JPH0224152A - Dot pin - Google Patents

Dot pin

Info

Publication number
JPH0224152A
JPH0224152A JP17346088A JP17346088A JPH0224152A JP H0224152 A JPH0224152 A JP H0224152A JP 17346088 A JP17346088 A JP 17346088A JP 17346088 A JP17346088 A JP 17346088A JP H0224152 A JPH0224152 A JP H0224152A
Authority
JP
Japan
Prior art keywords
carbide
wear resistance
hardness
dot
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17346088A
Other languages
Japanese (ja)
Inventor
Shinichi Mizogami
溝上 晋一
Ichiro Nagao
長尾 一郎
Yoshio Kimori
木森 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Tokusen Kogyo Co Ltd
Original Assignee
Kobe Steel Ltd
Tokusen Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Tokusen Kogyo Co Ltd filed Critical Kobe Steel Ltd
Priority to JP17346088A priority Critical patent/JPH0224152A/en
Publication of JPH0224152A publication Critical patent/JPH0224152A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/235Print head assemblies
    • B41J2/25Print wires

Landscapes

  • Impact Printers (AREA)

Abstract

PURPOSE:To enhance a life and to reduce a cost to a layer extent by using a dot pin made of a high-speed steel having specific composition of materials and physical properties. CONSTITUTION:A dot pin in use is made of high-speed steel powder containing 1.4-2.0% C, 8-4.5% Cr, 8% or more Mo, 4% or more W, 3.0-5.5% V and 7.8-12% Co by weight with a W equivalent (W%+2Mo%) of 19.5-25 and has a wire diameter of 0.1-0.4mmphi by a cold wire drawing, a hardness of Hv 870-950, and an anti-folding force of 500kg/mm<2> or more. A part of the carbon C is taken into solid solution in a substrate; the other is bound with W, M, O, Cr, V, and the like to form a carbide, which enhances hardness and increase wear resistance. A part of the tungsten W forms a double carbide (M6C) and imparts wear resistance; the other is taken into solid solution in the substrate to obtain resistance to softening at high temp.. The molybdenum Mo has properties approximately similar to the W and corresponds to W=2Mo. A part of the chromium Cr forms a carbide (M23C6); the other is taken into solid solution in the substrate to impart self-hardening properties to the steel to improve the hardenability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はワードプロセッサーやコンビエータ−等のいわ
ゆるオフィスオートメータ1フ機器に使用されろドツト
プリンターの印字ビンとして用いられているドツトビン
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a dot bin used as a printing bin for a dot printer used in so-called office automation equipment such as word processors and combiators.

従来の技術とその課題 一般に、オフィスオートメーションの中心をなすコンビ
、−ター機器に使用されるプリンターの主力はドツトビ
ンタイプのドツトプリンターである。
Conventional Technologies and Their Issues In general, dot bin type dot printers are the main type of printers used in combination and printer equipment that forms the core of office automation.

上記ドツトプリンターの生命であるドツトビンは長寿命
化のための耐摩耗性と靭性、高速化のための軽量化シよ
び低コスト等が要求されている。
The dot bin, which is the lifeblood of the dot printer, is required to have wear resistance and toughness to extend its life, and to be lightweight and low cost to increase speed.

しかるに、従来のドツトビンはピアノ線、タングステン
、超硬合金、溶解/%イス鋼、8末/1イス鋼等の材料
から製造された−のが用いられていゐが、それぞれの材
料の特性は下表の材料別性能比較表に示す通りである。
However, conventional dot bins are manufactured from materials such as piano wire, tungsten, cemented carbide, molten/% chair steel, and 8/1 chair steel, but the characteristics of each material are inferior. As shown in the performance comparison table for each material.

上記券4表から明らかなように最も耐摩耗性に優れてい
るのは超硬合金であるが1反面1曲げ強度(靭性)に弱
く、比重が大きく、シかもコストか高いという問題点が
あり、また、粉末ハイス鋼は曲げ強度に強く、比重が小
さいが、超硬合金に比べ耐摩耗性において劣るという問
題点がある。
As is clear from Table 4 above, cemented carbide has the best wear resistance, but on the other hand, it has problems such as weak bending strength (toughness), high specific gravity, and high cost. Furthermore, although powdered high-speed steel has high bending strength and low specific gravity, it has a problem in that it is inferior in wear resistance compared to cemented carbide.

また、細径化する加工においても、超硬合金はセンタレ
ス研削で行ない、粉末ハイス鋼は冷間伸線で行なうため
、歩留り、コストの面で、粉末ハイス鋼は超硬合金に比
べ有利でありだ。
In addition, when processing to reduce diameter, cemented carbide is processed by centerless grinding, while powdered high-speed steel is processed by cold wire drawing, so powdered high-speed steel is more advantageous than cemented carbide in terms of yield and cost. is.

さらに、従来、摩耗現象に対しては (1) 炭化物は高硬度であるので炭化物が多い程良い
Furthermore, conventionally, regarding the wear phenomenon, (1) carbide has high hardness, so the more carbide there is, the better.

+t+  マトリックス(基地)が炭化物を強力に保持
し、炭化物の脱落を防いでいる。
+t+ The matrix (base) strongly holds the carbide and prevents the carbide from falling off.

と考見られていた。従って、耐摩耗性を増すには、 (1) 炭化物の量を増やす。It was considered that. Therefore, to increase wear resistance, (1) Increase the amount of carbide.

+11  マトリックスの硬度を上げる。+11 Increase the hardness of the matrix.

と良いと考えられてきた。It has been considered a good thing.

また、成分の中で炭化物形成における炭化物当量式は Ce4−a19 + ao17(W+ 2MO’) +
 (Lll BVである。従って、耐摩耗性を向上させ
るには、■を増加させることが最も手軽で、■を増加さ
せる傾向くあった。(第6図参照) ところがV量は4%以下でないと冷間伸線加工ができず
%4%を超えると冷間伸線が固層で、6%以上では全く
冷間伸線が不可能となり、熱間圧延とセンタレス研削加
工で細線加工するしかなく、熱間圧延用の高額な設備と
センタレス研削加工における高度な加工技術が必要とカ
リ。
Also, among the components, the carbide equivalent formula for carbide formation is Ce4-a19 + ao17(W+ 2MO') +
(Lll BV. Therefore, in order to improve wear resistance, it is easiest to increase ■, and there is a tendency to increase ■. (See Figure 6) However, the amount of V is not less than 4%. If the percentage exceeds 4%, cold wire drawing becomes a solid phase, and if the percentage exceeds 6%, cold wire drawing becomes impossible, and the only way to process the wire is through hot rolling and centerless grinding. However, it requires expensive equipment for hot rolling and advanced processing technology for centerless grinding.

加工コストが高くなるという問題点があった。There was a problem in that the processing cost was high.

(第8図参照) 重wk%−t”c:L4〜&O%、C+1〜45%1M
o : 8 %−以上、W:4%以上、■:&0〜&5
%、Coニア、8〜ll1%を含み、かりW当量(W%
+B Mo幅)が1lli〜g!である粉末ハイス鋼か
らなす、冷間伸線により線径が(Ll〜α4mlとし、
硬度が→汀 Hv 87 G 〜95 G、抗折力がS OO*/−
以上となしたことを特徴とするドツトピンを提供するも
のである。
(See Figure 8) Weight wk%-t”c: L4~&O%, C+1~45%1M
o: 8%- or more, W: 4% or more, ■: &0 to &5
%, Conia, 8 to 11%, and the W equivalent (W%
+B Mo width) is 1lli~g! The wire diameter is made from powdered high speed steel by cold drawing (Ll~α4ml,
Hardness is → Hv 87 G ~ 95 G, transverse rupture strength is SOO*/-
The present invention provides a dot pin characterized by the above features.

ここで、含有成分を限定した理由を述べると炭素Cは1
部基地中に固溶し、他はW%Mo%Cr。
Here, the reason for limiting the content is that carbon C is 1
The other parts are W%Mo%Cr.

V等と結合して炭化物を形成し、この炭化物が硬度を高
め耐摩耗性を増加させる。従ってCの成分量がL8%以
下の場合には、炭化物量の形成が少なく、耐摩耗性に劣
り、lLO%を超えると伸線加工性が低下すると共に偏
析による靭性の低下を生じる。
It combines with V and the like to form a carbide, and this carbide increases hardness and wear resistance. Therefore, when the content of C is less than L8%, the amount of carbide formed is small, resulting in poor wear resistance, and when it exceeds 1LO%, wire drawability decreases and toughness decreases due to segregation.

タングステンwFi、一部は複炭化物(M6C)を形成
し、耐摩耗性を与え、一部は基地中に固溶して高温にお
ける耐軟化性を与える。従って、Wの成分量が4%未満
ではろう付等によ抄熱をモリブデンMoはWとはり同様
な性質を持ち、W−!MoKMo中る。
Tungsten wFi, part of which forms double carbide (M6C) and provides wear resistance, and part of which is solidly dissolved in the matrix and provides resistance to softening at high temperatures. Therefore, when the content of W is less than 4%, molybdenum Mo has similar properties to W-! MoKMo Nakaru.

クロムCrは、一部は炭化物(M2S C6)を形成し
、一部は基地中圧固溶して鋼に自硬性を与え。
Part of chromium (Cr) forms carbides (M2S C6), and part of it forms a solid solution at medium pressure in the base, giving the steel self-hardening properties.

焼入性を良好にする。しかし、他の合金成分の着を増加
させるとCr1lK制限を受ける。
Improves hardenability. However, when the deposition of other alloy components is increased, Cr11K is limited.

パナジ、ウムVは非常に硬い炭化物(Me)を形成し、
耐摩耗性を与える。■炭化物は高温迄固溶し離〈結晶粒
の成長を妨げる。
Panaji, Umu V forms a very hard carbide (Me),
Provides wear resistance. ■Carbide dissociates into solid solution at high temperatures (preventing the growth of crystal grains).

従って、Vが&0%未満では耐摩耗性の低下か問題にな
り、翫5%を超すと冷間伸線加工が不可能になる。
Therefore, if V is less than &0%, there is a problem of decreased wear resistance, and if V is more than 5%, cold wire drawing becomes impossible.

コバルトCOは炭化物を形成せず、殆ど基質に固溶する
。炭化物の基質に固溶する量が増大すると、切削耐久性
を増すが脆くなる。従って、7.8幅未満では切削耐久
性が低く、tg<を超えろ場合は脆化を生じる。
Cobalt CO does not form carbides and is mostly dissolved in the substrate. As the amount of solid solution in the carbide matrix increases, cutting durability increases, but it also becomes brittle. Therefore, if the width is less than 7.8, the cutting durability will be low, and if it exceeds tg<, embrittlement will occur.

W当量が19.5未膚では耐摩耗性が不足し、25を超
えると伸線性の低下を生じ、冷間伸線か不可能になる。
If the W equivalent is less than 19.5, the abrasion resistance will be insufficient, and if it exceeds 25, the wire drawability will decrease, making cold wire drawing impossible.

さらに研究の結果、粉末ハイス鋼の伸線性と耐摩耗性に
関して次のことが判明した。
Further research revealed the following regarding the wire drawability and wear resistance of powdered high-speed steel.

(1)  伸線加工前の焼鈍材で、引張りテスト時のサ
ンプルの絞り値の高いものは、伸線減面率か大きく取れ
る。例えば絞り値が80であれば、減面率は40であっ
た。但し、絞に値が10以下であれば伸線加工はできな
い。(第1図参照) (!) Vを増加させると絞り値が急激に低下し、冷間
伸線加工が出来なくなる。
(1) For annealed materials before wire drawing, if the sample has a high aperture value during the tensile test, the wire drawing area reduction ratio will be large. For example, if the aperture value was 80, the area reduction rate was 40. However, if the aperture value is 10 or less, wire drawing cannot be performed. (See Figure 1) (!) When V is increased, the aperture value decreases rapidly, making cold wire drawing impossible.

特に、■が翫5幅を超えると絞)値が10以下となり冷
間伸線が出来なくがる。(第8図参照) 111  耐摩耗性についてみると、同一成分の素材で
も耐摩耗性のピークは硬変のピークより41憤 抗折力のピークの近くに存在し、必ずしも硬オh 度と抗折力が比例しない。(第8図参照)稍 従、て抗折力をi o o re、−以上とした。
In particular, if ■ exceeds the width of the wire, the aperture value becomes less than 10, making cold wire drawing impossible. (Refer to Figure 8) 111 Looking at wear resistance, the peak of wear resistance is closer to the peak of 41 transverse rupture strength than the peak of hardness even for materials with the same composition, and it is not necessarily the case that hardness and resistance are the same. The rupture forces are not proportional. (Refer to FIG. 8) Therefore, the transverse rupture strength was set to more than iore, -.

(4)vを翫S%に制限し、W当量を増加させれば、炭
化物の大幅な増加がなくても、マトリ和 ックスへの合金成分が増加し、抗折力をあげ。
(4) If v is limited to S% and the W equivalent is increased, the alloying components in the matrix will increase, increasing the transverse rupture strength, even without a significant increase in carbides.

ひいては耐摩耗性が向上する。従って%V量を&O〜l
L5%とし、W当量をlQ、lS−85とすれば、耐摩
耗性を上げ、かつ冷間伸線加工が可能である。(第4図
参照) 以下、本発明の−*施例を説明する。
As a result, wear resistance is improved. Therefore, the %V amount is &O~l
When L is 5% and W equivalent is lQ and lS-85, wear resistance is increased and cold wire drawing is possible. (See FIG. 4) Hereinafter, -* embodiments of the present invention will be described.

実施例1(λ−1) 重量%でC:L9%、Cr : 4%、ゆニア幅、Wニ
ア幅、v:5%、Co:1G%で、かつW当量が111
 の扮末へイス鋼を焼鈍と冷間伸線加工を繰り返してα
tQynal迄加工し、その後焼入れ焼戻し処理によh り硬度がHv900で、抗折力が54 S KpMのド
ツトピンを得た。
Example 1 (λ-1) In terms of weight percent, C: L9%, Cr: 4%, Uniar width, W Niar width, v: 5%, Co: 1G%, and W equivalent is 111
After repeated annealing and cold wire drawing processing of steel, α
The dot pin was processed to tQynal and then quenched and tempered to obtain a dot pin with a hardness of Hv900 and a transverse rupture strength of 54 S KpM.

実施例B(@−fi) 重11%でC:L5%、Cr:49G、Mo:21%、
W:!L5%、V:4%、Co:8%で、かつW当量が
2α5の粉末へイス鋼を上記と同様の工程でagoat
〆迄冷間伸線加工し、その後焼入れ焼戻し処理によ術 り硬度がHv9GGで抗折力が540 Q/dのドツト
ピンを得また。
Example B (@-fi) Weight: 11%, C: L5%, Cr: 49G, Mo: 21%,
W:! Powdered steel with L5%, V:4%, Co:8% and W equivalent of 2α5 was agoat in the same process as above.
A dot pin with a hardness of Hv9GG and a transverse rupture strength of 540 Q/d was obtained by cold wire drawing and then quenching and tempering.

上記によ)得られた本発明のドツトピンと従来並びに比
較例のドツトピンとをドツトプリンターに組み込んで8
億ドツトの比較試験を行なうえ。
The dot pin of the present invention obtained above) and the dot pins of the conventional and comparative examples were incorporated into a dot printer.
Conduct a billion-dot comparison test.

上記試験に用いた従来のドツトピン(b−1)は、II
でC: L81. Cr : 4%、 MO: 51%
W:am<、V:81G、Co:8%を含A、W当量d
11fiJの従来の粉末ハイス鋼を用いて、線径がa3
0輯 aSS、硬度がHvlOOG、抗折力が870としたも
のである。
The conventional dot pin (b-1) used in the above test was II
C: L81. Cr: 4%, MO: 51%
W: am<, V: 81G, Co: 8% containing A, W equivalent d
Using 11fiJ conventional powder high speed steel, the wire diameter is A3.
0°aSS, hardness is HvlOOG, and transverse rupture strength is 870.

また、比較例1のドツトピン(C−1)は重量幅でC:
15%、Cr : 4%、Mo:6%、W:&5%、v
:4%、Co:8<を含み、W当量が!(L5  (D
粉末ハイス鋼を用いて、線径がα*0ttx−%硬度が
惰 1(vlooG、抗折力が411Oとしたものであり、
比較例30ドツトビン(C−2)は重量幅でC:IL1
1%Cr:4%、Mo:lLS%、W:10%、V:6
%、co:10% を含み、W当量が17の粉末ハイス
を用いて焼鈍と熱間圧延を行い、さらにセンタレス研削
加工により線伍allOm戸とし、硬度がHマ89G、
抗誹力かIOとしたものである。
In addition, the dot pin (C-1) of Comparative Example 1 has a weight width of C:
15%, Cr: 4%, Mo: 6%, W: &5%, v
:4%, Co:8<, W equivalent! (L5 (D
Powdered high speed steel is used, the wire diameter is α*0ttx-% hardness is 1 (vlooG), and the transverse rupture strength is 411O.
Comparative example 30 dot bin (C-2) has a weight width of C:IL1
1% Cr: 4%, Mo: 1LS%, W: 10%, V: 6
%, co: 10%, annealed and hot rolled using a powdered high speed steel with a W equivalent of 17, and further processed by centerless grinding to achieve a standard grade of all Om, with a hardness of Hma 89G,
This is an anti-slander power or an IO.

上記比較試験の結果、第SrI!JK示すように従来の
粉末ハイス鋼によるドツトピン(b−1)K比べ、本発
明の摩耗量はa−1でt/s * ” ’−8でllL
&であった。
As a result of the above comparative test, No. SrI! As shown in JK, compared to the conventional dot pin (b-1) K made of powdered high-speed steel, the wear amount of the present invention is t/s at a-1 *'''-8 at llL
&Met.

ドツトピンの先端の摩耗量ははソ寿°命に反比例する。The amount of wear on the tip of the dot pin is inversely proportional to the service life.

発明の効果 本発明は上記構成であるため従来の粉末I・イス鋼に比
べ、2倍以上の寿命を有するものである。しかも、製造
工程も冷間伸線で製造できるため、熱間圧延やセンタレ
ス研削を用いて製造したドヴトビンに比べ、コストも大
幅に安くすることができるという優れた効果を有するも
のである。
Effects of the Invention Since the present invention has the above structure, it has a lifespan more than twice as long as that of conventional powder I/chair steel. Moreover, since the manufacturing process can be performed by cold wire drawing, the cost can be significantly reduced compared to dovutbin manufactured using hot rolling or centerless grinding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は伸線減面率と絞り値との関係図、第8図はV量
と絞り値との関係図、第8図はドラ祈 トピンの抗折力と硬度との関係を示す曲線図、第4図は
W当量とV量との関係図、第5図は耐摩耗性の比較試験
の結果を示す比較図、第6図は耐摩耗性に及ぼす合金元
素の影響を示す曲線図である。 第 図 才ん折力 (Kg/mm21 第 図 コ量(%) 印字回数 第 6 図
Figure 1 is a diagram showing the relationship between wire drawing area reduction rate and aperture value, Figure 8 is a diagram showing the relationship between V amount and aperture value, and Figure 8 is a curve showing the relationship between transverse rupture force and hardness of a dowel pin. Figure 4 is a relationship diagram between W equivalent and V amount, Figure 5 is a comparison diagram showing the results of a comparative test of wear resistance, and Figure 6 is a curve diagram showing the influence of alloying elements on wear resistance. It is. Fig. Bending force (Kg/mm21 Fig. Amount (%) Number of printing Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 重量%でC:1.4〜2.0%、Cr:3.0〜4.5
%、Mo:3.0%以上、W:4.0以上、V:3.0
〜5.、Co:7.8〜12%を含み、かつW当量(W
%+2Mo%)が19.5〜25である粉末ハイス鋼か
らなり、冷間伸線により線径が0.1〜0.4mmφ、
硬度がHv870〜950、抗折力が500Kg/mm
^2以上であることを特徴とするドットピン。
C: 1.4-2.0%, Cr: 3.0-4.5 in weight%
%, Mo: 3.0% or more, W: 4.0 or more, V: 3.0
~5. , Co: 7.8 to 12%, and W equivalent (W
%+2Mo%) is 19.5 to 25, and the wire diameter is 0.1 to 0.4 mmφ by cold wire drawing.
Hardness is Hv870-950, transverse rupture strength is 500Kg/mm
A dot pin characterized by ^2 or more.
JP17346088A 1988-07-12 1988-07-12 Dot pin Pending JPH0224152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17346088A JPH0224152A (en) 1988-07-12 1988-07-12 Dot pin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17346088A JPH0224152A (en) 1988-07-12 1988-07-12 Dot pin

Publications (1)

Publication Number Publication Date
JPH0224152A true JPH0224152A (en) 1990-01-26

Family

ID=15960885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17346088A Pending JPH0224152A (en) 1988-07-12 1988-07-12 Dot pin

Country Status (1)

Country Link
JP (1) JPH0224152A (en)

Similar Documents

Publication Publication Date Title
JPS6121299B2 (en)
US20070221298A1 (en) Ni-based super alloy
JPS60224754A (en) Alloy tool steel
JPH0224152A (en) Dot pin
JPH02301541A (en) Spring steel excellent in corrosion resistance and corrosion fatigue strength
JPH03267351A (en) Dot printer wire
JPS599146A (en) Ni alloy for valve and valve seat of engine
US2523917A (en) Age hardening austenitic alloy steels
JPH05171373A (en) Powder high speed tool steel
JPS6070166A (en) Creep and oxidation resistant low-alloy steel
JPS58117863A (en) High speed tool steel with high wear resistance and toughness
JP3386525B2 (en) Mold steel
JPH05239590A (en) Steel excellent in wear resistance
JPS592738B2 (en) Baked roll material with excellent spalling resistance
JP2005213630A (en) Powder high speed tool steel for mill roll having excellent wear resistance and toughness
JP2655860B2 (en) Alloy steel and rolls for cold forming rolls
JPS59145763A (en) Alloy tool steel
JPS58120756A (en) Ni alloy for valve and valve sheet of internal combustion engine
CN105296851A (en) Anti-abrasion high-speed tool steel
JPH05163551A (en) Powder high-speed tool steel
JPH1030141A (en) Alloy excellent in resistance to corrosion, wear, and cracking, and its production
JPH02258954A (en) Dot printer wire
JPH0598392A (en) Wear resistant and thermal cracking resistant roll material for hot rolling
JPH05171374A (en) Powder high speed tool steel
JP4368032B2 (en) Powder for high speed tool steel and powder high speed tool steel