the above problems, the present inventors have discovered that by applying liquid crystal material and/or adhesive to a substrate using a gravure coater, a large area of liquid crystal material can be applied to the substrate. Furthermore, the inventors have discovered that uniform coating can be easily performed and continuous production of liquid crystal optical elements is possible, and based on this knowledge, the present invention has been completed.

すなわち、本発明は基板に液晶材料及び/又は接着剤を
グラビアコータを用いてパターン印刷する工程を有する
ことを特徴とする液晶光学素子の製造法を提供するもの
である。
That is, the present invention provides a method for manufacturing a liquid crystal optical element, which includes a step of pattern-printing a liquid crystal material and/or adhesive onto a substrate using a gravure coater.

第1図は本発明において用いられる一組のグラビアコー
タの一例を示す模式図であり、Aはグラビアロールで基
板の流れ方向と逆向きに回転する。
FIG. 1 is a schematic diagram showing an example of a set of gravure coaters used in the present invention, and A is a gravure roll that rotates in the opposite direction to the flow direction of the substrate.

グラビアロール回転時のグラビア表面の線速度v2は、
基板の移動速度v1に対して、通常1.5〜100倍、
好ましくは2〜50倍となるように設定する。また、こ
のグラビアロールの回転速度を変化させることにより、
パターン印刷された液晶材料及び/又は接着剤の塗布層
の膜厚を制御することができる。ロールBはパターン印
刷を間欠的に行うための間欠塗布機構で、エアーシリン
ダにより上下動可能となっており、グラビアロールAを
基板に接触させたり、離したりすることで、パターン印
刷が間欠的に行える。ロールCはグラビアロールAに基
板を押さえ付けるためロールで、必要に応じ加熱装置を
組み込んで100’C程度に加熱すれば、塗布する際に
用いた溶媒を蒸発させることができる。
The linear velocity v2 of the gravure surface during rotation of the gravure roll is
Usually 1.5 to 100 times the moving speed v1 of the substrate,
Preferably, it is set to 2 to 50 times. In addition, by changing the rotation speed of this gravure roll,
The thickness of the pattern-printed liquid crystal material and/or adhesive coating layer can be controlled. Roll B is an intermittent application mechanism for performing pattern printing intermittently, and can be moved up and down by an air cylinder, and pattern printing can be performed intermittently by bringing gravure roll A into or out of contact with the substrate. I can do it. Roll C is a roll for pressing the substrate against gravure roll A, and if necessary a heating device is installed and heated to about 100'C to evaporate the solvent used during coating.

このようなグラビアコータを用いて液晶材料を基板にパ
ターン印刷する。また、液晶材料がパターン印刷された
基板に対向基板を接着剤を用いて積層する場合には、該
基板又は対向基板に前記グラビアコータを用いて接着剤
をパターン印刷する。
A pattern of liquid crystal material is printed on a substrate using such a gravure coater. Further, when a counter substrate is laminated with an adhesive on a substrate on which a pattern of liquid crystal material is printed, the pattern of the adhesive is printed on the substrate or the counter substrate using the gravure coater.

このようにして得られた基板を積層し、曲げ配向処理等
の配向処理を行うと液晶光学素子が得られる。液晶材料
中に接着剤が含有されている場合等は対向基板に接着剤
を塗布せずに基板の積層を行うことができる。
A liquid crystal optical element is obtained by stacking the substrates thus obtained and subjecting them to alignment treatment such as bending alignment treatment. When an adhesive is contained in the liquid crystal material, the substrates can be laminated without applying an adhesive to the opposing substrate.

第2図は第1図で示した一組のグラビアロールを用いて
、基板上へ液晶材料を塗布する場合の印刷パターンを示
す模式的説明図で、1はグラビアロール、2は基板、3
は間欠的に塗布された液晶材料の塗布面である。第3図
及び第4図は別のグラビアロールを用いて接着剤を塗布
する場合の印刷パターンを示す模式的説明図で、4.6
はグラビアロール、2′は対向基板、5.7が接着剤の
塗布面である。第3図のように液晶材料塗布面の外側に
相当する部分にライン塗布したのち、第4図のように液
晶塗布面の間の非塗布面に間欠塗布することで接着剤の
塗布が完了する。これら第2図〜第4図に示される塗布
操作を組み合わせることにより、第5図に示されるよう
な液晶材料塗布面と接着剤塗布面との配置が構成される
。液晶材料及び接着剤の塗布は同一基板に対して行って
もよいし、また各対向基板に対し、別個に行ってもよい
。このようにして得られた液晶材料を塗布した基板と接
着剤を塗布した対向基板を積層し、次の配向工程に送る
FIG. 2 is a schematic illustration showing a printing pattern when applying a liquid crystal material onto a substrate using a set of gravure rolls shown in FIG. 1, in which 1 is a gravure roll, 2 is a substrate, and 3
is the surface to which the liquid crystal material is applied intermittently. 3 and 4 are schematic explanatory diagrams showing printing patterns when applying adhesive using another gravure roll, and 4.6
2 is a gravure roll, 2' is a counter substrate, and 5.7 is an adhesive coating surface. After applying a line to the area corresponding to the outside of the liquid crystal material application surface as shown in Figure 3, the adhesive application is completed by applying intermittently to the non-applied surface between the liquid crystal application surfaces as shown in Figure 4. . By combining these coating operations shown in FIGS. 2 to 4, the arrangement of the liquid crystal material coated surface and the adhesive coated surface as shown in FIG. 5 is constructed. The liquid crystal material and adhesive may be applied to the same substrate, or may be applied separately to each opposing substrate. The substrate coated with the liquid crystal material thus obtained and the counter substrate coated with adhesive are laminated and sent to the next alignment step.

液晶材料、接着剤の塗布を複数のグラビアロールを用い
て行うことにより、液晶材料、接着剤をそれぞれパター
ン化して塗り分けることが可能で所望の構成の液晶光学
素子を容易に製造することができる。 本発明において
、液晶材料又は接着剤を塗布する基板は、通常長尺状の
ものが用いられ、連続的にグラビアコータに供給され塗
布が行われる。これにより、液晶光学素子の連続生産、
大面積化を容易に行うことができる。基板の材質として
は、通常、生産性、汎用性、加工性等の点から、強度、
耐熱性、透明性、耐久性などに優れたプラスチックから
なる基板等が好適に使用される。具体例としては、−軸
又は二軸延伸ポリエチレンテレフタレート等の結晶性ポ
リマー、ポリスルホン、ポリエーテルスルホン等の非結
晶性ポリマー、ポリエチレン、ポリプロピレン等のポリ
オレフィン、ポリカーボネート、ナイロン等のポリアミ
ドなどのプラスチック基板が挙げられる。プラスチック
基板を用いると、ガラス基板を用いた場合に比べ軽量化
が図られる。
By applying the liquid crystal material and adhesive using multiple gravure rolls, it is possible to pattern and apply the liquid crystal material and adhesive separately, making it easy to manufacture liquid crystal optical elements with desired configurations. . In the present invention, the substrate to which the liquid crystal material or adhesive is applied is usually a long one, and is continuously supplied to a gravure coater for coating. This allows continuous production of liquid crystal optical elements,
It is possible to easily increase the area. The material of the board is usually selected from the viewpoint of productivity, versatility, workability, etc.
A substrate made of plastic having excellent heat resistance, transparency, durability, etc. is preferably used. Specific examples include crystalline polymers such as -axially or biaxially stretched polyethylene terephthalate, amorphous polymers such as polysulfone and polyethersulfone, polyolefins such as polyethylene and polypropylene, and plastic substrates such as polycarbonates and polyamides such as nylon. It will be done. When a plastic substrate is used, the weight can be reduced compared to when a glass substrate is used.

基板には透明電極が設けられており、この透明電極とし
ては酸化スズを被着させたNESA膜、酸化スズと酸化
インジウムよりなるITO膜等が用いられる。これらの
電極は、公知の各種の手法、例えば、スパッタリング法
、蒸着法、印刷法、塗布法、メツキ法、接着法等、又は
、これらを適宜組み合わせた手法を用いて、基板上に設
けることができる。
A transparent electrode is provided on the substrate, and a NESA film coated with tin oxide, an ITO film made of tin oxide and indium oxide, or the like is used as the transparent electrode. These electrodes can be provided on the substrate using various known methods, such as sputtering, vapor deposition, printing, coating, plating, adhesion, etc., or an appropriate combination of these methods. can.

本発明で用いられる液晶材料としては、液晶性を示すも
のであれば特に制限はないが、低分子ネマチック液晶、
低分子コレステリック結晶、低分子スメクチック液晶、
高分子ネマチック液晶、高分子コレステリック液晶、高
分子スメクチ・ンク液晶及びこれらの混合物等が挙げら
れる。強誘電性を示す低分子及び高分子の液晶材料やそ
れらの混合物等も好適に用いることができる。さらに本
発明で用いられる液晶材料には、前記の高分子液晶、低
分子液晶に加えて、多色性色素、減粘剤等の添加剤、接
着剤等が添加されていてもよい。
The liquid crystal material used in the present invention is not particularly limited as long as it exhibits liquid crystallinity, but includes low molecular weight nematic liquid crystal,
Low molecular cholesteric crystal, low molecular smectic liquid crystal,
Examples include polymer nematic liquid crystal, polymer cholesteric liquid crystal, polymer smectin liquid crystal, and mixtures thereof. Low-molecular and high-molecular liquid crystal materials exhibiting ferroelectricity and mixtures thereof can also be suitably used. Further, the liquid crystal material used in the present invention may contain additives such as pleochroic dyes and thinners, adhesives, etc. in addition to the above-mentioned polymer liquid crystals and low molecular liquid crystals.

多色性色素としては、スチリル系、アゾメチン系、アゾ
系、ナフトキノン系、アントラキノン系、メロシアニン
系、ベンゾキノン系、テトラジン系の色素が挙げられる
Examples of pleochroic dyes include styryl, azomethine, azo, naphthoquinone, anthraquinone, merocyanine, benzoquinone, and tetrazine dyes.

本発明で用いられる接着剤としては、単独で用いられる
ものも、また液晶材料中に配合して用いられるものも、
いずれも接着剤として通常用いられている次のような高
分子物質、例えばエポキシ系接着剤、アクリル系接着剤
、ポリウレタン系接着剤、ホットメルト型接着剤、エラ
ストマー型接着剤を挙げることができる。
The adhesive used in the present invention may be used alone or mixed into a liquid crystal material.
The following polymeric substances commonly used as adhesives may be mentioned, such as epoxy adhesives, acrylic adhesives, polyurethane adhesives, hot melt adhesives, and elastomer adhesives.

液晶材料及び接着剤は、例えばジクロロメタン、クロロ
ホルム、メチルエチルケトン、1,1.1−トリクロロ
エタン、トルエン及び/又はこれらの混合物等からなる
溶媒で、通常濃度2〜70重量%、好ましくは2〜50
重量%に希釈してグラビアコータにより塗布される。
The liquid crystal material and adhesive are solvents such as dichloromethane, chloroform, methyl ethyl ketone, 1,1,1-trichloroethane, toluene, and/or mixtures thereof, and usually have a concentration of 2 to 70% by weight, preferably 2 to 50% by weight.
It is diluted to % by weight and applied using a gravure coater.

上記のようにして塗布された基板は、加圧ロール等で積
層され、次いで曲げ配向処理等の配向処理が行われ、次
いで切断され液晶光学素子となる。
The substrates coated as described above are laminated using a pressure roll or the like, then subjected to orientation treatment such as bending orientation treatment, and then cut to form a liquid crystal optical element.

この塗布、積層、配向処理、切断の各工程は連続化が可
能であり、大面積の液晶光学素子を連続的に複雑な工程
を必要とせずに生産でき、液晶光学素子の低コスト化が
可能となる。
These coating, laminating, alignment, and cutting processes can be made continuous, allowing large-area liquid crystal optical elements to be produced continuously without the need for complicated processes, and making it possible to reduce the cost of liquid crystal optical elements. becomes.

〔実施例] 以下、本発明を実施例に基づいて詳細に説明するが、本
発明はこれに限定されるものではない。
[Examples] Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

実施例1 希釈液(A) 下記繰り返し単位を有する強誘電性高分子液晶をジクロ
ロメタンで濃度15重量%に調整した希粗液(A)を得
た。
Example 1 Diluted liquid (A) A diluted crude liquid (A) was obtained by adjusting a ferroelectric polymer liquid crystal having the following repeating unit to a concentration of 15% by weight with dichloromethane.

Mn=5. 300 (cry  :結晶相、Smc”  :カイラルスメク
チックC相、StmA  :スメクチックA相、Iso
 :等吉相〕希粗液(B) 油化シェルエポキシ■製エポキシ樹脂(主剤エピコート
834と硬化剤QX−11の重量比2:1の混合物)を
トルエンで濃度5重量%に調整して希釈液(B)を得た
Mn=5. 300 (cry: crystalline phase, Smc”: chiral smectic C phase, StmA: smectic A phase, Iso
: Tokichi phase] Dilute crude liquid (B) A diluted liquid made by adjusting the concentration of epoxy resin manufactured by Yuka Shell Epoxy ■ (mixture of base material Epicoat 834 and curing agent QX-11 at a weight ratio of 2:1) with toluene to 5% by weight. (B) was obtained.

上記希釈液(A)及び(B)を第6図に示す構成のグラ
ビア塗工装置でITO付きPES (ポリエーテルスル
ホン)基板(厚み125μm1巾15cm、長さ50m
のロール物)にそれぞれ塗布し、溶媒蒸発後に厚さ3.
1μmの膜を得た。
The above diluted solutions (A) and (B) were applied to a PES (polyethersulfone) substrate with ITO (thickness: 125 μm, width: 15 cm, length: 50 m) using a gravure coating device configured as shown in Figure 6.
(rolled material) respectively, and after solvent evaporation, the thickness was 3.
A 1 μm film was obtained.

第6図の装置の仕様は下記の通りである。The specifications of the device shown in FIG. 6 are as follows.

ロールA グラビア形状 台形75メツシユ 直径   25皿φ 回転数    200rpm v2415.7m/min 塗布対象   希釈液(A) 塗布面積   図示 (数値の単位:rMl)間欠動作
   塗布時間 4.4秒 休止時間 1 秒 ロールA′ グラビア形状 台形1.50メツシユ 直径   25IIIIllφ 回転数    100100 rp =7.9 m/m i n 塗布対象   希釈液CB) 塗布面積   図示 (数値の単位:mm)間欠動作 
  なし ロールA′ グラビア形状 台形150メツシユ 直径   25mmφ 回転数    100100 rpミ7.9m/min 塗布対象   希釈液(B) 塗布面積   図示 (数値の単位:aa)間欠動作 
  塗布時間 0.9秒 休止時間 4.5秒 基板速度 v+=2m/min このようにして得られた1組の基板を塗布面を合わせて
ロールにより積層し、引き続き、直径30m1、中心間
距離40ffI[IIのロールを3本組み合わせたロー
ル群により連続的に曲げ配向処理を行った。
Roll A Gravure shape Trapezoid 75 mesh diameter 25 plates φ Rotation speed 200 rpm v2415.7 m/min Coating target Diluent (A) Coating area As shown (Unit of numerical value: rMl) Intermittent operation Coating time 4.4 seconds Pausing time 1 second Roll A ' Gravure shape Trapezoid 1.50 mesh Diameter 25IIIllφ Rotation speed 100100 rp = 7.9 m/min Coating target Diluted liquid CB) Coating area As shown (Numeric unit: mm) Intermittent operation
Blank roll A' Gravure shape Trapezoid 150 mesh Diameter 25mmφ Rotation speed 100100 rpm 7.9m/min Coating target Diluent (B) Coating area As shown (Numeric unit: aa) Intermittent operation
Coating time: 0.9 seconds Pause time: 4.5 seconds Substrate speed: v+=2 m/min A set of substrates obtained in this way was stacked with the coated surfaces together using a roll, and then the substrates were stacked with a diameter of 30 m1 and a distance between centers of 40 ffI. [Bending and orientation treatment was performed continuously using a roll group consisting of three rolls of II.

次いで、得られた長尺状の液晶パネルを接着剤塗布部を
2分割するように切断し、所望の大きさのパネルを得た
Next, the obtained long liquid crystal panel was cut into two parts at the adhesive coated part to obtain a panel of a desired size.

得られた液晶パネルについて室温でのコントラストを測
定したところ、±5■の印加で28という良好な配向状
態のものが得られ、電界を切ってもその表示が24時間
以上保たれた。このように本発明の方法によると長尺物
の連続生産(塗布→積層→配向処理→切断)が可能とな
り、生産性の大巾な向上ができ、がっ容易にコントラス
トの良好な液晶表示素子が得られた。
When the contrast of the obtained liquid crystal panel was measured at room temperature, a good alignment state of 28 was obtained by applying ±5 μ, and the display was maintained for more than 24 hours even when the electric field was turned off. As described above, the method of the present invention enables continuous production of long objects (coating → lamination → alignment treatment → cutting), greatly improving productivity, and easily producing liquid crystal display elements with good contrast. was gotten.

実施例2〜6 実施例1において、基板速度、グラビアロールのメツシ
ュ、及び回転速度を下記のように変化させ、他は実施例
1と同様にして液晶表示素子を作製したところ、第1表
に示すような性能の液晶表示素子を得た。
Examples 2 to 6 In Example 1, a liquid crystal display element was produced in the same manner as in Example 1 except that the substrate speed, gravure roll mesh, and rotation speed were changed as shown below. A liquid crystal display element with the performance as shown was obtained.

実施例7 実施例1において塗布対象を以下のように変更したほか
は実施例1と同様に基板への塗布を行った。
Example 7 Coating to a substrate was carried out in the same manner as in Example 1, except that the coating target was changed as follows.

希釈液(A) 強誘電性高分子液晶I Mn=15. 000 〔gニガラス状態、Sl:未同定のスメクチ2り相〕強
誘電性高分子液晶■ Mn==3,000 湘上IIL飲 上記2種の高分子液晶I及び■を50:50(モル%)
で混合したものをアセトンに溶解し、10重量%の希釈
液(A)を得た。
Diluent (A) Ferroelectric polymer liquid crystal I Mn=15. 000 [g-niglass state, Sl: unidentified smecti binary phase] Ferroelectric polymer liquid crystal ■ Mn = = 3,000 Shogami IIL drink The above two types of polymer liquid crystals I and ■ were mixed in a ratio of 50:50 (mol% )
The mixture was dissolved in acetone to obtain a 10% by weight diluted solution (A).

希釈液(B) U■硬化型アクリル系接着剤(セメダイン■製、セメロ
ックスス−パーY−862−1)をMEK(メチルエチ
ルケトン)で溶解し、10重量%の希釈液(B)を得た
Diluent (B) A curable acrylic adhesive (manufactured by Cemedine ■, Cemerox Super Y-862-1) was dissolved in MEK (methyl ethyl ketone) to obtain a 10% by weight diluted solution (B).

上記希釈液(A)及び(B)を用いて実施例1と同様に
塗布蒸発後、2.5μmの膜が得られた。
After coating and evaporating the above diluted solutions (A) and (B) in the same manner as in Example 1, a 2.5 μm film was obtained.

それぞれの基板を積層し、配向処理した後、400Wメ
タルハライドランプを約2秒照射し、切断し、所望のパ
ネルを得た。
After the respective substrates were laminated and subjected to orientation treatment, they were irradiated with a 400W metal halide lamp for about 2 seconds and cut to obtain a desired panel.

得られた液晶パネルについて室温でのコントラストを測
定したところ、±5vの印加で36の値を得た。
When the contrast of the obtained liquid crystal panel was measured at room temperature, a value of 36 was obtained when ±5 V was applied.

実施例8 塗布対象を以下のように変更したほかは実施例1と同一
条件で塗布した。
Example 8 Coating was carried out under the same conditions as in Example 1, except that the coating target was changed as follows.

希釈液(A) 下記低分子強誘電性液晶をジクロロメタンで濃度15重
量%に調整した希釈液(A)を得た。
Diluted Solution (A) A diluted solution (A) was obtained by adjusting the following low-molecular-weight ferroelectric liquid crystal to a concentration of 15% by weight with dichloromethane.

溶媒蒸発後、2.1μmの膜が得られ、実施例1と同様
に積層、配向処理を行い所望のパネルとした。
After evaporation of the solvent, a 2.1 μm film was obtained, and laminated and oriented in the same manner as in Example 1 to obtain a desired panel.

得られた液晶パネルについて室温でのコントラストを測
定したところ、±5■の印加で23の値を得た。
When the contrast of the obtained liquid crystal panel was measured at room temperature, a value of 23 was obtained with an application of ±5 μ.

実施例9 実施例1において塗布対象の希釈液(A)を以下のよう
に変更したほかは実施例1と同様に基板への塗布を行っ
た。
Example 9 Application to a substrate was carried out in the same manner as in Example 1, except that the diluent (A) to be applied was changed as follows.

希釈液(A) A : B : C: D=45.6:30.4:4:
20A    CH! (モル%) 溶媒蒸発後、2.9μmの膜が得られ、実施例1と同様
に積層、配向処理を行い所望のパネルとした。
Diluted solution (A) A: B: C: D=45.6:30.4:4:
20A CH! (mol %) After evaporation of the solvent, a 2.9 μm film was obtained, and laminated and oriented in the same manner as in Example 1 to obtain a desired panel.

得られた液晶パネルについて室温でのコントラストを測
定したところ、±9■の印加で70の値を得た。
When the contrast of the obtained liquid crystal panel was measured at room temperature, a value of 70 was obtained with an application of ±9 square meters.

実施例10 強誘電性高分子液晶 Mn=5 30 0 Mn−3,000 接着剤 油化シェルエポキシ株製エポキシ樹脂(主剤エピコート
834と硬化剤QX−11の重量比2:1の混合物) 上記繰り返し単位を有する高分子液晶と接着剤を重量比
で50750で混合した液晶組成物をジクロロメタンに
溶解し、15重量%の溶液とした。
Example 10 Ferroelectric polymer liquid crystal Mn = 5 30 0 Mn - 3,000 Adhesive Epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd. (mixture of base material Epicoat 834 and curing agent QX-11 in a weight ratio of 2:1) Repeating the above A liquid crystal composition in which a polymeric liquid crystal having units and an adhesive were mixed at a weight ratio of 50,750 was dissolved in dichloromethane to form a 15% by weight solution.

上記溶液を第7図に示す構成のグラビア塗工装置でIT
O付きPES基板(厚み125μm、巾15cm、長さ
50mのロール物)にそれぞれ塗布し、溶媒蒸発後に厚
さ3.1μmの膜を得た。
The above solution was IT coated with a gravure coating device having the configuration shown in Fig.
Each of these was applied to a PES substrate with O (a roll of 125 μm in thickness, 15 cm in width, and 50 m in length), and a film with a thickness of 3.1 μm was obtained after solvent evaporation.

第7図の装置の仕様は下記の通りである。The specifications of the device shown in FIG. 7 are as follows.

ロールA グラビア形状 台形75メツシユ 直径   25mmφ 回転数    20Orpm Vz =15.7m/mtn 塗布対象   上記溶液 塗布面積   図示 (数値の単位:aa)間欠勤イ¥
   塗布時間 4.4秒 休止時間 1 秒 基板速度 V + ”” 2 m/ m i n板を重
ねてロールにより積層し、引き続き実施例1と同様に曲
げ配向処理を行った。次いで、得られた長尺状の液晶パ
ネルを切断し、所望の大きさのパネルを得た。
Roll A Gravure shape Trapezoid 75 mesh Diameter 25mmφ Rotation speed 20Orpm Vz = 15.7m/mtn Application area above solution application area As shown (Numeric unit: aa) Intermittent work
Coating time: 4.4 seconds Pausing time: 1 second Substrate speed: V + "" 2 m/min The plates were stacked and laminated using a roll, and then the bending and orientation treatment was performed in the same manner as in Example 1. Next, the obtained long liquid crystal panel was cut to obtain a panel of a desired size.

得られた液晶パネルについて室温でのコントラストを測
定したところ、±5■の印加で23という良好な配向状
態のものが得られ、電界を切ってもその表示が24時間
以上保たれた。このように本発明の方法によると長尺物
の連続生産(塗布→積層→配向処理→切断)が可能とな
り、生産性の大巾な向上ができ、かつ容易にコントラス
トの良好な液晶表示素子が得られた。
When the contrast at room temperature of the obtained liquid crystal panel was measured, a good alignment state of 23 was obtained with an application of ±5 square meters, and the display was maintained for more than 24 hours even when the electric field was turned off. As described above, the method of the present invention enables continuous production of long objects (coating → lamination → alignment treatment → cutting), greatly improves productivity, and easily produces liquid crystal display elements with good contrast. Obtained.

実施例11〜14 実施例10において、基板速度、グラビアロールのメツ
シュ、及び回転速度を下記のように変化させ、他は実施
例10と同様にして液晶表示素子を作製したところ、第
2表に示すような性能の液晶表示素子を得た。
Examples 11 to 14 In Example 10, a liquid crystal display element was produced in the same manner as in Example 10, except that the substrate speed, gravure roll mesh, and rotation speed were changed as shown below. A liquid crystal display element with the performance as shown was obtained.

このようにして得られた基板の塗布面に対向基第2表 実施例15 実施例10において塗布対象を以下のように変更したほ
かは実施例10と同様に基板への塗布を行った。
The coating surface of the thus obtained substrate was coated with an opposing group.Table 2 Example 15 Coating to the substrate was carried out in the same manner as in Example 10, except that the coating object was changed as follows.

強誘電性高分子液晶I H3 Mn=15. 000 強誘電性高分子液晶■ Mn=3. 000 上記2種の高分子液晶I及び■を50 : 50(モル
%)で混合したものにUV硬化型アクリル系接着剤(セ
メダイン■製、セメロックスス−パーY−862−1)
を重量比3:1で混合しアセトンに溶解し、10重量%
の溶液を得た。この溶液を用いて実施例工0と同様に塗
布蒸発後、2.5μmの膜が得られ、この塗布面上に対
向基板を積層し、配向処理した後、400Wメタルハラ
イドランプを約2秒照射し、切断し、所望のパネルを得
た。
Ferroelectric polymer liquid crystal I H3 Mn=15. 000 Ferroelectric polymer liquid crystal■ Mn=3. 000 A UV-curable acrylic adhesive (manufactured by Cemedine ■, Cemerox Super Y-862-1) was added to a mixture of the above two types of polymeric liquid crystals I and ■ at a ratio of 50:50 (mol%).
were mixed at a weight ratio of 3:1 and dissolved in acetone to give a concentration of 10% by weight.
A solution of was obtained. Using this solution, a film of 2.5 μm was obtained after coating and evaporation in the same manner as in Example Process 0. A counter substrate was laminated on the coated surface, and after alignment treatment, irradiation with a 400W metal halide lamp was performed for about 2 seconds. , and cut to obtain the desired panel.

得られた液晶パネルについて室温でのコントラストを測
定したところ、±5Vの印加で30の値を得た。
When the contrast of the obtained liquid crystal panel was measured at room temperature, a value of 30 was obtained when ±5V was applied.

実施例16 塗布対象(高分子強誘電性液晶)を以下のように変更し
たほかは実施例10と同一条件で塗布した。
Example 16 Coating was carried out under the same conditions as in Example 10, except that the coating object (polymer ferroelectric liquid crystal) was changed as follows.

租1」IF紘 溶媒蒸発後、2.1μmの膜が得られ、積層、配向処理
を行い所望のパネルとした。
After evaporation of the IF filter solvent, a 2.1 μm film was obtained, which was laminated and oriented to form a desired panel.

得られた液晶パネルについて室温でのコントラストを測
定したところ、±5vの印加で13の値を得た。
When the contrast of the obtained liquid crystal panel was measured at room temperature, a value of 13 was obtained when ±5 V was applied.

実施例17 実施例10において塗布対象(強誘電性高分子液晶)を
以下のように変更したほかは実施例10と同様に基板へ
の塗布を行った。
Example 17 Coating to a substrate was carried out in the same manner as in Example 10, except that the coating object (ferroelectric polymer liquid crystal) was changed as follows.

A : B : C: D −45,6:30.4:4
:20 (モル%)A      CHツ ! B 〔発明の効果] 本発明にの製造法によれば、大面積、大表示容量の液晶
光学素子を簡単な工程により、容易に連続的に製造する
ことができ、生産性が大巾に向上することで液晶光学素
子の製造コストの低減が可能となる。
A: B: C: D -45,6:30.4:4
:20 (mol%) A CHtsu! B [Effects of the Invention] According to the manufacturing method of the present invention, liquid crystal optical elements with a large area and large display capacity can be manufactured easily and continuously through simple steps, and productivity is greatly improved. By doing so, it becomes possible to reduce the manufacturing cost of the liquid crystal optical element.

また、本発明の製造法によれば膜厚の調整が容易で、均
一な薄膜が得られる。
Further, according to the manufacturing method of the present invention, the film thickness can be easily adjusted and a uniform thin film can be obtained.

Mn−3000 溶媒蒸発後、2.9μmの膜が得られ、実施例10と同
様に積層、配向処理を行い、切断し所望のパネルとした
After evaporating the Mn-3000 solvent, a 2.9 μm film was obtained, which was laminated and oriented in the same manner as in Example 10, and then cut into desired panels.

得られた液晶パネルについて室温でのコントラストを測
定したところ、±9■の印加で55の値を得た。
When the contrast of the obtained liquid crystal panel was measured at room temperature, a value of 55 was obtained with an application of ±9 square meters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造法に用いられるグラビアコータ
の一例を示す模式的断面図であり、第2図、第3図、第
4図及び第5図は塗膜の状態を示す模式的平面図である
。第6図及び第7図は本発明の製造工程と塗膜の状態を
示す模式的説明図である。
FIG. 1 is a schematic cross-sectional view showing an example of a gravure coater used in the manufacturing method of the present invention, and FIGS. 2, 3, 4, and 5 are schematic cross-sectional views showing the state of the coating film. FIG. FIGS. 6 and 7 are schematic explanatory views showing the manufacturing process of the present invention and the state of the coating film.

Claims (1)

【特許請求の範囲】 1、基板に液晶材料及び/又は接着剤をグラビアコータ
を用いてパターン印刷する工程を有することを特徴とす
る液晶光学素子の製造法。 2、液晶材料及び/又は接着剤が溶媒により希釈されて
いる請求項1記載の液晶光学素子の製造法。 3、基板にロール状の可撓性基材を用いることで連続生
産を行うことを特徴とする請求項1記載の液晶光学素子
の製造法。 4、基板へのパターン印刷を間欠的に行う請求項1記載
の液晶光学素子の製造法。 5、グラビアコータのグラビアロールを基板の流れ方向
とは逆向きに回転させ、かつ回転速度をグラビア表面の
線速度が基板の流れ速度の1.5〜100倍となるよう
に変化させることにより、パターン印刷された液晶材料
及び/又は接着剤の膜厚を制御する請求項1、2、3又
は4記載の液晶光学素子の製造法。 6、基板に液晶材料及び/又は接着剤をグラビアロール
形状の異なる複数のグラビアコータを用いてパターン印
刷する請求項1、2、3、4又は5記載の液晶光学素子
の製造法。
[Scope of Claims] 1. A method for manufacturing a liquid crystal optical element, comprising the step of pattern printing a liquid crystal material and/or adhesive onto a substrate using a gravure coater. 2. The method for manufacturing a liquid crystal optical element according to claim 1, wherein the liquid crystal material and/or the adhesive are diluted with a solvent. 3. The method for manufacturing a liquid crystal optical element according to claim 1, wherein continuous production is performed by using a roll-shaped flexible base material as the substrate. 4. The method for manufacturing a liquid crystal optical element according to claim 1, wherein the pattern printing on the substrate is performed intermittently. 5. By rotating the gravure roll of the gravure coater in the opposite direction to the flow direction of the substrate and changing the rotation speed so that the linear velocity of the gravure surface is 1.5 to 100 times the flow velocity of the substrate, 5. The method for manufacturing a liquid crystal optical element according to claim 1, wherein the film thickness of the pattern-printed liquid crystal material and/or adhesive is controlled. 6. The method for manufacturing a liquid crystal optical element according to claim 1, wherein the liquid crystal material and/or adhesive is pattern-printed on the substrate using a plurality of gravure coaters having different gravure roll shapes.
JP6220289A 1989-03-16 1989-03-16 Production of optical liquid crystal device Pending JPH02242222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6220289A JPH02242222A (en) 1989-03-16 1989-03-16 Production of optical liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6220289A JPH02242222A (en) 1989-03-16 1989-03-16 Production of optical liquid crystal device

Publications (1)

Publication Number Publication Date
JPH02242222A true JPH02242222A (en) 1990-09-26

Family

ID=13193326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6220289A Pending JPH02242222A (en) 1989-03-16 1989-03-16 Production of optical liquid crystal device

Country Status (1)

Country Link
JP (1) JPH02242222A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140450A (en) * 1989-03-31 1992-08-18 Kabushiki Kaisha Toshiba Transparent electro-conductive film and liquid crystal display using the same
EP0634226A1 (en) * 1993-01-14 1995-01-18 Fuji Electrochemical Co.Ltd. Intermittent coating method and apparatus for use in the method
JP2000047264A (en) * 1998-07-21 2000-02-18 Aventis Research & Technol Gmbh & Co Kg Production of smectic liquid crystal display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140718A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Method and apparatus for manufacturing liquid crystal display element
JPS61501345A (en) * 1984-03-02 1986-07-03 マンチエスタ−・ア−ル・アンド・デイ・リミテッド・パ−トナ−シツプ liquid crystal composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140718A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Method and apparatus for manufacturing liquid crystal display element
JPS61501345A (en) * 1984-03-02 1986-07-03 マンチエスタ−・ア−ル・アンド・デイ・リミテッド・パ−トナ−シツプ liquid crystal composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140450A (en) * 1989-03-31 1992-08-18 Kabushiki Kaisha Toshiba Transparent electro-conductive film and liquid crystal display using the same
US5300858A (en) * 1989-03-31 1994-04-05 Kabushiki Kaisha Toshiba Transparent electro-conductive film, and AC powder type EL panel and liquid crystal display using the same
EP0634226A1 (en) * 1993-01-14 1995-01-18 Fuji Electrochemical Co.Ltd. Intermittent coating method and apparatus for use in the method
EP0634226A4 (en) * 1993-01-14 1995-10-18 Fuji Electrochemical Co Ltd Intermittent coating method and apparatus for use in the method.
JP2000047264A (en) * 1998-07-21 2000-02-18 Aventis Research & Technol Gmbh & Co Kg Production of smectic liquid crystal display

Similar Documents

Publication Publication Date Title
JPH04119325A (en) Production of ferroelectric liquid crystal element
JPH03168613A (en) Production of transfer sheet and liquid crystal display element
JPH02242222A (en) Production of optical liquid crystal device
JP2009181063A (en) Liquid crystal display element and method of manufacturing the same
JPH0643457A (en) Formation of liquid crystal orienting film
JPH05313151A (en) Production of liquid crystal element
JPH02208633A (en) Liquid crystal display device
JPH11249158A (en) Production of liquid crystal display cell
JPH02311822A (en) Orientation control film, orientation control film and liquid crystal element
JP2672628B2 (en) Liquid crystal optical element alignment method
JPH0333824A (en) Film formation of liquid crystal material
JPH0743691A (en) Production of liquid crystal optical element by using ferroelectric high-polymer liquid crystal and its gradation display method
JPH07244286A (en) Production of liquid crystal panel
JPH02208096A (en) Data card and production thereof
JP2889587B2 (en) Manufacturing method of liquid crystal element
JP2648342B2 (en) Liquid crystal optical element alignment method
JPH06148643A (en) Ferroelectric liquid crystal element and its production
JPH02203321A (en) Method for orienting liquid crystal material
JPH0363625A (en) Liquid crystal light control and display device
JPH06301001A (en) Production of liquid crystal display element
JPH06118440A (en) Liquid crystal display element and its production
JPH10293309A (en) Manufacture of liquid crystal display element
JPH02280115A (en) Production of film of liquid crystal material
JP2889656B2 (en) Liquid crystal display device
JPH086091B2 (en) Ferroelectric liquid crystal material composition and liquid crystal optical element