JPH02240558A - Defect inspecting device for glass fiber - Google Patents

Defect inspecting device for glass fiber

Info

Publication number
JPH02240558A
JPH02240558A JP1061399A JP6139989A JPH02240558A JP H02240558 A JPH02240558 A JP H02240558A JP 1061399 A JP1061399 A JP 1061399A JP 6139989 A JP6139989 A JP 6139989A JP H02240558 A JPH02240558 A JP H02240558A
Authority
JP
Japan
Prior art keywords
capacitor
glass fiber
circuit
defect
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1061399A
Other languages
Japanese (ja)
Inventor
Shuhei Sakaguchi
修平 坂口
Noriaki Sato
典明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Glass Fiber Co Ltd filed Critical Nippon Glass Fiber Co Ltd
Priority to JP1061399A priority Critical patent/JPH02240558A/en
Publication of JPH02240558A publication Critical patent/JPH02240558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To inspect the defect of a glass fiber with ease of handling without requiring microwaves of GHz order and high-frequency power source of high output by providing an electrode pair installed in proximity to the glass fiber and an oscillation circuit and detecting circuit. CONSTITUTION:An insulating tube 2, a capacitor 3 for detection which is formed in a pair with the electrodes 3a, 3b for detection, a coil 4, the oscillation circuit 5, an f-V conversion circuit 6, and the detecting circuit 7 are provided. The part having the defect where a very small piece of metals, such as iron and nickel, intrudes into the glass monofilament approaches the capacitor 3, the capacitance of the capacitor changes. When, thereupon, the capacitor 3 is formed as a part of the oscillation circuit 5, the oscillation frequency thereof changes correspondingly. When this capacitor is coupled as the load of the oscillation circuit 5, the magnitude of the load changes correspondingly. The defect of the glass fiber is, therefore, detected by detecting the electrical change (amplitude, frequency change, etc.) generated in the capacitor 3 with the detecting circuit 7.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ガラス繊維の欠陥検査装置に関し、特にガ
ラス繊維糸中に微小な金属片が含まれる欠陥を検出する
のに有用である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glass fiber defect inspection device, and is particularly useful for detecting defects containing minute metal pieces in glass fiber threads.

[従来の技術] 従来のこの種のガラス繊維の欠陥検査装置としては、例
えば特開昭60−20138号公報に開示のものや、特
開昭59−214748号公報に・開示のものがある。
[Prior Art] Conventional glass fiber defect inspection devices of this type include one disclosed in, for example, Japanese Patent Application Laid-Open No. 60-20138, and one disclosed in Japanese Patent Application Laid-Open No. 59-214748.

特開昭60−20138号公報に開示のものは、第7図
に示すように、ガラス繊維糸Gが通過する貫通孔52を
穿設した導波管53と、マイクロ波送信機54と、マイ
クロ波受信機55とを具備してなっており、ガラス繊維
糸中に異物が含まれているとき輪生じる受信マイクロ波
の波形変化を検知して欠陥を検出している。
As shown in FIG. 7, the device disclosed in Japanese Patent Application Laid-Open No. 60-20138 includes a waveguide 53 having a through hole 52 through which the glass fiber thread G passes, a microwave transmitter 54, and a microwave transmitter 54. It is equipped with a wave receiver 55, and detects a defect by detecting a change in the waveform of the received microwave that occurs when a foreign substance is contained in the glass fiber yarn.

特開昭59−214748号公報に開示のものは、第8
図に示すように、ガラス繊維糸Gに近接して設置された
電極62.62と、その電極62゜62間に高周波電界
を与える高周波電源63と、光検出器64とを具備して
なっており、ガラス繊維糸Gに導電性物質が含まれてい
るときに生じる高周波放電の発光を検知して欠陥を検出
している。
The one disclosed in Japanese Patent Application Laid-open No. 59-214748 is
As shown in the figure, it is equipped with electrodes 62, 62 installed close to the glass fiber thread G, a high-frequency power source 63 that applies a high-frequency electric field between the electrodes 62, 62, and a photodetector 64. Defects are detected by detecting light emission of high-frequency discharge that occurs when the glass fiber thread G contains a conductive substance.

[発明が解決しようとする課題1 上記従来のガラス繊維の欠陥検査装置は、構成や取扱い
が複雑となる問題点がある。
[Problem to be Solved by the Invention 1] The above-mentioned conventional glass fiber defect inspection apparatus has a problem that the structure and handling are complicated.

例えば第7図に示す装置51では、数G11zのマイク
ロ波を用いるため、構成要素が特殊なものとなる上に、
マイクロ波の漏洩防止なとの必要かある。
For example, in the device 51 shown in FIG. 7, since microwaves of several G11z are used, the components are special, and
Is there a need to prevent microwave leakage?

また第8図に示す装置61では、強い高周波電界を与え
つる高出力の高周波電源を要し、さらに、外来光の遮断
などが必要となる。
Further, the device 61 shown in FIG. 8 requires a high-output high-frequency power source that provides a strong high-frequency electric field, and also requires blocking of external light.

そこで、この発明は、特殊な構成要素を必要とせず、取
扱いも容易なガラス繊維の欠陥検査装置を提供すること
を目的とする。
Therefore, an object of the present invention is to provide a glass fiber defect inspection device that does not require special components and is easy to handle.

[課題を解決するための手段] この発明のガラス繊維の欠陥検査装置は、ガラス繊維に
近接して設置される電極対と、その電極対で形成される
コンデンサを一部に含むか又はそのコンデンサと間接的
に結合されている発振回路と、前記コンデンサに生じる
電気的変化を検出する検出回路とを具備してなることを
構成上の特徴とするものである。
[Means for Solving the Problems] The glass fiber defect inspection device of the present invention includes a pair of electrodes installed in close proximity to the glass fibers, and a capacitor formed by the pair of electrodes. The configuration is characterized in that it includes an oscillation circuit that is indirectly coupled to the capacitor, and a detection circuit that detects electrical changes occurring in the capacitor.

」1記構成において「発振回路」の周波数は、IMHz
〜数10MHzが好ましく、さらにはIMHz〜20M
)Izが好ましい。
” In the configuration described in item 1, the frequency of the “oscillation circuit” is IMHz.
~several 10 MHz is preferable, and more preferably IMHz ~ 20 MHz
) Iz is preferred.

また上記構成において[コンデンサに生じる電気的変化
」とは、コンデンサにおける高周波信号の振幅1周波数
、位相、波形の少なくとも一つの変化を意味するもので
ある。
Furthermore, in the above configuration, "electrical change occurring in the capacitor" means a change in at least one of the amplitude, frequency, phase, and waveform of a high-frequency signal in the capacitor.

[作用] ガラス繊維の欠陥の代表的なものはガラスモノフィラメ
ント(直径数μ)中に鉄、ニッケル等の金属の微小片(
直径1μ以下から数μ、長さ1市以下から数m+*)が
混入するものであるが、このような欠陥のある部分が近
接したときと欠陥のない部分が近接したときとではコン
デンサのキャパシタンスが異なって(る。
[Function] A typical defect in glass fiber is the presence of minute pieces of metals such as iron and nickel in glass monofilaments (several micrometers in diameter).
The capacitance of the capacitor differs between when a defective part is close to the capacitor and when a non-defective part is close to it. are different.

そこで、このコンデンサを発振回路の一部とすれば、発
振周波数が異なることとなる。また、このコンデンサを
発振回路の負荷として結合すれば、負荷の大きさが異な
ることとなる。
Therefore, if this capacitor is used as part of an oscillation circuit, the oscillation frequency will be different. Furthermore, if this capacitor is coupled as a load of an oscillation circuit, the magnitude of the load will be different.

したがって、コンデンサに生じる電気的変化(振幅1周
波数変化など)を検出回路で検知すれば、ガラス繊維の
欠陥を検出することが出来る。
Therefore, defects in the glass fiber can be detected by detecting electrical changes (such as changes in amplitude and frequency) occurring in the capacitor using a detection circuit.

[実施例] 以下、図に示す実施例によりこの発明を更に詳しく説明
する。なお、これによりこの発明が限定されるものでは
ない。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples shown in the drawings. Note that this invention is not limited to this.

第1図に示すこの発明の一実施例のガラス繊維の欠陥検
査装置1は、絶縁チューブ2と、その絶縁チューブ2に
巻き付けられた第1の検出用電極3aと、その検出用電
極3aから所定距離だけ隔てて前記絶縁チューブ2に巻
き付けられた第2の検出用電極3bと、それら検出用電
極3a、3bの対で形成される検出用コンデンサ3に並
列接続されたコイル4と、前記検出用コンデンサ3をそ
の一部として含む発振回路5と、その発振回路5の発振
周波数fを電圧Vに変換するf−V変換回路6と、その
f−V変換回路6の出力電圧■の変化を検出する検出回
路7とを具備してなっている。
A glass fiber defect inspection apparatus 1 according to an embodiment of the present invention shown in FIG. 1 includes an insulating tube 2, a first detection electrode 3a wound around the insulating tube 2, and A second detection electrode 3b wrapped around the insulating tube 2 at a distance apart, a coil 4 connected in parallel to the detection capacitor 3 formed by the pair of detection electrodes 3a and 3b, and the detection An oscillation circuit 5 including a capacitor 3 as a part thereof, an f-V conversion circuit 6 that converts the oscillation frequency f of the oscillation circuit 5 into a voltage V, and a change in the output voltage ■ of the f-V conversion circuit 6 is detected. It is equipped with a detection circuit 7 for detecting.

絶縁チューブ2はガラスモノフィラメントを数百本束ね
たガラス繊維糸G(太さ0. 1〜1關)と接触、しな
い程度の内径(半径R)を有し仮に接触してもガラス繊
維糸Gを傷つけない素材のものである。例えば直径2關
程度のテフロンチューブである。その内部にガラス繊維
糸Gが速度Sで通、されている。
The insulating tube 2 has an inner diameter (radius R) such that it does not come into contact with the glass fiber thread G (thickness 0.1 to 1 inch) made by bundling several hundred glass monofilaments, and even if it does come into contact with it, it will not touch the glass fiber thread G. It is made of non-damaging material. For example, it is a Teflon tube about 2 inches in diameter. A glass fiber thread G is threaded through it at a speed S.

検出用電極3a、3bは、銅パイプを所定の長さにカッ
トしたものであり、所定の間隔(距Md)をあけて並設
しである。
The detection electrodes 3a and 3b are made by cutting copper pipes to a predetermined length, and are arranged in parallel at a predetermined interval (distance Md).

検出用コンデンサ3とコイル4とは並列共振回路を形成
し、その共振周波数が発振回路5の発振周波数fとなる
工 f−V変換回路6は人力周波数が高いときは低い出力電
圧を出力し、入力周波数が低いときは高い出力電圧を出
力する。
The detection capacitor 3 and the coil 4 form a parallel resonant circuit, the resonant frequency of which is the oscillation frequency f of the oscillation circuit 5. The f-V conversion circuit 6 outputs a low output voltage when the human power frequency is high. Outputs a high output voltage when the input frequency is low.

検出回路7は、前記出力電圧■の大きさと、その大きさ
が変化する遷移時間と、変化後の一定の大きさが持続す
る持続時間とを検知し、これらから欠陥の有無と欠陥の
長さを判定して出力する。
The detection circuit 7 detects the magnitude of the output voltage (2), the transition time during which the magnitude changes, and the duration during which the magnitude remains constant after the change, and from these detects the presence or absence of a defect and the length of the defect. Determine and output.

次に上記欠陥検査装置1の動作を説明する。Next, the operation of the defect inspection apparatus 1 will be explained.

ガラス繊維糸Gの欠陥のない部分か検出用コンデンサ3
の近傍を通過しているときの発振周波数をfOとすると
、f−V変換回路6は前記発振周波数foに対応した出
力電圧■0を出力する。
Capacitor 3 for detecting defect-free portion of glass fiber thread G
Let fO be the oscillation frequency when passing near the oscillation frequency fo, the fV conversion circuit 6 outputs an output voltage 0 corresponding to the oscillation frequency fo.

他方、例えば微小金属片を含んだ欠陥部分が検出用コン
デンサ3の近傍を通過すると、検出用コンデンサ3のキ
ャパシタンスが増加するので、発振周波数は例えばfl
に下がり、f−V変換回路6はその発振周波数f1に対
応した出力電圧■1を出力する。fO>flなので、V
O<Vlである。
On the other hand, when a defective part containing, for example, a minute metal piece passes near the detection capacitor 3, the capacitance of the detection capacitor 3 increases, so the oscillation frequency becomes, for example, fl.
The f-V conversion circuit 6 outputs an output voltage 1 corresponding to the oscillation frequency f1. Since fO>fl, V
O<Vl.

欠陥部分が通過してしまうと、もとの発振周波数foに
戻り、f−V変換回路6は出力電圧VOを出力する。
Once the defective portion has passed, the oscillation frequency returns to the original oscillation frequency fo, and the fV conversion circuit 6 outputs the output voltage VO.

第2図はこの出力電圧■の時間変化を示したものである
FIG. 2 shows the time change of this output voltage (2).

検出回路7は、前記f−V変換回路6の出力電圧v1が
所定のレベル(例えば無視できる最大の欠陥部分が通過
したときの出力電圧v1より僅かに高い電圧値を用いる
ことが出来る)以上であれば、欠陥検出信号を出力する
。また、前記f−V変換回路6の出力電圧が70〜71
間で変化する遷移時間τOおよび■1の持続時間τ1を
検知し、欠陥部分の長さを算出する。
The detection circuit 7 detects that the output voltage v1 of the f-V conversion circuit 6 is equal to or higher than a predetermined level (for example, a voltage value slightly higher than the output voltage v1 when the largest negligible defective part has passed can be used). If there is, a defect detection signal is output. Further, the output voltage of the f-V conversion circuit 6 is 70 to 71
The length of the defective portion is calculated by detecting the transition time τO and the duration τ1 of ■1.

すなわち、第3図に示すように、ガラスモノフィラメン
トGOの通過速度をSとしくそれはガラス繊維糸Gの通
過速度Sである)とし、検出用コンデンサ3の実効長さ
(充分小さな欠陥部分が通過するときのfOとτ1を得
ると(τ0+τ1)×Sが実効長さとなる)をWとし、
ガラスモノフィラメントGoに含まれる欠陥部分αの長
さをDとするとき、 ro<W/sならば、D#roxs rO≧W/sならば、D#(rO+rl)Xsで算出し
た欠陥部分の長さDを出力する。
That is, as shown in Fig. 3, the passing speed of the glass monofilament GO is S, which is the passing speed S of the glass fiber thread G), and the effective length of the detection capacitor 3 (a sufficiently small defective portion passes When fO and τ1 are obtained, (τ0 + τ1) x S becomes the effective length), and
When the length of the defective part α included in the glass monofilament Go is D, if ro<W/s, D#roxs If rO≧W/s, the length of the defective part calculated by Xs is D#(rO+rl) Outputs D.

1紀ガラス繊維の欠陥検査装置1の変形例としては、上
記検出回路7に代えて、f−V変換回路6の出力電圧V
が所定のレベル未満ではLを出力しそのレベル以」二で
はHを出力するシュミットトリガ回路と■(の持続時間
Tを検知する計数回路とを設け、シュミットトリガ回路
からのH出力を欠陥検出信号として出力すると共に、欠
陥部分の長さDを D=Txs−W で算出し、て出力するものが挙げられる。
As a modification of the primary glass fiber defect inspection device 1, the output voltage V of the fV conversion circuit 6 is replaced with the detection circuit 7.
A Schmitt trigger circuit that outputs L when the voltage is below a predetermined level and H when it exceeds that level and a counting circuit that detects the duration T of () are provided, and the H output from the Schmitt trigger circuit is used as a defect detection signal. In addition, the length D of the defective portion is calculated as D=Txs-W and outputted.

また、他の変形例としては、前記f−V変換回路6の出
力電圧■1の大きさから欠陥部分の大きさをある程度判
定して(例えば数段階に評価して)出力するものが挙げ
られる。
Another modification is one in which the size of the defective part is determined to some extent from the magnitude of the output voltage (1) of the f-V conversion circuit 6 (e.g., evaluated in several stages) and outputted. .

なお、ノイズを避けるために、検出用コンデンサ3の周
囲を金属ケースで覆ってシールドするのが好ましい。
Note that in order to avoid noise, it is preferable to cover the detection capacitor 3 with a metal case for shielding.

また、検出精度を高めるために、検出用電極3a、3b
の距離dを、 0、 5市<d<10順(ζ2D) とすると共に、絶縁チューブ2の半径Rを、R<2d とするのが、好ましい。
In addition, in order to improve the detection accuracy, the detection electrodes 3a, 3b
It is preferable to set the distance d of 0,5<d<10 (ζ2D) and set the radius R of the insulating tube 2 to R<2d.

次に第4図はこの発明の他の実施例のガラス繊維の欠陥
検査装置11を示すものである。
Next, FIG. 4 shows a glass fiber defect inspection apparatus 11 according to another embodiment of the present invention.

このガラス繊維の欠陥検査装置11は、電極の構造と検
出回路の作動が上記欠陥検査装置1と異なっている。
This glass fiber defect inspection device 11 is different from the defect inspection device 1 described above in the structure of the electrode and the operation of the detection circuit.

すなわち、絶縁チューブ2に3つの検出用電極3a、3
b、3cを設け、両端の電極3b、3cは接地側とし、
それら両端の電極3b、3cと中央の電極3aの間で検
出用コンデンサ13を形成している。この電極構造によ
れば、両端の電極3b、3cがシールド効果を持つため
、耐ノイズ性が改善される。
That is, three detection electrodes 3a, 3 are provided in the insulating tube 2.
b and 3c are provided, and the electrodes 3b and 3c at both ends are on the ground side,
A detection capacitor 13 is formed between the electrodes 3b and 3c at both ends and the central electrode 3a. According to this electrode structure, since the electrodes 3b and 3c at both ends have a shielding effect, noise resistance is improved.

また、検出回路17は、f−V変換回路6の出力電圧■
が続いて2回変動することを確認してから欠陥検出信号
を出力するようになっている。電極3Cと38の間で形
成されるコンデンサ部分と、電極3aと3bの間で形成
されるコンデンサ部分の2箇所でガラス繊維糸Gの欠陥
部分を検出することになるから、真の欠陥のときはf−
V変換回路6の出力電圧■が続いて2回変動する。他方
、何らかの異常であれば、f−V変換回路6の出力電圧
Vが続いて2回変動する確率は極めて低い。
The detection circuit 17 also detects the output voltage of the f-V conversion circuit 6.
After confirming that the value fluctuates twice in succession, a defect detection signal is output. Since the defective portion of the glass fiber thread G is detected at two locations: the capacitor portion formed between electrodes 3C and 38, and the capacitor portion formed between electrodes 3a and 3b, it is possible to detect a true defect. is f-
The output voltage (■) of the V conversion circuit 6 fluctuates twice successively. On the other hand, if there is some abnormality, the probability that the output voltage V of the fV conversion circuit 6 will fluctuate twice in succession is extremely low.

従って、欠陥検出信号の信頼性を向上することが出来る
Therefore, the reliability of the defect detection signal can be improved.

次に第5図はこの発明のさらに他の実施例のガラス繊維
の欠陥検査装置21を示すものである。
Next, FIG. 5 shows a glass fiber defect inspection apparatus 21 according to still another embodiment of the present invention.

このガラス繊維の欠陥検査装置21は、絶縁チューブ2
と、その絶縁チューブ2の周囲に設けられた電極3a、
3b、3c、3d、3eと、前記電極 3a、3cの間
および電極3a、3bの間に形成されるコンデンサ23
に並列接続されたコイル24と、前記コンデンサ23お
よびコイル24をその一部として含む発振回路25と、
前記コイル24に磁束Φを介して結合されると共に前記
電極3b、3dの間および電極3d、3eの間に形成さ
れるコンデンサ33に並列接続されたたコイル34と、
そのコイル34の誘起電圧の変化を検出する検出回路3
7とを具備してなっている。
This glass fiber defect inspection device 21 includes an insulating tube 2
and an electrode 3a provided around the insulating tube 2,
3b, 3c, 3d, 3e and a capacitor 23 formed between the electrodes 3a, 3c and between the electrodes 3a, 3b.
an oscillation circuit 25 including the capacitor 23 and the coil 24 as a part thereof;
a coil 34 coupled to the coil 24 via magnetic flux Φ and connected in parallel to a capacitor 33 formed between the electrodes 3b, 3d and between the electrodes 3d, 3e;
Detection circuit 3 that detects changes in the induced voltage of the coil 34
It is equipped with 7.

コイル24.34は重ねて巻回されてもよいし、同一ボ
ビンに近接して並べて巻回されてもよい。
The coils 24, 34 may be wound one on top of the other, or may be wound in close proximity to each other on the same bobbin.

コンデンサ33とコイル34とは並列共振回路を構成し
、ガラス繊維糸Gの欠陥のない部分がコンデンサ33の
近傍を通過しているときの共振周波数をfOとすると、
コイル24から与えられる磁束の周波数fとコイル34
の誘起電圧Eの関係は第6図に示すようになる。
The capacitor 33 and the coil 34 constitute a parallel resonant circuit, and if the resonant frequency when the defect-free portion of the glass fiber thread G passes near the capacitor 33 is fO, then
The frequency f of the magnetic flux given from the coil 24 and the coil 34
The relationship between the induced voltage E and the voltage E is as shown in FIG.

このため、ガラス繊維糸Gの欠陥のない部分がコンデン
サ23の近傍を通過しているときの発振回路25の発振
周波数をfoとすると、ガラス繊維糸Gの欠陥のない部
分がコンデンサ23および33の近傍を通過していると
きのフィル34の誘起電圧はEOとなる。
Therefore, if the oscillation frequency of the oscillation circuit 25 when the defect-free portion of the glass fiber thread G passes near the capacitor 23 is fo, then the defect-free portion of the glass fiber thread G passes near the capacitors 23 and 33. The induced voltage in the fill 34 when passing nearby is EO.

欠陥部分がコンデンサ23の近傍を通過すると、コンデ
ンサ23のキャパシタンスが変化するので、発振周波数
fが変化する。すると、第6図から理解されるようにコ
イル34の誘起電圧Eは急激に低くなる。
When the defective portion passes near the capacitor 23, the capacitance of the capacitor 23 changes, and therefore the oscillation frequency f changes. Then, as understood from FIG. 6, the induced voltage E in the coil 34 suddenly decreases.

したがって、検出回路37から欠陥検出信号が出力され
ることとなる。
Therefore, the detection circuit 37 outputs a defect detection signal.

上記欠陥検出装置21では、発振周波数fがわ゛ずかに
変化しても誘起電圧Eが大きく変化するので、小さな欠
陥でも高感度に検出することが出来る。
In the defect detection device 21, even if the oscillation frequency f changes slightly, the induced voltage E changes greatly, so even small defects can be detected with high sensitivity.

なお、パイプ状の電極をガラス繊維糸Gの進行方向に並
べた上記実施例の電極構造以外に、断面U字状の電極を
ガラス繊維糸Gの進行方向に並べた電極構造としてもよ
いし、断面U字状の電極をガラス繊維糸Gを挟んで対向
させた電極構造としてもよい。
In addition to the electrode structure of the above embodiment in which pipe-shaped electrodes are arranged in the direction of movement of the glass fiber thread G, an electrode structure in which electrodes with a U-shaped cross section are arranged in the direction of movement of the glass fiber thread G may be used. An electrode structure may be used in which electrodes having a U-shaped cross section are opposed to each other with the glass fiber thread G interposed therebetween.

また、ガラス繊維布の場合は平板状電極をガラス繊維布
に対向させ且つその進行方向に並べた電極構造とすれば
よく、好ましくはガラス繊維布を挟んで更に同様の平板
状電極を対向させた構造とすればよい。
In addition, in the case of glass fiber cloth, the electrode structure may be such that flat electrodes are arranged opposite to the glass fiber cloth and arranged in the direction of movement of the cloth. It may be a structure.

[発明の効果] この発明のガラス繊維の欠陥検出装置によれば、GHz
オーダーのマイクロ波や高出力の高周波電源を必要とし
ないから、構成も取扱いも簡単になり、容易にガラス繊
維の欠陥を検出できるようになる。
[Effect of the invention] According to the glass fiber defect detection device of the present invention, GHz
Since custom-made microwaves and high-power radio frequency power sources are not required, the structure and handling are simple, and defects in glass fibers can be easily detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のガラス繊維の欠陥検出装
置のブロック図、第2図は第1図に示す欠陥検出装置に
おける電圧の時間変化を示すグラフ、第3図は検出用コ
イルの実効長さと欠陥部分の長さの関係を示す概念図、
第4図はこの発明の他の実施例のガラス繊維の欠陥検出
装置のブロック図、第5図はこの発明のさらに他の実施
例のガラス繊維の欠陥検出装置のブロック図、第6図は
第5図に示す欠陥検出装置における誘起電圧と周波数の
関係を示すグラフ、第7図は従来のガラス繊維の欠陥検
出装置の一例のブロック図、第8図は従来のガラス繊維
の欠陥検出装置の他の一例のブロック図である。 (符号の説明) 1.11.21・・・ガラス繊維の欠陥検出装置2・・
・絶縁チューブ 38〜3e・・・電極 3.13,23.33・・・コンデンサ5.25・・・
発振回路 7.17.37・・・検出回路 G・・・ガラス繊維糸 GO・・・ガラスモノフィラメント α・・・欠陥。 第 図 第 図 第 図 G。 B 第 図 第 図 O −一−−〉
FIG. 1 is a block diagram of a glass fiber defect detection device according to an embodiment of the present invention, FIG. 2 is a graph showing the voltage change over time in the defect detection device shown in FIG. 1, and FIG. 3 is a graph of the detection coil. A conceptual diagram showing the relationship between the effective length and the length of the defective part,
FIG. 4 is a block diagram of a glass fiber defect detection apparatus according to another embodiment of the present invention, FIG. 5 is a block diagram of a glass fiber defect detection apparatus according to still another embodiment of the present invention, and FIG. Fig. 5 is a graph showing the relationship between induced voltage and frequency in a defect detection device, Fig. 7 is a block diagram of an example of a conventional glass fiber defect detection device, and Fig. 8 is a graph showing a conventional glass fiber defect detection device and other examples. It is a block diagram of an example. (Explanation of symbols) 1.11.21...Glass fiber defect detection device 2...
- Insulating tubes 38 to 3e... Electrodes 3.13, 23.33... Capacitors 5.25...
Oscillation circuit 7.17.37...Detection circuit G...Glass fiber thread GO...Glass monofilament α...Defect. Figure Figure Figure G. B Figure Figure O -1-->

Claims (1)

【特許請求の範囲】[Claims] 1、ガラス繊維に近接して設置される電極対と、その電
極対で形成されるコンデンサを一部に含むか又はそのコ
ンデンサと間接的に結合されている発振回路と、前記コ
ンデンサに生じる電気的変化を検出する検出回路とを具
備してなることを特徴とするガラス繊維の欠陥検査装置
1. An electrode pair installed in close proximity to the glass fiber, an oscillation circuit that partially includes a capacitor formed by the electrode pair or is indirectly coupled to the capacitor, and an electric current generated in the capacitor. 1. A glass fiber defect inspection device comprising a detection circuit for detecting a change.
JP1061399A 1989-03-14 1989-03-14 Defect inspecting device for glass fiber Pending JPH02240558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061399A JPH02240558A (en) 1989-03-14 1989-03-14 Defect inspecting device for glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061399A JPH02240558A (en) 1989-03-14 1989-03-14 Defect inspecting device for glass fiber

Publications (1)

Publication Number Publication Date
JPH02240558A true JPH02240558A (en) 1990-09-25

Family

ID=13170032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061399A Pending JPH02240558A (en) 1989-03-14 1989-03-14 Defect inspecting device for glass fiber

Country Status (1)

Country Link
JP (1) JPH02240558A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535335A (en) * 2000-05-31 2003-11-25 ツエルヴエーゲル・ルーヴア・アクチエンゲゼルシヤフト METHOD AND APPARATUS FOR CONFIRMING CONTAMINANTS IN FILT PRODUCTS LONGLY MOVED
JP2011227052A (en) * 2010-04-02 2011-11-10 Ogihara Mfg Co Ltd Coiled capacitor and air bubble detecting device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535335A (en) * 2000-05-31 2003-11-25 ツエルヴエーゲル・ルーヴア・アクチエンゲゼルシヤフト METHOD AND APPARATUS FOR CONFIRMING CONTAMINANTS IN FILT PRODUCTS LONGLY MOVED
JP4811813B2 (en) * 2000-05-31 2011-11-09 ウステル・テヒノロジーズ・アクチエンゲゼルシヤフト Method and apparatus for confirming contaminants in filamentary product moved in the longitudinal direction
JP2011227052A (en) * 2010-04-02 2011-11-10 Ogihara Mfg Co Ltd Coiled capacitor and air bubble detecting device using the same

Similar Documents

Publication Publication Date Title
US4547769A (en) Vacuum monitor device and method for vacuum interrupter
US7564239B2 (en) Magnetic field detector and a current monitoring device including such a detector
Flender et al. RF harmonic suppression in Langmuir probe measurements in RF discharges
EP0249980B1 (en) Method of detecting conductive material contained in glass fiber and detecting apparatus therefor
US11324104B2 (en) Magnetic probe device
JPH02240558A (en) Defect inspecting device for glass fiber
US5146164A (en) Eddy current flaw detection apparatus employing a resonance circuit
JPH02240560A (en) Defect inspecting device for glass fiber
US3113263A (en) Magnetic resonance spectrometer
US1984465A (en) Method of and apparatus for detecting structural defects in materials
KR0163959B1 (en) Eddy current flaw detection apparatus
JPS6345547A (en) Detecting method by microwave for conductive foreign matter present in dielectric penetrating through resonator
CN103760234B (en) The change of a kind of resonant frequency improves the method for designing of EDDY CURRENT limiting snesibility
JPH0576122A (en) Abnormality detector
US3543145A (en) Eddy current method and apparatus for the nondestructive testing of electrically conductive tubes utilizing two mutually coupled hartley oscillators
KR102656037B1 (en) Magnetic-field detecting apparatus
JPH038308A (en) Continuity test of inductance element
JP3675780B2 (en) Metal fatigue / deterioration identification device
SU741216A1 (en) Metal locator
JPH0278974A (en) Electric apparatus
US2031016A (en) Method of and apparatus for testing electrical devices
SU1532864A2 (en) Electromagnetic/acoustic flaw detector
SU1612253A1 (en) Through electromagnetic transducer
JPH07326490A (en) Discharge detector
SU1751699A1 (en) Apparatus for finding short-circuited turns in inductive members