JPH02241064A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH02241064A
JPH02241064A JP1062801A JP6280189A JPH02241064A JP H02241064 A JPH02241064 A JP H02241064A JP 1062801 A JP1062801 A JP 1062801A JP 6280189 A JP6280189 A JP 6280189A JP H02241064 A JPH02241064 A JP H02241064A
Authority
JP
Japan
Prior art keywords
light
layer
quantum well
signal light
well layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1062801A
Other languages
Japanese (ja)
Inventor
Shigenobu Yamagoshi
茂伸 山腰
Masanori Ito
正規 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1062801A priority Critical patent/JPH02241064A/en
Publication of JPH02241064A publication Critical patent/JPH02241064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photodetector having high sensitivity for detecting a light having a very-long wavelength band by providing a semiconductor substrate, a first contact layer provided thereon, a multiple quantum well layer provided further thereon, a second contact layer provided on the well layer, a signal light incident face, an exciting light incident face and external voltage applying means. CONSTITUTION:A semiconductor board 1, a first contact layer 2 provided on the board 1, a multiple quantum well layer 3 provided on the layer 2, a second contact layer 4 provided on the layer 3, a signal light incident face 5, an exciting light incident face 6, and external voltage applying means 7 are at least provided. The layer 3 is irradiated with an excitation light hnuP with short wavelength, electrons are excited to a quantum ground level 8 in the layer 3 from a valence band 21, and carrier electrons to be excited from the level 8 to high quantum levels are supplied at the time of incidence of a signal light hnuS with a long wavelength. for example, the excitation light hnuP is radiated as a pulse light synchronized with the signal light hnuS.

Description

【発明の詳細な説明】 〔概要〕 半導体受光素子に関し、 半導体基板と、前記半導体基板上に設けた第1のコンタ
クト層と、前記第1のコンタクト層上に設けた多重量子
井戸層と、前記多重量子井戸層上に設けた第2のコンタ
クト層と、信号光入射面と、励起光入射面と、外部電圧
印加手段とを少なくとも備え、短波長の励起光を前記多
重量子井戸層に照射して、価電子帯から前記多重量子井
戸層内の量子化基底準位へ電子を励起し、長波長の信号
光の入射時に前記量子化基底準位から高い量子化準位へ
励起されるキャリア電子の供給を行うようにして半導体
受光素子を構成する。
[Detailed Description of the Invention] [Summary] Regarding a semiconductor light receiving element, a semiconductor substrate, a first contact layer provided on the semiconductor substrate, a multiple quantum well layer provided on the first contact layer, and the The method includes at least a second contact layer provided on the multiple quantum well layer, a signal light incident surface, an excitation light incident surface, and an external voltage applying means, and is configured to irradiate the multiple quantum well layer with short wavelength excitation light. The carrier electrons are excited from the valence band to the quantization base level in the multi-quantum well layer, and are excited from the quantization base level to a higher quantization level when a long wavelength signal light is incident. The semiconductor light-receiving element is configured so as to supply the following.

〔産業上の利用分野〕[Industrial application field]

本発明は、超長波長帯の光を検知するための高感度半導
体受光素子の改良に関する。
The present invention relates to improvements in high-sensitivity semiconductor light-receiving elements for detecting light in an ultra-long wavelength band.

波長5〜15μm帯の赤外光は、物体温度の非接触測定
や、公害物質(たとえば、CO□ガス)の検出などの分
野で使用され、近年、益々その重要性が高まってきてお
り、このような長波長帯での光を検知する高感度の受光
素子が求められている。
Infrared light in the wavelength band of 5 to 15 μm is used in fields such as non-contact measurement of object temperature and detection of pollutants (e.g. CO□ gas), and has become increasingly important in recent years. There is a need for a highly sensitive light-receiving element that can detect light in such long wavelength bands.

〔従来の技術〕[Conventional technology]

長波長帯の光、すなわち、赤外光を検出する光検知器、
と(に、高速応答用光検知器としては、バンドギャップ
が0.5 eV以下といった程度の、InSbやHgC
dTeなどを用いた光電導タイプ、あるいは、pbl−
X Sn x Teを用いた光起電力タイプなどが知ら
れている。
A photodetector that detects long-wavelength light, that is, infrared light;
(In addition, InSb and HgC with a band gap of 0.5 eV or less are suitable for high-speed response photodetectors.
Photoconductive type using dTe etc. or pbl-
A photovoltaic type using X Sn x Te is known.

しかし、S/Nや受光感度に問題があうたり、大きな単
結晶を作るのが困難なため、多素子化ができに(いなど
今後のより高度な応用分野に充分対応できない状況にあ
った。
However, due to problems with S/N and light-receiving sensitivity, and the difficulty of making large single crystals, it was not possible to increase the number of elements (such as increasing the number of elements), making it unable to adequately support future more advanced application fields.

最近になって、新しい半導体受光素子として、量子井戸
構造を用い、量子井戸内の電子準位間の遷移を利用した
長波長領域における高感度受光素子が提案されている。
Recently, as a new semiconductor light-receiving element, a high-sensitivity light-receiving element in a long wavelength region that uses a quantum well structure and utilizes transitions between electronic levels within the quantum well has been proposed.

第5図は従来の量子井戸層を有する半導体受光素子の例
を説明する図で、同図(イ)は素子断面構造図、同図(
ロ)はエネルギーバンド図、同図(ハ)は信号光照射に
よる量子井戸内のキャリア量・出力の時間変化図である
FIG. 5 is a diagram explaining an example of a conventional semiconductor light-receiving device having a quantum well layer.
(b) is an energy band diagram, and (c) is a time change diagram of the amount of carriers and output in the quantum well due to signal light irradiation.

図中、1は基板で、たとえば、GaAsなどを使用する
。2は第1のコンタクト層で、たとえば、n+4aAs
 s 3は多重量子井戸層で、たとえば、GaAs/^
l GaAsからなる多重超格子層であり、分子ビーム
エピタキシャル生成法(MBE法)、あるいは、有機金
属分解製膜法(MO−CVD)などで、井戸層31゜障
壁層32とをそれぞれ交互に、各数10層づ\積層した
ものである。4は第2のコンタクト層で、たとえば、n
ゝ−GaAsから構成される。
In the figure, 1 is a substrate made of, for example, GaAs. 2 is the first contact layer, for example, n+4aAs
s3 is a multiple quantum well layer, for example, GaAs/^
l It is a multiple superlattice layer made of GaAs, and the well layer 31 and the barrier layer 32 are alternately formed by molecular beam epitaxial generation (MBE) or metal organic decomposition deposition (MO-CVD), respectively. It is made up of several 10 layers each. 4 is the second contact layer, for example n
-Constructed from GaAs.

5は検知する信号光(hν3)の入射面、7はは電圧印
加手段で電Fi7a、7bを通して、信号光(hν、)
により励起されたキャリア(電子)を外部に電流として
取り出し、電気出力として検出するためのものである。
5 is the incident plane of the signal light (hν3) to be detected, and 7 is a voltage applying means to pass the electric signal Fi7a, 7b to the signal light (hν,).
This is to take out the excited carriers (electrons) to the outside as a current and detect them as electrical output.

半導体超格子において、井戸層の巾が100Å以下とい
った電子の量子力学的波長と同程度に狭くなると、いわ
ゆる、量子サイズ効果により、量子井戸のエネルギーバ
ンドの***離散化(バンドスブリフティング)が起こり
、井戸層内に量子化準位が生じる(電子情報通信学会編
:電子情報通信ハンドブック、  p 430.198
8参照)。
In a semiconductor superlattice, when the width of the well layer becomes as narrow as the quantum mechanical wavelength of electrons, such as 100 Å or less, the energy band of the quantum well becomes discretized (bandwifting) due to the so-called quantum size effect. A quantization level is generated in the well layer (edited by the Institute of Electronics, Information and Communication Engineers: Electronics, Information and Communication Handbook, p 430.198
8).

同図(ロ)はこのような半導体超格子層のエネルギーバ
ンド図で、伝導帯20において各井戸層31(たとえば
、GaAs層)の深さ(バンドオフセット)に対応して
、量子井戸のの中に破線で示した量子化準位が生じた状
態を示している。なお、Q。
Figure (b) is an energy band diagram of such a semiconductor superlattice layer, in which the inside of the quantum well corresponds to the depth (band offset) of each well layer 31 (for example, a GaAs layer) in the conduction band 20. This shows the state in which the quantization level shown by the broken line occurs. In addition, Q.

はその基底状態で、量子化基底準位8に相当している。is its ground state, which corresponds to the quantized base level 8.

一方、価電子帯21には、図示したように、−mに余り
大きなバンドオフセットが発生しないことが知られてい
る。なお、このエネルギーバンド図は外部からの電界印
加により傾斜した状態を図示しである。
On the other hand, in the valence band 21, as shown in the figure, it is known that a band offset that is too large in −m does not occur. Note that this energy band diagram shows a state where the energy band is tilted due to the application of an external electric field.

通常、初期状態においては、井戸層31の基底状態Q1
には、熱励起などによって電子(el)が確率的に存在
しているので、こ\に信号光(hν、)が照射されると
、基底状態Q、に存在する電子は高い準位Q、に励起さ
れ、障壁層32を乗り越えた電子(ex I  e8.
)は外部電圧印加手段7による電界により、外部に電流
として取り出され検出される。
Normally, in the initial state, the ground state Q1 of the well layer 31
Since electrons (el) exist stochastically in , due to thermal excitation, etc., when signal light (hν, ) is irradiated on \, the electrons existing in the ground state Q, change to a higher level Q, The electrons (ex I e8.
) is taken out to the outside as a current by the electric field generated by the external voltage applying means 7 and detected.

すなわち、非常に薄い光電導領域、すなわち、半導体超
格子層の中に、多数の量子井戸を構成して光の検出を行
うので、高感度の半導体受光素子が得られる。
That is, since light is detected by configuring a large number of quantum wells in a very thin photoconductive region, that is, a semiconductor superlattice layer, a highly sensitive semiconductor light-receiving device can be obtained.

また、超格子層の材料、厚さなどその構成を変えて、バ
ンドオフセットを適宜に設定し、検知する信号光(hν
3)の波長帯域を選ぶことができる。
In addition, by changing the material, thickness, and other configurations of the superlattice layer, we can set the band offset appropriately and detect the signal light (hν
3) wavelength band can be selected.

〔発明が解決しようとした課題〕[Problem that the invention sought to solve]

しかし、上記従来の半導体受光素子おいて、連続信号光
、あるいは、高速パルス信号光を照射すると、熱励起な
どによるキャリアの補給が追いつかなくなる。
However, in the conventional semiconductor light-receiving element described above, when continuous signal light or high-speed pulse signal light is irradiated, carrier replenishment due to thermal excitation or the like cannot keep up.

同図(ハ)はその状況を模式的に示した。すなわち、(
a)のような信号光(hνS)パルスが多重量子井戸層
3に入射すると、(b)に示したように、量子井戸内の
平均的キャリア(電子)量が信号光の照射の都度減少し
、その結果、(c)に示した如く、出力レベルは徐々に
低下して検出感度が劣化するという問題があり、その解
決が必要であった。
Figure (c) schematically shows the situation. That is, (
When a signal light (hνS) pulse as shown in a) enters the multi-quantum well layer 3, the average amount of carriers (electrons) in the quantum well decreases each time the signal light is irradiated, as shown in (b). As a result, as shown in (c), there is a problem that the output level gradually decreases and the detection sensitivity deteriorates, and it is necessary to solve this problem.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の詳細な説明する図で、同図の(イ)は
素子断面構造図である。第5図(イ)に示した従来例と
異なる点は、励起光入射面6を設けて励起光(hν、)
を多重量子井戸層3に照射させるようにしであることで
ある。
FIG. 1 is a diagram for explaining the present invention in detail, and (A) in the same figure is a cross-sectional structural diagram of the element. The difference from the conventional example shown in FIG.
The multi-quantum well layer 3 is to be irradiated with the light.

これにより、価電子帯と量子井戸内の量子化基底準位8
との間のエネルギー差以上の励起光(hvp)を、多重
量子井戸層3に照射して量子井戸内の量子化基底準位に
電子の補給を行うようにした。
As a result, the valence band and the quantized basis level 8 in the quantum well
The multi-quantum well layer 3 is irradiated with excitation light (HVP) having an energy difference greater than or equal to the energy difference between the two and the electrons are supplied to the quantization base level within the quantum well.

また、励起光(hvp)を信号光(hν3)と同期させ
て照射することにより、受光素子の暗電流を低下させる
ことができる。
Further, by irradiating the excitation light (hvp) in synchronization with the signal light (hv3), the dark current of the light receiving element can be reduced.

一方、信号光(hν、)は多重量子井戸層3に垂直でな
(、横または斜め方向から入射させ、信号光(hν、)
の吸収を効果的に行わせている。
On the other hand, the signal light (hν,) is incident on the multiple quantum well layer 3 not perpendicularly (, laterally or obliquely), and the signal light (hν,)
absorption is carried out effectively.

すなわち、上記の課題は、半導体基板1と、前記半導体
基板1上に設けた第1のコンタクト層2と、前記第1の
コンタクト層2上に設けた多重量子井戸層3と、前記多
重量子井戸層3上に設けた第2のコンタクト層4と、信
号光入射面5と、励起光入射面6と、外部電圧印加手段
7とを少な(とも備え、短波長の励起光を前記多重量子
井戸層3に照射して、価電子帯から前記多重量子井戸層
3内の量子化基底準位8へ電子を励起し、長波長の信号
光の入射時に前記量子化基底準位から高い準位へ励起さ
れるキャリア電子の供給を行うように構成した半導体受
光素子によって解決することができる。
That is, the above problem is solved by the semiconductor substrate 1, the first contact layer 2 provided on the semiconductor substrate 1, the multiple quantum well layer 3 provided on the first contact layer 2, and the multiple quantum well layer 3. A second contact layer 4 provided on the layer 3, a signal light incident surface 5, an excitation light incident surface 6, and an external voltage applying means 7 are provided. The layer 3 is irradiated to excite electrons from the valence band to the quantized base level 8 in the multi-quantum well layer 3, and from the quantized base level to a higher level when a long wavelength signal light is incident. This problem can be solved by using a semiconductor light-receiving element configured to supply excited carrier electrons.

さらに、前記励起光を前記信号光と同期したパルス光と
して照射したり、あるいは、前記励起光を前記多重量子
井戸層面の上方から照射し、前記信号光を前記多重量子
井戸層の横または斜め方向から入射させて、よりS/N
を向上させ、より高い感度に安定化させることができる
Further, the excitation light may be irradiated as pulsed light synchronized with the signal light, or the excitation light may be irradiated from above the surface of the multiple quantum well layer, and the signal light may be irradiated in a lateral or diagonal direction of the multiple quantum well layer. The S/N is better by inputting from
can be improved and stabilized to higher sensitivity.

〔作用〕[Effect]

第1図(ロ)は本発明の受光素子のエネルギーバンド図
である。破線は量子サイズ効果により生じた量子化準位
で、信号光(hν、)が照射されると、基底状態Q1に
満たされた電子は高い準位Q7に励起され、障壁層32
を乗り越へた電子(e3゜ea)は外部電圧印加手段7
による電界により、外部に電流として取り出され検出さ
れる。
FIG. 1(b) is an energy band diagram of the light receiving element of the present invention. The broken line is the quantization level caused by the quantum size effect, and when the signal light (hν, ) is irradiated, the electrons filled in the ground state Q1 are excited to the higher level Q7, and the barrier layer 32
The electrons (e3°ea) that have overcome the external voltage application means 7
Due to the electric field caused by this, the current is taken out to the outside and detected.

しかし、すでに述べた如く連続信号光が照射されると、
熱励起などによるキャリアの補給が追いつかず、量子井
戸内のキャリア(電子)が枯渇してしまう。
However, as mentioned above, when continuous signal light is irradiated,
The replenishment of carriers through thermal excitation cannot keep up, and the carriers (electrons) in the quantum well are depleted.

そこで、本発明では、価電子帯21から量子井戸内の量
子化基底準位8へ、キャリア(電子)をポンピングする
のに充分なエネルギーを持った励起光(hν、)を量子
井戸層3に照射し、量子井戸内の量子化基底準位が常に
電子で満たされた状態にしておくので、連続信号光を受
光しても受光感度の劣化が起こらないようにすることが
できるのである。
Therefore, in the present invention, excitation light (hν,) having sufficient energy to pump carriers (electrons) from the valence band 21 to the quantized base level 8 in the quantum well is applied to the quantum well layer 3. Since the quantization base level in the quantum well is always filled with electrons, it is possible to prevent deterioration of light reception sensitivity even when continuous signal light is received.

さらに、励起光(hvp)を信号光(hν、)と同期さ
せて照射することにより、入射信号光(hν3)がOの
時には、励起光(hν9)も入射しないようにして、受
光素子の暗電流が増加しないようにすることができる。
Furthermore, by irradiating the excitation light (hvp) in synchronization with the signal light (hν, ), when the incident signal light (hν3) is O, the excitation light (hν9) is also prevented from entering, thereby darkening the light receiving element. It is possible to prevent the current from increasing.

すなわち、S/Nの向上を図ることができるのである。In other words, it is possible to improve the S/N ratio.

第2図は、これをわかり易く説明した本発明のキャリア
励起方法による出力の時間変化図で、(a)は信号光(
hν、)のパルス波形例、(b)は励起光(hν、)の
パルス波形で信号光(hν、)と同期させた連続パルス
光として照射した場合である。
FIG. 2 is a time-varying diagram of the output according to the carrier excitation method of the present invention, which explains this in an easy-to-understand manner, and (a) shows the signal light (
(b) is an example of the pulse waveform of the excitation light (hν,) when the pulse waveform of the excitation light (hν,) is irradiated as continuous pulsed light synchronized with the signal light (hν,).

(c)はこの場合の量子井戸内の平均的キャリア量をモ
デル的に示したもので、励起光(hvp)で電子が絶え
ずポンピングされているので、はV −定と考えてよい
(c) shows a model of the average carrier amount in the quantum well in this case, and since electrons are constantly pumped by excitation light (HVP), can be considered to be V-constant.

この結果、(d)に示したように、信号光(hν、)パ
ルスの入射に対応して、一定の安定した出力が得られる
ことがわかる。
As a result, as shown in (d), it can be seen that a constant and stable output can be obtained in response to the incidence of the signal light (hv, ) pulse.

以上のことかられかるように、この受光素子の応答性は
、量子井戸内の電子の消滅時間よりも、信号光(hvs
)パルスの間隔を大きくする必要があることで決まって
くるが、通常、その消滅時間は数〜数Lopsなので、
充分高い応答性が得られる。
As can be seen from the above, the responsivity of this photodetector is more important than the extinction time of the electrons in the quantum well.
) It is determined by the need to increase the interval between pulses, but normally the extinction time is several to several Lops, so
Sufficiently high responsiveness can be obtained.

また、量子井戸内の量子化準位の電子は、量子井戸層の
垂直方向には自由度がなく離散的で、基底状態Q、にあ
る電子が高い量子化準位Q7に励起されるためには、す
なわち、信号光(hν、)のエネルギーを吸収させるた
めには、多重量子井戸層3の垂直方向に信号光(hν3
)が電気成分を持っていなければならない。したがって
、信号光(hν3)は多重量子井戸層3の上方からでな
く、横または斜め方向から入射させると有効であること
がわかる。一方、励起光(hvp)は価電子帯からの電
子の励起であり、照射方向に何らの制約がないので、最
も照射効率がよく、素子構成、も容易な、多重量子井戸
層3の上方から、たとえば、垂直に近い角度で照射すれ
ばよい。
In addition, the electrons at the quantization level in the quantum well have no degrees of freedom in the vertical direction of the quantum well layer and are discrete, and because the electrons in the ground state Q are excited to the higher quantization level Q7. In other words, in order to absorb the energy of the signal light (hν, ), the signal light (hν3
) must have an electric component. Therefore, it can be seen that it is effective to make the signal light (hv3) incident not from above the multi-quantum well layer 3 but from the side or oblique direction. On the other hand, the excitation light (HVP) is the excitation of electrons from the valence band, and there are no restrictions on the irradiation direction, so it is emitted from above the multiple quantum well layer 3, which has the highest irradiation efficiency and facilitates device configuration. , for example, it may be irradiated at an angle close to perpendicular.

〔実施例〕〔Example〕

第3図は本発明の詳細な説明する図である。 FIG. 3 is a diagram explaining the present invention in detail.

図中、1はCrドープの5l−GaAs基板(比抵抗〜
106Ωcmの半絶縁基板)、2は第1のコンタクト層
で厚さ0.5μmのn”−GaAs層、3は多重量子井
戸層で厚さ65人のn−GaAsを井戸層31とし、厚
さ95人のn 41 o、 zs Gas、 ?SA3
を障壁層32として、50対をMBE法で形成した。
In the figure, 1 is a Cr-doped 5l-GaAs substrate (specific resistance ~
106 Ωcm semi-insulating substrate), 2 is the first contact layer, which is an n''-GaAs layer with a thickness of 0.5 μm, and 3 is a multiple quantum well layer, which is a well layer 31 made of n-GaAs with a thickness of 65 μm. 95 n 41 o, zs Gas, ?SA3
were used as the barrier layer 32, and 50 pairs were formed by the MBE method.

4は第2のコンタクト層で厚さ0.5μmのn+−Ga
As層である。
4 is a second contact layer made of n+-Ga with a thickness of 0.5 μm.
It is an As layer.

5は検知する信号光(hν、)の入射面で、基板1の面
に角度θでカットして研磨してあり、したがって、信号
光(hν、)は多重量子井戸層3の下側から斜めに入射
するようにした。6は励起光(hν、)の入射面で、励
起光(hlzP)は多重量子井戸層3の上方から、はり
垂直に照射するようにした。励起光(hν、)には0.
8μm帯の半導体レーザを使用した。
Reference numeral 5 denotes the incident surface of the signal light (hν,) to be detected, which is cut and polished at an angle θ on the surface of the substrate 1. Therefore, the signal light (hν,) is incident at an angle from the bottom of the multiple quantum well layer 3. It was made to be input to . Reference numeral 6 denotes a plane of incidence of excitation light (hv, ), and the excitation light (hlzP) is irradiated vertically from above the multi-quantum well layer 3. The excitation light (hν, ) is 0.
An 8 μm band semiconductor laser was used.

7はは電圧印加手段で、電極?a、7bを通してDCI
OVを印加し、信号光(hν、)により励起されたキャ
リア(電子)を外部に電流として取り出し、電気出力と
して検出するようにした。信号出力の検出は、11μm
帯の光を試験信号光とじて用い、通常の半導体受光素子
の場合と同様に行った。
7 is the voltage application means, and is it an electrode? DCI through a, 7b
OV was applied, and carriers (electrons) excited by the signal light (hv, ) were taken out as a current to the outside and detected as an electrical output. Signal output detection is 11μm
The test was carried out in the same manner as in the case of a normal semiconductor light-receiving element, using the band light as the test signal light.

以上の条件で、本実施例の半導体受光素子の試験信号光
による検出評価を行ったところ、所期の安定した高感度
特性が得られることを確認した。
When the semiconductor light receiving element of this example was evaluated for detection using test signal light under the above conditions, it was confirmed that the expected stable high sensitivity characteristics could be obtained.

また、第4図は本発明の他の実施例を説明する図で、励
起光(hν、)入射面に半導体レーザ100を密接して
設けたもので、受光素子全体をコンパクト、かつ、堅牢
に構成し信幀性を高めたものである。
FIG. 4 is a diagram for explaining another embodiment of the present invention, in which a semiconductor laser 100 is provided closely to the excitation light (hν,) incident surface, making the entire light receiving element compact and robust. It has been constructed to improve credibility.

上記の実施例では、何れも単素子の構造について示した
が、基板上に多数の受光素子を並べて多素子型の受光デ
バイスを構成できることは勿論である。
In the above embodiments, a single-element structure is shown, but it goes without saying that a multi-element type light-receiving device can be constructed by arranging a large number of light-receiving elements on a substrate.

なお、検出信号光の波長帯に応じて、多重量子井戸層を
形成する多重超格子の材料構成や、障壁層、井戸層それ
ぞれの厚さおよび層数など、本発明の趣旨に基づいて、
適宜選択できることは言うまでもない。
Depending on the wavelength band of the detection signal light, the material composition of the multiple superlattice forming the multiple quantum well layer, the thickness and number of layers of the barrier layer and the well layer, etc. may be determined based on the spirit of the present invention.
It goes without saying that you can choose as appropriate.

また、本発明により、信号光を多重量子井戸層の端面、
すなわち、横方向から光ファイバ、あるいは、光ガイド
によって入射させるようにすれば、集積化された光回路
に適用できる。
Further, according to the present invention, the signal light is transmitted to the end face of the multiple quantum well layer.
That is, it can be applied to integrated optical circuits if it is made to enter from the lateral direction through an optical fiber or a light guide.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、信号光検出に用い
ている量子井戸内の電子の量子化準位間遷移に、全く影
響を与えることなく、励起光によって、価電子帯から量
子井戸内に、電子をボンピングして供給するので受光感
度の劣化がなくなり、半導体受光素子の性能向上に寄与
するところが極めて大きい。
As described above, according to the present invention, excitation light can move the electrons from the valence band to the quantum well without affecting the transition between the quantization levels of electrons in the quantum well used for signal light detection. Since the electrons are pumped and supplied within the device, there is no deterioration in light-receiving sensitivity, which greatly contributes to improving the performance of semiconductor light-receiving elements.

素子の例を説明する図である。It is a figure explaining the example of an element.

図において、 1は基板、 2は第1のコンタクト層、 3は多重量子井戸層、 4は第2のコンタクト層、 5は信号光入射面、 6は励起光入射面、 7は外部電圧印加手段である。In the figure, 1 is the board, 2 is the first contact layer; 3 is a multiple quantum well layer, 4 is a second contact layer; 5 is a signal light incident surface; 6 is the excitation light incident surface, 7 is an external voltage applying means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する間 第2図は本発明のキャリア励起方法による出力の時間変
化図、 第3図は本発明の詳細な説明する図、 第4図は本発明の他の実施例を説明する図、第5図は従
来の量子井戸層を存する半導体受光(イ) 素子i!!
T面力Lm図 第2 回 本発明のp哩と説F3A−する圓 第1図
FIG. 1 is a detailed explanation of the present invention, FIG. 2 is a time change diagram of the output by the carrier excitation method of the present invention, FIG. 3 is a detailed explanation of the present invention, and FIG. 4 is a diagram explaining the present invention in detail. FIG. 5 is a diagram illustrating an example of a conventional semiconductor light-receiving device (a) having a quantum well layer. !
T surface force Lm diagram 2nd P force and theory F3A of the present invention Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板(1)と、 前記半導体基板(1)上に設けた第1のコンタクト層(
2)と、 前記第1のコンタクト層(2)上に設けた多重量子井戸
層(3)と、 前記多重量子井戸層(3)上に設けた第2のコンタクト
層(4)と、 信号光入射面(5)と、 励起光入射面(6)と、 外部電圧印加手段(7)とを少なくとも備え、短波長の
励起光を前記多重量子井戸層(3)に照射して、価電子
帯から前記多重量子井戸層(3)内の量子化基底準位(
8)へ電子を励起し、長波長の信号光の入射時に前記量
子化基底準位から高い量子化準位へ励起されるキャリア
電子の供給を行うことを特徴とした半導体受光素子。
(1) A semiconductor substrate (1) and a first contact layer (
2), a multiple quantum well layer (3) provided on the first contact layer (2), a second contact layer (4) provided on the multiple quantum well layer (3), and a signal light. It comprises at least an entrance surface (5), an excitation light entrance surface (6), and an external voltage application means (7), and irradiates the multiple quantum well layer (3) with short wavelength excitation light to generate a valence band. from the quantized basis level in the multi-quantum well layer (3) (
8) A semiconductor light-receiving element, characterized in that carrier electrons are excited from the quantization base level to a higher quantization level upon incidence of long-wavelength signal light.
(2)前記励起光を前記信号光と同期したパルス光とし
て照射することを特徴とした請求項(1)記載の半導体
受光素子。
(2) The semiconductor light-receiving device according to claim (1), wherein the excitation light is emitted as pulsed light synchronized with the signal light.
(3)前記励起光を前記多重量子井戸層(3)面の上方
から照射し、前記信号光を前記多重量子井戸層(3)の
横または斜め方向から入射させることを特徴とした請求
項(1)または(2)記載の半導体受光素子。
(3) The excitation light is irradiated from above the surface of the multiple quantum well layer (3), and the signal light is incident on the multiple quantum well layer (3) from a side or an oblique direction. 1) or (2) the semiconductor light-receiving device.
JP1062801A 1989-03-15 1989-03-15 Semiconductor photodetector Pending JPH02241064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062801A JPH02241064A (en) 1989-03-15 1989-03-15 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062801A JPH02241064A (en) 1989-03-15 1989-03-15 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH02241064A true JPH02241064A (en) 1990-09-25

Family

ID=13210807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062801A Pending JPH02241064A (en) 1989-03-15 1989-03-15 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH02241064A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054718A (en) * 1998-03-31 2000-04-25 Lockheed Martin Corporation Quantum well infrared photocathode having negative electron affinity surface
US6445000B1 (en) 1999-07-30 2002-09-03 Fujitsu Limited Photodetecting device
JP2008187022A (en) * 2007-01-30 2008-08-14 Fujitsu Ltd Infrared ray detector
WO2011018984A1 (en) * 2009-08-10 2011-02-17 国立大学法人千葉大学 Photoelectric conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054718A (en) * 1998-03-31 2000-04-25 Lockheed Martin Corporation Quantum well infrared photocathode having negative electron affinity surface
US6445000B1 (en) 1999-07-30 2002-09-03 Fujitsu Limited Photodetecting device
JP2008187022A (en) * 2007-01-30 2008-08-14 Fujitsu Ltd Infrared ray detector
WO2011018984A1 (en) * 2009-08-10 2011-02-17 国立大学法人千葉大学 Photoelectric conversion device
JP5424503B2 (en) * 2009-08-10 2014-02-26 国立大学法人 千葉大学 Photoelectric conversion device
JP2014060432A (en) * 2009-08-10 2014-04-03 Chiba Univ Photoelectric conversion device

Similar Documents

Publication Publication Date Title
USRE34649E (en) Multicolor .[.infrared.]. photodetector
US6445000B1 (en) Photodetecting device
CN1078016C (en) Light emitting apparatus
EP0340779A2 (en) Optical quantum interference device
JPH10326906A (en) Photodetection element and image-pickup element
CN105283964A (en) High speed photodetector
KR100463416B1 (en) Avalanche phototransistor
EP0689250B1 (en) Semiconductor element with a triangular barrier diode structure
KR920009918B1 (en) Quantum-well radiation detector
JP2005522885A5 (en)
JPH02241064A (en) Semiconductor photodetector
US4998154A (en) MSM photodetector with superlattice
Chen et al. Interdigitated Al0. 48In0. 52As/Ga0. 47In0. 53As photoconductive detectors
US10600931B2 (en) Avalanche photodiode
KR20010045739A (en) Surface emitting laser with a monolithically integrated monitor photdetector
JP2918010B2 (en) Laser array and diode laser application equipment
JPH10303452A (en) Semiconductor light detecting element, semiconductor light modulating element, and transmitter for optical transmission
JP2001332758A (en) Semiconductor photo detector and semiconductor optical storage device
JPH09135049A (en) Integration of surface-luminescence-laser with photodiode for monitoring its power output
EP3594723B1 (en) Double response ionizing radiation detector and measuring method using the same
KR100238309B1 (en) Surface emitting laser apparatus integrated with monitoring photodetector
JP2014082273A (en) Quantum-dot-type infrared detector, infrared detection device, and infrared detection method
Kostenbauder et al. An Ultrafast Diffusion-Driven Detector
JPS62209874A (en) Photoconductive photodetector
JPH04154182A (en) Semiconductor laser