JPH02240605A - Fluoride optical fiber subjected to coating on end face and production thereof - Google Patents

Fluoride optical fiber subjected to coating on end face and production thereof

Info

Publication number
JPH02240605A
JPH02240605A JP1060880A JP6088089A JPH02240605A JP H02240605 A JPH02240605 A JP H02240605A JP 1060880 A JP1060880 A JP 1060880A JP 6088089 A JP6088089 A JP 6088089A JP H02240605 A JPH02240605 A JP H02240605A
Authority
JP
Japan
Prior art keywords
fluoride
face
film
optical fiber
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1060880A
Other languages
Japanese (ja)
Inventor
Shigeru Hirai
茂 平井
Masashi Onishi
正志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1060880A priority Critical patent/JPH02240605A/en
Publication of JPH02240605A publication Critical patent/JPH02240605A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/241Light guide terminations

Abstract

PURPOSE:To prevent the infiltration of moisture in the end face of the fluoride optical fiber so as to prevent the deterioration of the end face and to allow the transmission of a high-output power by coating the end face of the optical fiber with a fluoride film which is excellent in the adhesiveness to fluoride glass and has excellent water insolubility and moisture resistance. CONSTITUTION:The end face of the fluoride optical fiber 1 is coated with the fluoride film 23 consisting of at least one kind of MgF2, SrF2, CaF2, BaF2, and AlF3. The fluoride film 23 is insoluble in water and is highly resistant to water; in addition, the film is transparent to IR rays and is, therefore, capable of acting commonly as a hermetic coating film and acting a transmission window to light. These fluorides can be relatively easily made into thinner films by a vacuum vapor deposition and sputtering method, etc. Further, the fluoride film 23 has the excellent adhesive property to the fluoride glass and since the refractive index of the film is lower than the refractive index of the fluoride glass, the film acts also as an antireflection film to laser light. The generation of the end face deterioration by the moisture is obviated even when the fiber is rested in the atm. and the transmission of the high-output power is executed with the high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はE r−YへGレーザーなど高出力の中赤外線
光のレーザーメス装置やレーザー加工機に用いるパワー
伝送用として優れた、端面コートされたフッ化物光ファ
イバおよびその製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an end surface coating that is excellent for power transmission for use in laser scalpel devices and laser processing machines that use high-output mid-infrared light such as Er-Y to G lasers. The present invention relates to a fluoride optical fiber and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、ZrFt、 HfFt、 BaFt、 LaFs
、 MFI、 NaFPbFtその他のフッ化物を主成
分としてなるフッ化物光ファイバは、波長2〜4pの中
赤外線光の透過性が優れているため、E r−Y A 
Gレーザー(2゜94−光発振)などの高出力パワーレ
ーザーの伝送路等として注目されている。
In recent years, ZrFt, HfFt, BaFt, LaFs
, MFI, NaFPbFt and other fluoride optical fibers have excellent transmittance for mid-infrared light with a wavelength of 2 to 4p, so E r-Y A
It is attracting attention as a transmission path for high-output power lasers such as G laser (2°94-optical oscillation).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、フッ化物ガラスは耐湿性に劣っており、
例えばファイバ端面を大気中に長時間さらした場合、大
気中の水分と反応してしまい、ガラスの透明均質度を大
きく損なう表面結晶化が生じ、高パワー赤外光を入射さ
せた場合、表面結晶化部分に熱がたまり、ガラスが融解
して、最終的にはパワー伝送が困難な状態が生じていた
However, fluoride glass has poor moisture resistance,
For example, if a fiber end face is exposed to the atmosphere for a long time, it will react with moisture in the atmosphere, causing surface crystallization that greatly impairs the transparency and homogeneity of the glass. Heat accumulates in the glass and melts the glass, ultimately making power transmission difficult.

本発明はこのような従来のフッ化物光ファイバにおける
問題点を解決して、高出力パワー伝送に優れた端面コー
トフッ化物光ファイバ及びそのコーティング法を提供し
ようとするものである。
The present invention aims to solve the problems with conventional fluoride optical fibers and provide an end-coated fluoride optical fiber that is excellent in transmitting high output power and a coating method for the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、フッ化物ガラスとの密着性に優れ、
且つ不水溶性、耐湿性に優れたフッ化物膜をフッ化物光
ファイバ端面にコーティングすることにより、フッ化物
光フッ化物端面への湿気の浸入を防止し、大気中におい
ても端面の劣化が生じず、高出力パワー伝送を可能とし
た。
In the present invention, it has excellent adhesion to fluoride glass,
In addition, by coating the end face of a fluoride optical fiber with a fluoride film that is water-insoluble and has excellent moisture resistance, it prevents moisture from entering the end face of the fluoride optical fiber, and the end face does not deteriorate even in the atmosphere. , enabling high output power transmission.

すなわち、本発明は少なくともコアがフッ化物ガラスよ
り構成されているフッ化物光ファイバにおいて、端面に
IAIF!、 5rFx、 CaFs、 BaFl、 
AlFmの少なくとも1種よりなるフッ化物膜をコーテ
ィングされてなる端面コートされたフッ化物光ファイバ
である。
That is, the present invention provides a fluoride optical fiber in which at least the core is made of fluoride glass, with IAIF! on the end face. , 5rFx, CaFs, BaFl,
This is a fluoride optical fiber whose end face is coated with a fluoride film made of at least one type of AlFm.

また、本発明は少なくともコアがフッ化物ガラスより構
成される光ファイバの端面をハロゲン系ガスの減圧プラ
ズマ下にさらして脱水・清浄化した後、該端面にlvl
gFt、 SrF*、 CaFt、 BaFt、 AJ
!Fsの少なくとも1種をコーティングすることを特徴
とする端面コートされたフッ化物光ファイバの製造方法
に関する。
Further, the present invention provides that after dehydrating and cleaning the end face of an optical fiber whose core is made of fluoride glass by exposing it to a reduced pressure plasma of a halogen gas,
gFt, SrF*, CaFt, BaFt, AJ
! The present invention relates to a method for producing a fluoride optical fiber whose end face is coated, the fiber being coated with at least one type of Fs.

第1図は本発明の端面コートされたフッ化物光ファイバ
の一例の断面図であり、1はフッ化物光ファイバでコア
2Iとクラッド22を有し、23はその端面のWk、 
Sr、 Ca、 8a及び/又はMのフッ化物のすくな
くとも1種からなるコートである。
FIG. 1 is a cross-sectional view of an example of a fluoride optical fiber whose end face is coated according to the present invention, where 1 is a fluoride optical fiber having a core 2I and a cladding 22, 23 is Wk of the end face,
The coat is made of at least one of Sr, Ca, 8a and/or M fluoride.

本発明のフッ化物光ファイバは少なくともそのコアが例
えばZrF(、1IfF4. BaFg、 LaFx、
 AIFa、 NaF、PbFz等のフッ化物を主成分
とするフッ化物ガラスから構成されるものである。
The fluoride optical fiber of the present invention has at least its core made of, for example, ZrF (, 1IfF4, BaFg, LaFx,
It is composed of fluoride glass whose main component is fluoride such as AIFa, NaF, PbFz, etc.

本発明においては上記のフッ化物光ファイバの端面にk
kF*、 5rFx、 CaFt、 BaFt、 MF
xの少なくとも1種よりなるフッ化物膜をコーティング
するが、コーティング手段としては、例えば真空蒸着法
In the present invention, the end face of the above-mentioned fluoride optical fiber is
kF*, 5rFx, CaFt, BaFt, MF
A fluoride film made of at least one of

スパッタリング法等が採用できる。その条件等は、この
種の方法における一般的な範囲から適宜選択できる。
Sputtering method etc. can be adopted. The conditions can be appropriately selected from the general range for this type of method.

本発明に係る端面のフッ化物膜の厚さは3.000人〜
8.000人程鹿の範囲内が好ましい。3.000Å以
下では目的とする効果を得られず、また8、 000人
を越えてもそれ以上の効果は得られず無意味である。
The thickness of the fluoride film on the end surface according to the present invention is 3,000 ~
Preferably within the range of about 8,000 deer. If it is less than 3,000 Å, the desired effect cannot be obtained, and if it exceeds 8,000 people, no further effect can be obtained and it is meaningless.

上記のフッ化物膜のコーティングに先立ち、該フッ化物
光ファイバの端面を、減圧プラズマ下に晒し、ファイバ
表面に付着している異物や水分を除去することは、ガラ
ス表面の均質化とフッ化物膜の密着性向上の点で特に好
ましい。このようなプラズマエツチングの減圧は、io
−”〜l Torr程度、またプラズマガスとしては例
えばNF2. CFI。
Prior to coating the fluoride film, the end face of the fluoride optical fiber is exposed to a reduced pressure plasma to remove foreign matter and moisture adhering to the fiber surface. It is particularly preferable in terms of improving the adhesion of. Such reduced pressure for plasma etching is io
-'' to 1 Torr, and the plasma gas is, for example, NF2.CFI.

c c e<等のハロゲン系ガスを用いることができる
A halogen gas such as c c e < can be used.

プラズマエツチング、端面コーティングの具体的手段の
詳細は、後記の実施例にて説明する。
Details of specific means for plasma etching and edge coating will be explained in Examples below.

〔作用〕[Effect]

本発明においてフッ化物光ファイバの端面にコーティン
グするMgFt、 5rFt、 CaFt、 BaFt
、 AjFsのようなフッ化物膜は、不水溶性で耐水性
に優れ、しかも赤外線に対して透明であることから、密
封コーテイング膜としての働きと光に対する透過窓の働
きを兼ねることができる。また、これらのフッ化物は、
真空蒸着法及びスパッタ法等により比較的容易に薄膜化
可能である。更にこれらフッ化物膜はフッ化物ガラスと
の密着性に優れ、屈折率においてもフッ化物ガラス(n
 o =1.5 )より低い(MgFt: nD =1
.38.5rF=: no =1.4 、 CaFz:
 no =1.42. BaFt: no =1.3 
、 AIFs: no =1.4)ため、レーザー光に
対して反射防止膜としても作用する。特に好ましくは膜
材としての耐水性の点で)i4gF!、 BaF宜であ
る。
MgFt, 5rFt, CaFt, BaFt coated on the end face of a fluoride optical fiber in the present invention
A fluoride film such as AjFs is water-insoluble, has excellent water resistance, and is transparent to infrared rays, so it can function both as a sealing coating film and as a light-transmitting window. In addition, these fluorides are
It can be made into a thin film relatively easily by vacuum evaporation, sputtering, or the like. Furthermore, these fluoride films have excellent adhesion to fluoride glass, and have a refractive index that is comparable to that of fluoride glass (n
o = 1.5) lower than (MgFt: nD = 1
.. 38.5rF=: no=1.4, CaFz:
no=1.42. BaFt: no = 1.3
, AIFs: no = 1.4), so it also acts as an anti-reflection film against laser light. Particularly preferred in terms of water resistance as a membrane material) i4gF! , BaFyi.

以上のことより、MgFt、 5rFt、 CaFx、
 BaF、、 MFsのようなフッ化物膜は、フッ化物
光ファイバの端面コーテイング膜として最も有効である
From the above, MgFt, 5rFt, CaFx,
Fluoride films such as BaF, MFs are most effective as end-face coating films for fluoride optical fibers.

また5、端面コーティングに先立つプラズマエツチング
をハロゲン系ガスプラズマ中で行なうことにより、ガラ
ス表面の異物及び水分除去という利点がある。
5. Performing plasma etching in a halogen gas plasma prior to end face coating has the advantage of removing foreign matter and moisture from the glass surface.

〔実施例〕〔Example〕

第2図に示す端面コーティング装置の概略図を用いて、
本発明の製造方法を説明する。真空容器2の内部には予
めコーティング材MgFt蒸着用ベレット7の入ったる
つぼ8をるつぼ台9にセットしておき、次にフッ化物光
ファイバlの端面を真空容器2に挿入する。ガス導入口
5よりNFIガスを容器2内に導入し、容器2内が十分
にNFsガスで満たされるようにする。ガス導入口5.
ガス排気口6の調整によりto−’〜1O−1TO「「
程度のNFsガス圧とし、高周波コイル3に高電圧を高
周波電源4から印加し、プラズマ発生部でNFsラジカ
ルを発生させる。この発生したNF、ラジカルはフッ化
物光フアイバ端面に付着した水分及び有機物等の異物と
反応し、それらを除去する。その後、ガス導入口5、ガ
ス排気口6の調整により10−6〜10−7Torr程
度のNFsガス圧とし、熱陰極10の電流値を10mA
とし、るつぼ8内の鳩F!ペレット7に電子ビーム照射
した。11は冷却水管である。
Using the schematic diagram of the edge coating device shown in Fig. 2,
The manufacturing method of the present invention will be explained. A crucible 8 containing a pellet 7 for depositing coating material MgFt is set in advance on a crucible stand 9 inside the vacuum container 2, and then the end face of the fluoride optical fiber 1 is inserted into the vacuum container 2. NFI gas is introduced into the container 2 through the gas inlet 5 so that the inside of the container 2 is sufficiently filled with NFs gas. Gas inlet 5.
By adjusting the gas exhaust port 6, to-' to 1O-1TO ""
A high voltage is applied to the high frequency coil 3 from the high frequency power source 4, and NFs radicals are generated in the plasma generating section. The generated NF and radicals react with foreign substances such as moisture and organic substances adhering to the end face of the fluoride optical fiber, and remove them. After that, the NFs gas pressure is set to about 10-6 to 10-7 Torr by adjusting the gas inlet 5 and gas exhaust port 6, and the current value of the hot cathode 10 is set to 10 mA.
Then, pigeon F in crucible 8! Pellet 7 was irradiated with an electron beam. 11 is a cooling water pipe.

ここでは、コアが51(モル%、以下同じ)ZrFs−
21Ba Ft   4.51a Fs   2.5A
t’ Fs  17t’b Fからなり、コア径が16
0/a1 クラツド径が200 /jのフッ化物光ファ
イバの一方の端面に、E r−Y A G (2,91
11発振)レーザー光の反射防止用として、厚さ0.5
33−のMgF!蒸着膜を施した。この厚さとした理由
は次のとおりである。すなわち、ファイバコアの屈折率
N、反射防止膜の屈折率をN2とすると、入射光I、に
対し反射光が無くなる反射防止膜の条件は、理論的には
単層膜ではN、=v’N、  dフλ/4N!  (λ
は入射光11の波長)である。ここでコアの屈折率は2
.37だから、最適な反射防止膜の屈折率はv’ 2.
37= 1.54、厚みは2.94pm / 4 /1
、38 (Mg Fsの屈折率) −0,533となる
。同様にして、該フッ化物光ファイバのもう一方の端面
にも)i4gFz蒸着膜をつけた。
Here, the core is 51 (mol%, same hereinafter) ZrFs-
21Ba Ft 4.51a Fs 2.5A
t' Fs 17t'b F, core diameter is 16
0/a1 E r-Y A G (2,91
11 oscillation) Thickness 0.5 to prevent reflection of laser light.
33-MgF! A vapor deposited film was applied. The reason for this thickness is as follows. That is, assuming that the refractive index of the fiber core is N and the refractive index of the anti-reflection film is N2, the conditions for the anti-reflection film to eliminate reflected light with respect to the incident light I are theoretically N, = v' for a single layer film. N, dfuλ/4N! (λ
is the wavelength of the incident light 11). Here, the refractive index of the core is 2
.. 37, the optimal refractive index of the antireflection film is v'2.
37=1.54, thickness is 2.94pm/4/1
, 38 (refractive index of Mg Fs) -0,533. Similarly, an i4gFz vapor deposited film was applied to the other end face of the fluoride optical fiber.

このようにして得られた、本発明の端面をに4gFgコ
ーティングしたフッ化物光ファイバの一端から1ワツト
のE r−Y A Gレーザーを入射したところ、ファ
イバの両端面に何ら状態の変化が起こることなく、他端
よりレーザー光を出射させことができた。
When a 1 watt Er-YAG laser was incident on one end of the thus obtained fluoride optical fiber of the present invention, the end face of which was coated with 4gFg, no change in the state occurred on both end faces of the fiber. The laser beam could be emitted from the other end without any trouble.

上記実施例ではに4gF寓1種からなるフッ化物コ・−
トを例にしたが、2種以上のフッ化物からなるコーティ
ングでも同様に有効であった。
In the above example, a fluoride co-container consisting of 4gF and 1 species was used.
Although fluoride was used as an example, a coating consisting of two or more types of fluoride was similarly effective.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の端面コートフッ化物光フ
ァイバは、大気中に放置しても湿気による端面劣化が生
じることなく、高出力パワー伝送を高効率に行なうこと
ができる。さらに、端面のフッ化物膜は反射防止膜の作
用も有する利点がある。従って、本発明の端面コートさ
れたフッ化物光ファイバは、E r−Y A Gレーザ
ーのレーザーメス装置やレーザー加工機用伝送路として
用いると効果的である。
As explained above, the end-face-coated fluoride optical fiber of the present invention does not suffer from end-face deterioration due to moisture even when left in the atmosphere, and can perform high-output power transmission with high efficiency. Furthermore, the fluoride film on the end face also has the advantage of acting as an antireflection film. Therefore, the fluoride optical fiber whose end face is coated according to the present invention is effective when used as a transmission line for a laser scalpel device of an Er-Y AG laser or a laser processing machine.

そして本発明の製造方法は、このような端面コートフッ
化物ファイバを水分や異物による悪影響を排除して製造
できる優れた方法である。
The manufacturing method of the present invention is an excellent method for manufacturing such end-face coated fluoride fibers while eliminating the adverse effects of moisture and foreign matter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の端面コートされたフッ化物光ファイバ
を説明する断面図、第2図は本発明の端面コートされた
フッ化物光ファイバの製法を説明する概略断面図である
。 図中、lはフッ化物光ファイバ、2は真空容器3は高周
波発振コイル、4は高周波電源、5はガス導入口、6は
ガス排出口、7は蒸着用ペレット(MgF*) 、8は
るつぼ、9はるつぼ台、10は熱陰極、12は冷却水管
、22は端面にコーティングしたフッ化物膜を表す。
FIG. 1 is a cross-sectional view illustrating a fluoride optical fiber whose end surface is coated according to the present invention, and FIG. 2 is a schematic cross-sectional view illustrating a method for manufacturing the fluoride optical fiber whose end surface is coated according to the present invention. In the figure, l is a fluoride optical fiber, 2 is a vacuum container 3 is a high-frequency oscillation coil, 4 is a high-frequency power source, 5 is a gas inlet, 6 is a gas outlet, 7 is a pellet for vapor deposition (MgF*), 8 is a crucible , 9 is a crucible stand, 10 is a hot cathode, 12 is a cooling water pipe, and 22 is a fluoride film coated on the end surface.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくともコアをフッ化物ガラスより構成し、当
該ファイバの端面にMgF_2、SrF_2、CaF_
2、BaF_2、AlF_2の少なくとも1種よりなる
フッ化物膜をコーティングしてなる端面コートされたフ
ッ化物光ファイバ。
(1) At least the core is made of fluoride glass, and the end face of the fiber is MgF_2, SrF_2, CaF_
2. A fluoride optical fiber whose end surface is coated with a fluoride film made of at least one of BaF_2 and AlF_2.
(2)少なくともコアがフッ化物ガラスより構成される
光ファイバの端面をハロゲン系ガスの減圧プラズマ下に
さらして脱水・清浄化した後、該端面にMgF_2、S
rF_2、CaF_2、BaF_2、AlF_2の少な
くとも1種をコーティングすることを特徴とする端面コ
ートされたフッ化物光ファイバの製造方法。
(2) After dehydrating and cleaning the end face of an optical fiber whose core is made of fluoride glass by exposing it to a reduced pressure plasma of halogen gas, the end face is coated with MgF_2, S
A method for producing an end-coated fluoride optical fiber, the method comprising coating with at least one of rF_2, CaF_2, BaF_2, and AlF_2.
JP1060880A 1989-03-15 1989-03-15 Fluoride optical fiber subjected to coating on end face and production thereof Pending JPH02240605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060880A JPH02240605A (en) 1989-03-15 1989-03-15 Fluoride optical fiber subjected to coating on end face and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060880A JPH02240605A (en) 1989-03-15 1989-03-15 Fluoride optical fiber subjected to coating on end face and production thereof

Publications (1)

Publication Number Publication Date
JPH02240605A true JPH02240605A (en) 1990-09-25

Family

ID=13155133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060880A Pending JPH02240605A (en) 1989-03-15 1989-03-15 Fluoride optical fiber subjected to coating on end face and production thereof

Country Status (1)

Country Link
JP (1) JPH02240605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140707A (en) * 1992-10-27 1994-05-20 Showa Koki Seizo Kk Antireflection film of deliquescent optical crystal
WO1999041630A1 (en) * 1998-02-12 1999-08-19 Tyco Electronics Logistics Ag System for protecting the front surface of a light wave-guide
US6383179B1 (en) * 1999-08-11 2002-05-07 Ceramoptec Industries Inc. Diode laser scalpel
JP2011008014A (en) * 2009-06-25 2011-01-13 Fujifilm Corp Optical fiber connection structure and endoscope system
JP2015153919A (en) * 2014-02-17 2015-08-24 三星ダイヤモンド工業株式会社 Optical fiber and laser oscillator using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140707A (en) * 1992-10-27 1994-05-20 Showa Koki Seizo Kk Antireflection film of deliquescent optical crystal
WO1999041630A1 (en) * 1998-02-12 1999-08-19 Tyco Electronics Logistics Ag System for protecting the front surface of a light wave-guide
US6383179B1 (en) * 1999-08-11 2002-05-07 Ceramoptec Industries Inc. Diode laser scalpel
JP2011008014A (en) * 2009-06-25 2011-01-13 Fujifilm Corp Optical fiber connection structure and endoscope system
JP2015153919A (en) * 2014-02-17 2015-08-24 三星ダイヤモンド工業株式会社 Optical fiber and laser oscillator using the same

Similar Documents

Publication Publication Date Title
JP3808917B2 (en) Thin film manufacturing method and thin film
JP3905035B2 (en) Method for forming optical thin film
US4784877A (en) Two layer coating of an optical waveguide
US7575798B2 (en) Optical element with an opaque chrome coating having an aperture and method of making same
JPH02240605A (en) Fluoride optical fiber subjected to coating on end face and production thereof
JP3355786B2 (en) Manufacturing method of optical components for infrared
JPH0552923B2 (en)
JPS59176701A (en) Reflection preventing film
US5825549A (en) Optical thin film for optical element
US6603601B2 (en) Infrared laser optical element and manufacturing method therefor
JPH1067078A (en) Optical element and multilayered laminate of fluoride material used in production thereof
JPH0688978A (en) Optical fiber element
JP3497236B2 (en) Anti-reflection coating for high precision optical components
JPH08101301A (en) Optical thin film and its production
JP3044359B2 (en) Optical system with multilayer anti-reflection coating
JPH08310840A (en) Reflection preventing film
JPH0815501A (en) Reflection preventing film for infrared region
JPH0518278B2 (en)
JPS62262802A (en) Optical fiber for infrared rays
JPH10206630A (en) Multilayer film optical filter and formation thereof and light source
WO2006047314A2 (en) Optical element with an opaque chrome coating having an aperture and method of making same
JP3670697B2 (en) Optical thin film manufacturing method
JP3353948B2 (en) Beam splitter
JPH0816264B2 (en) Electron beam assisted deposition system
JPS59137901A (en) Reflection preventive film