JPH02240135A - Shape memory resin - Google Patents

Shape memory resin

Info

Publication number
JPH02240135A
JPH02240135A JP6323989A JP6323989A JPH02240135A JP H02240135 A JPH02240135 A JP H02240135A JP 6323989 A JP6323989 A JP 6323989A JP 6323989 A JP6323989 A JP 6323989A JP H02240135 A JPH02240135 A JP H02240135A
Authority
JP
Japan
Prior art keywords
shape memory
peg
segment
melting point
block copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6323989A
Other languages
Japanese (ja)
Inventor
Tomiji Matsuki
松木 富二
Joshin Kuwata
桑田 浄伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6323989A priority Critical patent/JPH02240135A/en
Publication of JPH02240135A publication Critical patent/JPH02240135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To provide a shape memory resin having an excellent shape memory property and can develop its property when it is heated or is brought into contact with water by using a block copolymer comprising a specified high- melting crystalline segment and a specified low-melting segment. CONSTITUTION:A polyester/polyester block copolymer comprising a high-melting crystalline segment (A) based on polybutylene terephthalate and a low-melting segment (B) based on polyethylene glycol, wherein the amount of component (B) is 60-95wt.% based on the block copolymer is produced by appropriately selecting the amount of component B, the number-average MW of the polyethylene glycol, etc., so that the obtained copolymer may have a transmittance >=15% in a molten state and a heat of fusion of a melting peak appearing in a temperature range of 0-65 deg.C in differential scanning calorimetry >= 0.5cal/g. This copolymer is used as a shape memory resin.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は形状記憶性樹脂、特に溶融成形可能な熱可塑性
ポリエステル系゛の新規形状記憶性樹脂に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a shape memory resin, particularly a new shape memory resin based on melt moldable thermoplastic polyester.

[従来の技術] 形状記憶とは材料が元(成形時)の形状を記憶しており
、低温あるいは高温下で変型しても加熱することにより
元の形状に戻る現象のことである。
[Prior Art] Shape memory is a phenomenon in which a material remembers its original shape (at the time of molding) and returns to its original shape by heating even if it is deformed at low or high temperatures.

近年、ポリノルボルネン、トランスポリイソプレン等の
上記現象を有する形状記憶樹脂がいくつか発表ざれてい
る(特開昭59−53528号公報、同62−8602
5号公報)。これらは、従来の形状記憶合金に比べて安
価であり、その特異的な特性を刊用してエレクトロニク
ス、メディカル、自動車関連部品、建築分野等から注目
ざれている。
In recent years, several shape memory resins such as polynorbornene and transpolyisoprene having the above-mentioned phenomenon have been announced (Japanese Patent Application Laid-open Nos. 59-53528 and 62-8602).
Publication No. 5). These are cheaper than conventional shape memory alloys, and are attracting attention from the electronics, medical, automobile-related parts, and architectural fields due to their unique properties.

[発明が解決しようとする課題] しかしながら、上記の形状記憶樹脂は形状記憶性を発現
させるために、著しく高重合度のものとしたり、あるい
は架橋を行う等の必要があった。
[Problems to be Solved by the Invention] However, in order for the above-mentioned shape memory resin to exhibit shape memory properties, it is necessary to make it have a significantly high degree of polymerization or to perform crosslinking.

それ故、溶融粘度が著しく高くなり、高温、高圧の成形
条件が必要であり、特に射出成形性が低かったり、ある
いはリサイクル使用が困難であったりと樹脂の成形性に
関しては必ずしも満足な状況とは言えなかった。
Therefore, the melt viscosity becomes extremely high, high temperature and high pressure molding conditions are required, and the moldability of the resin is not necessarily satisfactory, as injection moldability is particularly low and recycling is difficult. I could not say it.

本発明は上記従来技術の問題点を解消し、優れた形状記
憶性を有すると共に,溶融成形が容易な成形用樹脂の開
発をat題とするものである。
The present invention solves the above-mentioned problems of the prior art and aims to develop a molding resin that has excellent shape memory and is easy to melt mold.

[課題を解決するための手段] 本発明の上記課題は、ポリプチレンテレフタレート(以
下、PBTという)を主成分とする高融点結晶性セグメ
ントとポリエチレングリコール(以下、PEGという)
を主成分とする低融点セグメントで構成ざれるポリエス
テル・ポリエーテルブロック共重合体であって、該低融
点セグメントの共重合量が該ブロック共重合体に対し6
0重量%〜95重量%でおり、かつ溶融状態での光線透
過率(以下、単に光線透過率という)が15%以上,示
差走査熱量計においてO℃〜65℃の温度域で発現する
融解ピークの融解熱(以下、単に融解熱という》が0.
 5Cal /9以上であることを特徴とする形状記憶
性樹脂によって解決することができる。
[Means for Solving the Problem] The above-mentioned problem of the present invention is to provide a high melting point crystalline segment mainly composed of polybutylene terephthalate (hereinafter referred to as PBT) and polyethylene glycol (hereinafter referred to as PEG).
A polyester/polyether block copolymer composed of a low melting point segment mainly composed of
0% to 95% by weight, and has a light transmittance in a molten state (hereinafter simply referred to as light transmittance) of 15% or more, and a melting peak that occurs in the temperature range of 0°C to 65°C in a differential scanning calorimeter. The heat of fusion (hereinafter simply referred to as heat of fusion) is 0.
This problem can be solved by a shape memory resin characterized by having a Cal/9 or more.

先ず、本発明の形状記憶性樹脂について説明する。First, the shape memory resin of the present invention will be explained.

すなわち、本発明の形状記憶性樹脂において、高融点結
晶性セグメントとしては、テレフタル酸またはその低級
アルキルエステルと、1,4−ブタンジオールとから誘
導ざれるポリブチレンテレフタレートを用い、必要に応
じて他のジカルボン酸およびグリコールを共重合させる
ことができるが、好ましい高融点結晶性セグメントはP
BT単位が70モル%以上のものである。
That is, in the shape memory resin of the present invention, polybutylene terephthalate derived from terephthalic acid or its lower alkyl ester and 1,4-butanediol is used as the high melting point crystalline segment, and other substances are used as necessary. dicarboxylic acids and glycols can be copolymerized, but the preferred high melting point crystalline segment is P
The BT unit content is 70 mol% or more.

ここで用いるテレフタル酸またはその低級アルキルエス
テル以外のジカルボン酸には、イソフタル酸、フタル酸
、2.6一ナフタレンジカルボン酸、1.5一ナフタレ
ンジカルボン酸、4.4′−ジフエニルジカルボン酸、
ジフエノキシエタンジカルボン酸などの芳香族ジカルボ
ン酸、ざらに、コハク酸、シュウ酸、アジビン酸、セバ
シン酸、ドデカンジオン酸、ダイマー酸などの脂肪族ジ
カルボン酸および1,4−シクロヘキサンジカルボン酸
なとの脂環族ジカルボン酸などが例示できる。そして、
これらのジカルボン酸のエステル形成性誘導体である低
級アルキルエステル等も好ましく用いられ、これら2種
以上の混合物としても使用できる。
The dicarboxylic acids other than terephthalic acid or its lower alkyl ester used here include isophthalic acid, phthalic acid, 2.6-naphthalenedicarboxylic acid, 1.5-naphthalenedicarboxylic acid, 4.4'-diphenyldicarboxylic acid,
Aromatic dicarboxylic acids such as diphenoxyethane dicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, oxalic acid, adibic acid, sebacic acid, dodecanedioic acid, dimer acid, and 1,4-cyclohexane dicarboxylic acid. Examples include alicyclic dicarboxylic acids. and,
Lower alkyl esters, which are ester-forming derivatives of these dicarboxylic acids, are also preferably used, and a mixture of two or more of these can also be used.

また1.4−ブタンジオール以外のグリコールには、エ
チレングリコール、プロピレングリコール、1.5−ペ
ンタンジオール、1,6−ヘキサンジオール、ネオベン
チルグリコール、シクロヘキサンジメタノール、などの
炭素数2〜12の脂肪族ジオールおよび脂環族ジオール
、ビスフェノールAのエチレンオキサイド付加物等が例
示でき、単独またはこれらの混合物としての使用が可能
である。
In addition, glycols other than 1,4-butanediol include those having 2 to 12 carbon atoms, such as ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neobentyl glycol, and cyclohexanedimethanol. Examples include aliphatic diols, alicyclic diols, and ethylene oxide adducts of bisphenol A, which can be used alone or as a mixture.

一方、低融点セグメントとしてはPEGを主体とするが
、樹脂の改質などを目的にし、そのPEGに対し20重
a%以内でポリテトラメチレングリコール等の他のポリ
アルキレングリコールを用いることができる。
On the other hand, the low melting point segment is mainly composed of PEG, but for the purpose of modifying the resin, other polyalkylene glycols such as polytetramethylene glycol can be used in an amount of up to 20% by weight based on the PEG.

上記の高融点結晶性セグメントと低融点セグメントの共
重合比率は、低蝕点セグメントを全共重合体に対し60
重量%〜95重量%,好ましくは65重量%〜90重量
%の範囲内とする必要がある。低融点セグメント量が6
0重量%未満では、低温からl%温に加熱した時の形状
の回復力が劣るため,形状記憶性樹脂としての十分な性
能が得られない。また、95重量%を越えると得られる
樹脂の強度・伸度等の機械特性や高温に加熱した時の弾
性率が低くなり過ぎて、実用樹脂としては不適当であり
、ざらに水分と接触したときの特性劣化が著しくなる。
The copolymerization ratio of the above high melting point crystalline segment and low melting point segment is 60% of the low corrosion point segment to the total copolymer.
It is necessary to range from 65% to 90% by weight, preferably from 65% to 90% by weight. Low melting point segment amount is 6
If it is less than 0% by weight, the shape recovery ability when heated from low temperature to 1% temperature will be poor, and sufficient performance as a shape memory resin will not be obtained. In addition, if the content exceeds 95% by weight, the resulting resin's mechanical properties such as strength and elongation, as well as its elastic modulus when heated to high temperatures, become too low, making it unsuitable for use as a practical resin. The deterioration of characteristics becomes significant when

また本発明樹脂にあいては、光線透過率が15%以上を
示ざないと形状記憶性が発現せず、若干発現するとして
も,強度,伸度等の機械特性が低い樹脂となり実用に供
し得ない。すなわち、光線透過率は高融点結晶性セグメ
ントと低融点セグメントの相溶性の指標であって、光線
透過率が15%未満の場合、両セグメントのマクロ相分
離によって形状記憶性が発現しないものと推定ざれる。
In addition, the resin of the present invention will not exhibit shape memory unless it exhibits a light transmittance of 15% or more, and even if it does exhibit some shape memory, it will be a resin with low mechanical properties such as strength and elongation and cannot be put to practical use. I don't get it. In other words, the light transmittance is an index of compatibility between the high melting point crystalline segment and the low melting point segment, and if the light transmittance is less than 15%, it is assumed that shape memory does not occur due to macro phase separation of both segments. Zareru.

このため良好な形状記憶性を1qるための光線透過率は
15%以上、好ましくは25%以上が必要となるのであ
る。
Therefore, in order to obtain good shape memory properties, the light transmittance needs to be 15% or more, preferably 25% or more.

更に本発明樹脂は、融解熱がQ,5ca+ 79,好ま
しくは2.cal /9以上を示ざないと、形状記憶性
が発現しない。すなわち、高融点結晶性セグメントと低
融点セグメントのブロック共重合体は融解熱が0. 5
Cal 79に満たないと、単なるエラストマもしくは
ソフトポリマに過ぎず、形状記憶性を持たないか、持っ
たとしても極めて不十分なものとなり、高温時において
付与した成形体と異なる形状を温度を下げた時に保持す
る能力が極めて低くなる。
Furthermore, the resin of the present invention has a heat of fusion of Q.5ca+79, preferably 2.5ca+. Unless cal/9 or more is exhibited, shape memory properties will not be exhibited. That is, a block copolymer of a high melting point crystalline segment and a low melting point segment has a heat of fusion of 0. 5
If the Cal value is less than 79, the material is just an elastomer or a soft polymer, and it has no shape memory, or even if it does, it is extremely insufficient, and the shape that differs from that of the molded product at high temperatures can be achieved by lowering the temperature. Sometimes the ability to hold is extremely low.

本発明樹脂の光線透過率および融解熱は次のように測定
ざれる。
The light transmittance and heat of fusion of the resin of the present invention are measured as follows.

光線透過率(%): ポリマから切出した約1m厚みのサンプルをメトラ−社
製ホットステージFP−52にセットし、スライドグラ
スの厚み(0.8m>まで溶融プレスした俊、240℃
で3分間溶融した状態で,日本科学エンジニアリング社
製フォトセルを装着した50倍率の光学顕微鏡(日本光
学社製)を用いて光線透過率(%)を測定する。
Light transmittance (%): A sample approximately 1 m thick cut out from a polymer was set on a Mettler Hot Stage FP-52, and melt-pressed at 240°C until the thickness of the glass slide was 0.8 m.
After melting for 3 minutes, the light transmittance (%) is measured using a 50x optical microscope (manufactured by Nippon Kogaku Co., Ltd.) equipped with a photocell manufactured by Nihon Kagaku Engineering Co., Ltd.

なお、基準測定値としてスライドグラスの光線透過率を
100%として、光源変動などの外因を補正する。
Note that the light transmittance of the slide glass is set as 100% as a reference measurement value, and external causes such as light source fluctuations are corrected.

融解熱(cat/9) ; デュポン社製熱分析システム1091に従い、0℃〜6
5℃の温度域で発現する融解ピークの融解熱を測定する
Heat of fusion (cat/9); according to DuPont thermal analysis system 1091, 0°C to 6
Measure the heat of fusion of the melting peak that occurs in a temperature range of 5°C.

次に、本発明樹脂の製法例について説明する。Next, an example of a method for producing the resin of the present invention will be explained.

すなわら、本発明の形状記憶性樹脂は、PBTを主体と
する高融点結晶性セグメントとPEGを主体とする低融
点セグメントとのブロック共重合体において、低融点セ
グメントの共重合比率、光線透過率および融解熱を特定
範囲とする以外は、該ブロック共重合体の製法として従
来公知の方法が採用ざれる。
In other words, the shape memory resin of the present invention is a block copolymer of a high melting point crystalline segment mainly composed of PBT and a low melting point segment mainly composed of PEG, and the copolymerization ratio of the low melting point segment, the light transmission Conventionally known methods can be used to produce the block copolymer, except that the ratio and heat of fusion are within specific ranges.

例えば、テレフタル酸の低級アルキルエステル,過剰量
の1,4−ブタンジオール,およびPEGを触媒の存在
下に加熱してエステル交換反応し、得られる生成物を重
縮合する方法がある。またテレフタル酸,過剰量の1,
4−ブタンジオール,およびPEGを触媒の存在下に加
熱してエステル化反応し、次に重縮合する方法、あるい
は上記の反応において、PEGを重縮合反応開始直前に
添加し、重縮合する方法がある。ざらには、予めPBT
を作っておき、それにPEGを添加してエステル交換反
応させる方法などがある。
For example, there is a method in which a lower alkyl ester of terephthalic acid, an excess amount of 1,4-butanediol, and PEG are heated in the presence of a catalyst to undergo a transesterification reaction, and the resulting product is polycondensed. Also terephthalic acid, an excess of 1,
A method in which 4-butanediol and PEG are heated in the presence of a catalyst to undergo an esterification reaction and then polycondensed, or a method in which PEG is added immediately before the start of the polycondensation reaction in the above reaction and polycondensation is carried out. be. PBT in advance
There is a method of preparing PEG in advance and adding PEG thereto to carry out a transesterification reaction.

この際、上記ブロック共重合体の光線透過率および融解
熱を所定範囲とするための好例としては、低融点セグメ
ントの共重合比率やPEGの数平均分子量を適切に選定
することである。
At this time, a good example of setting the light transmittance and heat of fusion of the block copolymer within a predetermined range is to appropriately select the copolymerization ratio of the low melting point segment and the number average molecular weight of PEG.

すなわち、光線透過率については次の点に留意する必要
がある。PEG鎖艮が長い程,高融点結晶性セグメント
( PBTが主成分》との相溶性が低下し、PEG数平
均分子量が大きいときにはPEG共重合量が多い領域し
か相溶化しない。従って、光線透過率を本発明の範囲と
するためにはPEGの数平均分子量と共重合量とは、 但し、PEG共重合量は重聞% を満足させることが好ましい。ざらに好ましくはPEG
の数平均分子量−200 [PEG共重合11≦−60
00である。
That is, regarding the light transmittance, it is necessary to pay attention to the following points. The longer the PEG chain, the lower the compatibility with the high melting point crystalline segment (mainly composed of PBT), and when the PEG number average molecular weight is large, only the region with a large amount of PEG copolymerization becomes compatible. Therefore, the light transmittance decreases. In order to keep the number average molecular weight and copolymerization amount of PEG within the scope of the present invention, it is preferable that the PEG copolymerization amount satisfies the following.
Number average molecular weight of -200 [PEG copolymerization 11≦-60
It is 00.

また融解熱を本発明の範囲とするためには、PEG鎖が
結晶化するのに必要な鎖長および共重合量を確保する必
要がある。例えば、PEGの数平均分子量が小さいとき
は低融点セグメント中のPEG成分を多目とするため、 PEGの数平均分子量+25 [PEG共重合量]≧3
300 但し、PEG共重合置は重量% を満足させることが好ましい。ざらに好ましくはPEG
の数平均分子量+25 [PEG共重合量]≧3500 である。
Further, in order to keep the heat of fusion within the range of the present invention, it is necessary to ensure the chain length and copolymerization amount necessary for crystallization of the PEG chain. For example, when the number average molecular weight of PEG is small, the PEG component in the low melting point segment is increased, so the number average molecular weight of PEG + 25 [PEG copolymerization amount] ≧ 3
300 However, it is preferable that the PEG copolymerization satisfy the weight %. Preferably PEG
The number average molecular weight of +25 [PEG copolymerization amount]≧3500.

また、上記テレフタル酸成分や1、4−ブタンジオール
成分の一部として、他のジカルボン酸とその低級アルキ
ルエステル,およびグリコール、あるいは他のポリアル
キレングリコールとして前述した、芳香族ジカルボン酸
、脂肪族ジカルボン酸、脂環族ジカルボン酸、およびこ
れらの低級アルキルエステル、炭素数2〜12の脂肪族
ジオール、脂環族ジオール、ビスフェノールAのエチレ
ンオキサイド付加物、あるいはポリテトラメチレングリ
コールのみならず、ポリカルボン酸や多官能ヒドロキシ
化合物、オキシ酸などを共重合させることができる。特
に、多官能成分は高粘度化成分として有効に作用し、そ
の際の共重合量は3モル%以下が好ましい。かかる多官
能成分には、トリメリット酸、トリメシン酸、ビロメリ
ット酸、ペンゾフェノンテトラカノレボン酸、ブタンテ
トラカノレボン酸、グリセリン、ペンタエリスリトール
およびこれらのエステル、酸無水物などを挙げることが
できる。
In addition, as part of the terephthalic acid component and 1,4-butanediol component, other dicarboxylic acids and their lower alkyl esters and glycols, or other polyalkylene glycols such as aromatic dicarboxylic acids, aliphatic dicarboxylic acids, etc. Acids, alicyclic dicarboxylic acids, lower alkyl esters thereof, aliphatic diols having 2 to 12 carbon atoms, alicyclic diols, ethylene oxide adducts of bisphenol A, or polytetramethylene glycol, as well as polycarboxylic acids. , polyfunctional hydroxy compounds, oxyacids, etc. can be copolymerized. In particular, the polyfunctional component acts effectively as a viscosity increasing component, and the amount of copolymerization in this case is preferably 3 mol % or less. Such polyfunctional components can include trimellitic acid, trimesic acid, biromellitic acid, penzophenonetetracanolebonic acid, butanetetracanolebonic acid, glycerin, pentaerythritol and their esters, acid anhydrides, and the like. .

ざらに上記エステル交換反応またはエステル化反応と重
縮合反応においては、好ましい触媒例としてチタン化合
物、特にテトラブチルチタネート,テトライソプロピル
チタネートなどの如きテトラアルキルチタネート、シュ
ウ酸チタンカリの如きシュウ酸チタン金属塩等が挙げら
れる。
In general, in the above-mentioned transesterification reaction or esterification reaction and polycondensation reaction, preferred catalysts include titanium compounds, particularly tetraalkyl titanates such as tetrabutyl titanate and tetraisopropyl titanate, titanium oxalate metal salts such as potassium titanium oxalate, etc. can be mentioned.

ざらにまた好ましい他の触媒例としては、ジブチルスズ
オキサイド,ジブチルスズラウレート,モノブチルスズ
オキサイドの如き有機スズ化合物、その他鉛、マグネシ
ウム、リチウム、マンガン等金属の弱酸塩等が挙げられ
る。
Other preferred catalysts include organic tin compounds such as dibutyltin oxide, dibutyltin laurate, and monobutyltin oxide, and weak acid salts of metals such as lead, magnesium, lithium, and manganese.

上記のエステル交換反応またはエステル化反応は、約1
50〜260℃の温度で常圧あるいは若干の減圧下で行
なわれ、その後引続き行なう重縮合反応は、減圧下約2
00〜300℃の温度で行なうのが一般的である。ざら
に必要に応じて同相重合を組合せて目的の該共重合体と
することもできる。
The above transesterification or esterification reaction is carried out for approximately 1
The polycondensation reaction is carried out at a temperature of 50 to 260°C under normal pressure or slightly reduced pressure, and the subsequent polycondensation reaction is carried out at a temperature of about 2
It is generally carried out at a temperature of 00 to 300°C. The desired copolymer can also be obtained by combining in-phase polymerization as necessary.

上記ブロック共重合体には、その重合時もしくは重合後
成形前において、酸化防止剤、熱分解防止剤、紫外線吸
収剤などの耐熱耐光性の安定剤を含有させることができ
る。この耐熱安定剤としては、例えば,4.4’−ビス
(2,6−ジ第3プチルフェノール) 、1,3.5−
トリメチル−2.4.6−トリス(3,5−ジ第3ブチ
ルー4−ヒドロキシベンジル〉ベンゼン、テトラキス[
メチレン−3(3.5−ジ第3ブチルー4−ヒドロキシ
フェニル)プロビオネート1メタン、N,N−へキサメ
チレンービス(3,5−ジ第3ブチルー4−ヒドロキシ
ヒド口桂皮酸アミド)など各種ヒンダードフェノール類
、N,N’−ビス(β一ナフチル)一p−フェニレンジ
アミンヤ4,4′一ビス(4−α,α′−ジメチルベン
ジル)ジフェニルアミンの如き芳香族アミン類、ジラウ
リルチオジピ口ピオーネート等の如きイオウ化合物やリ
ン化合物、アルカリ土類金屈酸化物などを挙げることが
できる。また耐光安定剤としては置換ペンゾフエノン、
ペンゾトリアゾール類や、ビス(2,2,6,6,−テ
トラメチル−4−ピベリジン)セバケートヤ4−ペンゾ
イルオキシ−2.2,6,6,−テトラメチルピベリジ
ンなどのピペリジン化合物を挙げることができる。
The above-mentioned block copolymer can contain heat-resistant and light-resistant stabilizers such as antioxidants, thermal decomposition inhibitors, and ultraviolet absorbers during polymerization or after polymerization and before molding. Examples of the heat stabilizer include 4,4'-bis(2,6-di-tert-butylphenol), 1,3,5-
Trimethyl-2.4.6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, tetrakis[
Methylene-3(3,5-di-tert-butyl-4-hydroxyphenyl)probionate 1methane, N,N-hexamethylene-bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamic acid amide), etc. Various hindered phenols, aromatic amines such as N,N'-bis(β-naphthyl)-p-phenylenediamine, 4,4'-bis(4-α,α'-dimethylbenzyl)diphenylamine, dilauryl Examples include sulfur compounds such as thiodipioneate, phosphorus compounds, alkaline earth metal oxides, and the like. In addition, substituted penzophenone,
Examples include penzotriazoles and piperidine compounds such as bis(2,2,6,6,-tetramethyl-4-piveridine) sebacateya 4-penzoyloxy-2,2,6,6,-tetramethylpiveridine. be able to.

また該ブロック共重合体には耐加水分解改良剤、着色剤
(顔料.染料)、帯電防止剤、導電剤、難燃剤、補強剤
、充填材、滑剤、離型剤、核剤、可塑剤、接着助剤、粘
着剤などを任意に含有せしめることもできる。
The block copolymer also contains hydrolysis resistance improvers, colorants (pigments, dyes), antistatic agents, conductive agents, flame retardants, reinforcing agents, fillers, lubricants, mold release agents, nucleating agents, plasticizers, It is also possible to optionally contain adhesion aids, adhesives, and the like.

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

本例中の「部」および「%」は、「重量部」および「重
量%」である。
"Parts" and "%" in this example are "parts by weight" and "% by weight."

実施例1 理論計算上、PBT/PEGボリマ組成が35/65%
になるようにテレフタル酸ジメチル34.9部、数平均
分子吊3000のPEG62.3部および1,4−ブタ
ンジオール24.3部(テレフタル酸ジメチルに対し、
1.5モル倍)を触媒のテトラブチルチタネート0.1
5部とともに精留塔、攪拌機を備えた反応缶に仕込み、
約210’Cで2時間加熱して理論メタノール量の95
%のメタノールを系外に留去させた。この反応生成物を
重合缶に移行した俊、“イルガノックス”1010  
0.2部を添加し、系内を245℃に昇温すると共に、
60分かけて常圧から約0. 2mtl(Jの減圧とし
、その条件下で4時間重縮合を行ったところ透明な粘稠
ポリマが得られた。約3m中のガットとして重合缶から
吐出し、エアブローの空気冷却した後、カッティングし
チップ化した。得られたボリマの特性値を表1に示す。
Example 1 According to theoretical calculation, PBT/PEG bolamer composition is 35/65%
34.9 parts of dimethyl terephthalate, 62.3 parts of PEG with a number average molecular weight of 3000, and 24.3 parts of 1,4-butanediol (relative to dimethyl terephthalate,
1.5 mole times) of the catalyst tetrabutyl titanate 0.1
5 parts together with a rectification column and a reaction vessel equipped with a stirrer,
Heating at about 210'C for 2 hours to reduce the theoretical amount of methanol to 95%.
% of methanol was distilled out of the system. Shun transferred this reaction product to a polymerization tank, “Irganox” 1010
Add 0.2 parts and raise the temperature in the system to 245 ° C.
It took 60 minutes to reduce the pressure from normal pressure to about 0. Polycondensation was carried out under the reduced pressure of 2 mtl (J) for 4 hours, and a transparent viscous polymer was obtained. It was discharged from the polymerization can as a gut of about 3 m, and after cooling with air blow, it was cut. The characteristic values of the obtained volima are shown in Table 1.

次に、上記ポリマの形状記憶性を検証するため、該ボリ
マを200℃において、長さ10cm,直径2!M1の
直線ガット状に溶融成形した。このものを約80℃の熱
風中で変形させた後、そのまま室温にて放冷した。ガッ
トを変形した状態で室温下数日間以上放置し、このガッ
トを再び80℃の熱風中に置いたところ、本実施例によ
るポリマは瞬時に成形時の形状に復帰することを確認し
、優れた形状記憶性を有することが検証できた。
Next, in order to verify the shape memory property of the above polymer, the above polymer was heated to 200°C and made into a length of 10 cm and a diameter of 2! It was melt-molded into a M1 straight gut shape. This product was deformed in hot air at about 80°C, and then left to cool at room temperature. When the gut was left in a deformed state at room temperature for several days or more, and then placed in hot air at 80°C again, it was confirmed that the polymer according to this example instantly returned to the shape when molded. It was verified that it had shape memory properties.

実施例2 理論計算上、PBT/PEGポリマ組成が20/80%
になるように、テレフタルM17.0部、1,4−ブタ
ンジオール14.7部(テレフタル酸に対し1.6モル
倍)を触媒のテトラブチルチタネート0.08部、モノ
プチル錫オキサイド0.06部とともに精留塔、攪拌機
を有する反応缶に仕込み、160℃〜約230℃まで徐
々に昇温しながらエステル化反応せしめ、生成する水、
テトラヒド口フランを系外に留去しつつエステル化反応
を4時間行ない、反応を完結させた。次に数平均分子量
7000のPEG78.5部を予め仕込み、昇温してあ
る重合缶へ該エステル反応生成物を移行した後、テトラ
ブチルチタネート0.10部、“イルガノックス”10
10  0. 20部を添加し、系内を245゜Cに昇
温すると共に、50分かけて常圧から約0.2MHgま
で減圧にし、その条件下で4時間重縮合したところほぼ
透明な粘稠ポリマが得られ、実施例1と同様にチップ化
した。
Example 2 According to theoretical calculation, PBT/PEG polymer composition is 20/80%
17.0 parts of terephthal M, 14.7 parts of 1,4-butanediol (1.6 parts by mole relative to terephthalic acid), 0.08 parts of tetrabutyl titanate as a catalyst, and 0.06 parts of monobutyl tin oxide. The water is then charged into a reaction vessel equipped with a rectification column and a stirrer, and the temperature is gradually raised from 160°C to about 230°C to cause an esterification reaction, resulting in water,
The esterification reaction was carried out for 4 hours while the tetrahydrofuran was distilled out of the system to complete the reaction. Next, 78.5 parts of PEG with a number average molecular weight of 7000 was charged in advance, and the ester reaction product was transferred to a heated polymerization reactor, followed by 0.10 parts of tetrabutyl titanate and 10 parts of "Irganox".
10 0. 20 parts were added, the temperature in the system was raised to 245°C, the pressure was reduced from normal pressure to about 0.2MHg over 50 minutes, and when polycondensation was carried out under these conditions for 4 hours, an almost transparent viscous polymer was obtained. This was obtained and made into chips in the same manner as in Example 1.

得られたボリマの特性値を表1に示す。Table 1 shows the characteristic values of the obtained volima.

次に、上記ポリマの形状記憶性を実施例1と同様に検証
したところ、本実施例によるボリマも瞬時に成形時の形
状に復帰し、充分な形状記憶性を有することが確認でき
た。
Next, the shape memory property of the above polymer was verified in the same manner as in Example 1, and it was confirmed that the polymer according to this example also instantly returned to the shape at the time of molding, and had sufficient shape memory property.

実施例3、比較例1〜4 理論計算上、PBT/PEG (数平均分子吊1000
0)のボリマ組成を10/90%になるように原料を仕
込んだ以外は、実施例2と同様に行ない表1の特性を持
ったポリマを得た。また、比較例として、PEGの数平
均分子量あるいはPBT/PEGのボリマ組成を変えて
、実施例2と同様にしてボリマを得た。これらの特性値
を表1にまとめる。
Example 3, Comparative Examples 1 to 4 Based on theoretical calculations, PBT/PEG (number average molecular weight 1000
A polymer having the properties shown in Table 1 was obtained in the same manner as in Example 2, except that the raw materials were charged so that the polymer composition of 0) was 10/90%. Further, as a comparative example, a bolamer was obtained in the same manner as in Example 2, except that the number average molecular weight of PEG or the bolamer composition of PBT/PEG was changed. These characteristic values are summarized in Table 1.

次に、上記ポリマの形状記憶性を実施例1と同様に検証
したところ、本実施例3によるボリマは瞬時に成形時の
形状に復帰し、優れた形状記憶性を有することが確認で
きた。
Next, the shape memory property of the above polymer was verified in the same manner as in Example 1, and it was confirmed that the polymer according to Example 3 instantly returned to the shape at the time of molding, and had excellent shape memory property.

一方、比較例1〜4のポリマは、形状記憶性が殆ど発現
しなかった。
On the other hand, the polymers of Comparative Examples 1 to 4 exhibited almost no shape memory.

(以下、余白) [発明の効果] 本発明の形状記憶性樹脂は優れた形状記憶性を有し、従
来公知の形状記憶性樹脂と同様,加温によって形状回復
性が発現するのみならず、水分との接触で,その機能性
が現われるという特異的な性能を有するものである。
(Hereinafter, blank space) [Effects of the Invention] The shape memory resin of the present invention has excellent shape memory properties, and like conventional shape memory resins, it not only exhibits shape recovery properties when heated, but also exhibits shape recovery properties when heated. It has a unique ability to reveal its functionality when it comes into contact with moisture.

また、本発明の樹脂は熱可塑性であり,成形性にも優れ
ているため、成形用樹脂、エラストマ等として,例えば
エレクトロニクス、メディカル、自動車関連部品、建築
分野等において好適に利用できる。ざらに、繊維、布帛
、不織布、およびシート等の分野においても、優れた性
能を発揮することができる。
Furthermore, since the resin of the present invention is thermoplastic and has excellent moldability, it can be suitably used as a molding resin, elastomer, etc., for example, in the fields of electronics, medical, automobile-related parts, construction, etc. In addition, it can exhibit excellent performance in the fields of fibers, fabrics, nonwoven fabrics, sheets, etc.

Claims (1)

【特許請求の範囲】[Claims] ポリブチレンテレフタレートを主成分とする高融点結晶
性セグメントとポリエチレングリコールを主成分とする
低融点セグメントで構成されるポリエステル・ポリエー
テルブロック共重合体であって、該低融点セグメントの
共重合量が該ブロック共重合体に対し60重量%〜95
重量%であり、かつ溶融状態での光線透過率が15%以
上、示差走査熱量計において0℃〜65℃の温度域で発
現する融解ピークの融解熱が0.5cal/g以上であ
ることを特徴とする形状記憶性樹脂。
A polyester/polyether block copolymer composed of a high melting point crystalline segment mainly composed of polybutylene terephthalate and a low melting point segment mainly composed of polyethylene glycol, wherein the copolymerized amount of the low melting point segment is 60% to 95% by weight based on block copolymer
% by weight, and the light transmittance in the molten state is 15% or more, and the heat of fusion of the melting peak that occurs in the temperature range of 0 ° C to 65 ° C in a differential scanning calorimeter is 0.5 cal / g or more. Characteristic shape memory resin.
JP6323989A 1989-03-14 1989-03-14 Shape memory resin Pending JPH02240135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6323989A JPH02240135A (en) 1989-03-14 1989-03-14 Shape memory resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6323989A JPH02240135A (en) 1989-03-14 1989-03-14 Shape memory resin

Publications (1)

Publication Number Publication Date
JPH02240135A true JPH02240135A (en) 1990-09-25

Family

ID=13223471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6323989A Pending JPH02240135A (en) 1989-03-14 1989-03-14 Shape memory resin

Country Status (1)

Country Link
JP (1) JPH02240135A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457813A (en) * 1990-06-27 1992-02-25 Nippon Ester Co Ltd Polyester resin having shape memory capacity
WO2001051450A3 (en) * 2000-01-14 2003-07-10 Bp Corp North America Inc Synthesis and use of dimethyl-1,5-naphthalenedicarboxylates and intermediates therefrom
WO2004090042A1 (en) * 2003-04-10 2004-10-21 Mnemoscience Gmbh Blends with shape memory characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457813A (en) * 1990-06-27 1992-02-25 Nippon Ester Co Ltd Polyester resin having shape memory capacity
WO2001051450A3 (en) * 2000-01-14 2003-07-10 Bp Corp North America Inc Synthesis and use of dimethyl-1,5-naphthalenedicarboxylates and intermediates therefrom
WO2004090042A1 (en) * 2003-04-10 2004-10-21 Mnemoscience Gmbh Blends with shape memory characteristics

Similar Documents

Publication Publication Date Title
KR101684234B1 (en) Copolymerized Polyester for Low-melting Binder with Excellent Form Stability and Polyester Binder Fiber Using Same
JPH02240135A (en) Shape memory resin
JPH04264156A (en) Polyester-polyester block copolymer composition
JPH0340732B2 (en)
JPS62292833A (en) Polyester polycarbonate elastomer
KR20160029291A (en) Copolymerized Polyester for Low-melting Binder with Excellent Touch and Color and Polyester Binder Fiber Using Same
JPH02138336A (en) Aromatic polyester/polyorganosiloxane block copolymer
JPH02123129A (en) Shape memorizing resin
JPS59152925A (en) Copolymerization ester of polyethylene terephthalate and bis(4-beta hydroxyethoxyphenyl) sulfone
JP2878065B2 (en) Polyester block copolymer
KR20180062606A (en) Flame-retardant Low Melting Polyester Mono Fiber And The Fiber Assembly With Excellent Flexural Strength And Flexural Elasticity Using The Same
JP2002265611A (en) Polyester block copolymer
JP2007023132A (en) Liquid crystalline polyester
JP3121865B2 (en) Method for producing aromatic polyester
JP3268079B2 (en) Polyetherester elastomer and composition thereof
JP2020147744A (en) Polyalkylene glycol copolymer polyester
JP2000290835A (en) Elastic yarn
JPS63210127A (en) Aromatic copolyester
JPH0245645B2 (en)
JPS63235385A (en) Polyester adhesive
KR20170110064A (en) Polyester Fiber with Excellent Touch and Color
JP2586080B2 (en) Copolyester fiber and film
JP4694661B2 (en) Polyester type block copolymer
JPS6256896B2 (en)
JP2004099655A (en) Polyester