JPH02239200A - Diffusion joining method for single crystal molybdenum - Google Patents

Diffusion joining method for single crystal molybdenum

Info

Publication number
JPH02239200A
JPH02239200A JP5611289A JP5611289A JPH02239200A JP H02239200 A JPH02239200 A JP H02239200A JP 5611289 A JP5611289 A JP 5611289A JP 5611289 A JP5611289 A JP 5611289A JP H02239200 A JPH02239200 A JP H02239200A
Authority
JP
Japan
Prior art keywords
bonding
molybdenum
joint
single crystal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5611289A
Other languages
Japanese (ja)
Other versions
JPH0579639B2 (en
Inventor
Osamu Ohashi
修 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP5611289A priority Critical patent/JPH02239200A/en
Publication of JPH02239200A publication Critical patent/JPH02239200A/en
Publication of JPH0579639B2 publication Critical patent/JPH0579639B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obviate the embrittlement arising from grain boundaries and to allow direct joining with improved joining strength by enhancing the matching property of the atom configuration at the joint boundary at the time of subjecting an Mo (alloy) single crystal material to diffusion joining. CONSTITUTION:The single crystal material of Mo (alloy) is pressurized and heated and is thereby subjected to the diffusion joining in a nonoxidative atmosphere. An angle of inclination and/or the twist angle around the axis perpendicular to the crystal plane of the joint surface is applied. The atom configuration of the opposite surfaces of the joint boundary is controlled to a reflection relation, by which the matching property of the atom configuration at the joint boundary is enhanced and the direct joining is executed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、純モリブデンまたはモリブデン合金単結晶
の拡散接合方法に関するものである。さらに詳しくは、
この発明は、接合界面での原子配列の整合性を高めるこ
とにより、これまで不可能であったモリブデンまたはそ
の合金の直接的接合を可能とした新しい拡散接合方法に
関するものである. (従来の技術とその課題) モリブデンおよびその合金は超高温耐熱材料として注目
されているものであるが、結晶粒界のもろさからその用
途の開発や実用化が大きく制約されている. このため長年にわたって結晶粒界脆性のW構解明や脆性
改善の努力が多くの研究者によって進められてきている
が、依然として粒界脆性の現実的な改善策は実を結んで
いない. このような背景から、従来の多結晶に代わって、粒界が
存在しないモリブデン単結晶が注目されてきている.単
結晶は多結晶とは異なり、高温で長時間使用したときで
も再結晶化や粗粒化などの金相組織的な変化が起きず、
さらに、粒界が存在しないなめに比較的低い温度におい
ても充分な延性を得ることができるという特長を有して
いる.このようなモリブデンまたはその合金の単結晶の
製造方法としては、高真空中での電子ビーム浮遊帯域精
製法やひずみ焼鈍法が従来より知られているが、製造で
きる単結晶の寸法および形状には制約がある.このため
、加工材の高温焼鈍後の再結晶粒成長に着目した2次再
結晶法の開発が進められ、現在においては、任意形状の
単結晶を得ることができるまでになっている. この製造法の開発とともにモリブデンまたはその合金の
単結晶の用途として、タービンブレード、レーザーミラ
ー、電子材料基板、X線ターゲット、核融合炉用ブラン
ゲットなどへの応用ら積極的に考えられてきている. しかしながら、モリブデンまたはその合金単結晶につい
ては、その実用化のために克服しなければならない課題
が依然として残されているのが実状である.その課題の
一つは接合技術が確立していないことである。たとえば
、すでにこれまでに単結晶材料の開発とともに溶融溶接
、すなわち、単結晶材料を溶融して接合する方法が報告
されているが、これまでに試みられているのは2枚の板
を突き合わせて溶接したものではなく、単結晶材料の板
の中央部を電子ビームにより再溶融したものだけである
。再結晶化はみられないものの、溶接部に多数の気孔が
発生することが報告されている。しかしながら、2枚の
板を突き合わせて溶融宕袷した研究はまだ実施されてお
らず、この溶融溶接法は実用技術とはなっていない.ま
た、ロウ接も試みられており、モリブデン単結晶材料を
Mo−40%R uのロウ材を用いてロウ接する方法が
報告されているが、ロウ接部は硬化し、引張の際はその
硬化部で破断してしまうのが現状である. 一方、モリブデン以外の単結晶材料の接合については、
拡散接合法が知られてる.すなわち、Ni基耐熱単結晶
材料について、格子定数の差が3%以内で、接合面での
方位差の和が5度以内で接合するもので、拡散接合する
際に接合部にロウ材を挿入することを特徴としている.
ロウ接と拡散接合を複合化した液相拡散接合法(TLP
法)と呼ばれるものである.しかしながら、この方法は
ロウ材を使用するものであり、組立接合した製品を環境
温度の高い条件下で使用することができないという欠点
がある. (課題を解決するための手段) 以上のように、単結晶モリブデンまたはその合金の接合
技術が未確立であるという現状に鑑みてこの発明はなさ
れたものであり、接合界面の強度が大きく、しかもロウ
材などの第3金属を使用することなくモリブデンまたは
その合金単結晶の直接的接合を可能とする方法をこの発
明は提供するものである. すなわちこの発明は、モリブデンまたはその合金の単結
晶材料を非酸化性雰囲気中において加圧・加熱して拡散
接合するにあたり、接合面の結晶方位関係を制御して直
接的に接合することを特徴とする単結晶モリブデンの拡
散接合方法を提供する. この方法においては、接合界面での原子配列の整合性を
高めるために単結晶の結晶方位関係を制シ 御するが、その手段としては、接合面において、傾斜角
および/まなは捻り角を与える方法がある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for diffusion bonding pure molybdenum or molybdenum alloy single crystals. For more details,
This invention relates to a new diffusion bonding method that enables direct bonding of molybdenum or its alloys, which was previously impossible, by improving the consistency of the atomic arrangement at the bonding interface. (Conventional technology and its challenges) Molybdenum and its alloys are attracting attention as ultra-high temperature heat-resistant materials, but the development and practical application of their applications are severely restricted due to the fragility of their grain boundaries. For this reason, many researchers have made efforts to elucidate the W structure of grain boundary embrittlement and improve brittleness for many years, but no practical measures to improve grain boundary embrittlement have yet borne fruit. Against this background, molybdenum single crystals, which do not have grain boundaries, are attracting attention as an alternative to conventional polycrystals. Unlike polycrystals, single crystals do not undergo structural changes in the metal phase such as recrystallization or coarsening even when used at high temperatures for long periods of time.
Furthermore, because there are no grain boundaries, sufficient ductility can be obtained even at relatively low temperatures. Conventionally known methods for producing single crystals of molybdenum or its alloys include the electron beam floating zone refining method in high vacuum and the strain annealing method, but the dimensions and shapes of the single crystals that can be produced are limited. There are restrictions. For this reason, the development of a secondary recrystallization method focusing on the growth of recrystallized grains after high-temperature annealing of processed materials has progressed, and it has now become possible to obtain single crystals of arbitrary shapes. Along with the development of this production method, applications for single crystal molybdenum or its alloys have been actively considered, including applications in turbine blades, laser mirrors, electronic material substrates, X-ray targets, blankets for nuclear fusion reactors, etc. .. However, the reality is that there are still issues that need to be overcome in order to put molybdenum or its alloy single crystal into practical use. One of the challenges is that bonding technology has not been established. For example, along with the development of single-crystal materials, fusion welding, a method of melting and joining single-crystal materials, has already been reported, but the only method that has been attempted so far is to butt two plates together. It is not welded, but simply the center part of a single crystal plate is remelted using an electron beam. Although no recrystallization is observed, it has been reported that many pores occur in the weld. However, no research has yet been carried out in which two plates are butted together and fused together, and this fusion welding method has not become a practical technology. Brazing has also been attempted, and a method of brazing molybdenum single crystal materials using a Mo-40% Ru brazing material has been reported, but the brazing part hardens and hardens during tension. The current situation is that it breaks at some parts. On the other hand, regarding bonding of single crystal materials other than molybdenum,
Diffusion bonding method is known. In other words, Ni-based heat-resistant single crystal materials are bonded with a difference in lattice constant of 3% or less and a sum of orientation differences at the bonding surface of 5 degrees or less, and a brazing material is inserted into the joint during diffusion bonding. It is characterized by
Liquid phase diffusion bonding (TLP) is a combination of soldering and diffusion bonding.
law). However, this method uses brazing material, and has the disadvantage that assembled and bonded products cannot be used under conditions of high environmental temperature. (Means for Solving the Problems) As described above, this invention was made in view of the current situation that bonding technology for single-crystal molybdenum or its alloys has not yet been established. The present invention provides a method that enables direct bonding of single crystals of molybdenum or its alloys without using a third metal such as a brazing material. That is, the present invention is characterized in that when a single crystal material of molybdenum or its alloy is diffusion bonded by applying pressure and heating in a non-oxidizing atmosphere, the crystal orientation relationship of the bonding surface is controlled and the bonding is directly carried out. This paper provides a diffusion bonding method for single-crystal molybdenum. In this method, the crystal orientation of the single crystal is controlled to improve the consistency of the atomic arrangement at the bonding interface. There is a way.

この場合、傾斜角と接合面の結晶に垂直な軸の回りの捻
り角度との和を10度以内に制御して接触させ、拡散接
合することが好ましく、また、上記10度以内よりら大
きい場合には、接合する界面で被接合物の原子が相互に
対応するように拡散接合することが好ましい. 接合界面の双方の原子の配列が、接合面に対して鏡映関
係となる位置で接合することもこの発明の方法の態様で
ある。
In this case, it is preferable to control the sum of the inclination angle and the twist angle around the axis perpendicular to the crystal of the bonding surface to within 10 degrees for diffusion bonding, and if it is larger than the above 10 degrees, For this purpose, it is preferable to perform diffusion bonding so that the atoms of the objects to be bonded correspond to each other at the interface. It is also an aspect of the method of the present invention to bond at a position where the arrangement of atoms on both sides of the bonding interface is in a mirror relationship with the bonding surface.

これらのいずれの場合においても、接合界面に第3金属
を挿入することなく、単結晶材料を直接に拡散接合する
In any of these cases, the single crystal materials are directly diffusion bonded without inserting a third metal into the bonding interface.

この接合の方法は、接合した界面で十分な強さを発生さ
せるためには、被接合体の原子の接合界面での整合性を
高めることが有効であるとの知見に基づいている。
This bonding method is based on the finding that in order to generate sufficient strength at the bonded interface, it is effective to increase the consistency of the atoms of the objects to be bonded at the bonded interface.

たとえば第1図に示したように、接合する単結晶材料(
1)(2)の接合面において結晶面の傾斜角(α)を与
えることにより、接合継手の引張強さは母材の引張強か
に達する.また、第2図に示したように、結晶面に垂直
な軸の回りに単結晶材:fl(1)(2)を捻って捻り
角(β)を与えることにより、接合継手の引張強さは、
母材の引張り強さに達する。この傾斜角と捻り角は単独
に、または双方とも与えるようにしてもよい,この場合
、両者(α)(β)の和を10度以内とするのが好まし
い. もちろん、第3図に示したように、捻り角(β)が10
度を超える場合でも、界面で被接合物の原子同士が対応
する場合(対応原子:a》には、接合継手の引張強さは
母材の引張強さに達する.また、さらに第4図に示した
ように、接合界面が双晶界面(S)となるように接合し
てもよい。双晶界面(S)では、その界面において両側
の原子の配列が接合界面に対して鏡映関係になっており
、界面での整合性が高く、接合継手の引弦強さは母材の
引張強さに達する. なお、拡散接合にあたっては、接合面の表面処理、接合
時の温度、圧力、雰囲気等の条件について、あらかじめ
試験片を用いて再結晶化しない範囲のものを選択する。
For example, as shown in Figure 1, the single crystal material to be bonded (
1) By giving an inclination angle (α) of the crystal plane at the welding surface in (2), the tensile strength of the welded joint reaches the tensile strength of the base metal. In addition, as shown in Figure 2, by twisting the single crystal materials: fl(1) and (2) around the axis perpendicular to the crystal plane to give a torsion angle (β), the tensile strength of the bonded joint can be increased. teeth,
The tensile strength of the base material is reached. The angle of inclination and the angle of twist may be given individually or both. In this case, it is preferable that the sum of both (α) and (β) is within 10 degrees. Of course, as shown in Figure 3, the twist angle (β) is 10
If the atoms of the objects to be joined correspond to each other at the interface (corresponding atoms: a), the tensile strength of the welded joint reaches the tensile strength of the base material. As shown, the bonding interface may be a twin interface (S).At the twin interface (S), the atoms on both sides of the interface are arranged in a mirror relationship with the bonding interface. The consistency at the interface is high, and the tensile strength of the welded joint reaches the tensile strength of the base metal.In addition, in diffusion bonding, the surface treatment of the welding surface, the temperature, pressure, and atmosphere during welding are Regarding the conditions, select in advance a range that does not cause recrystallization using a test piece.

雰囲気については、モリブデン接合面が酸化されない非
酸化性雰囲気とする.(実施例) 以下この発明の実施例を説明する。
The atmosphere should be non-oxidizing so that the molybdenum bonding surface will not be oxidized. (Example) Examples of the present invention will be described below.

実施例1 2次再結晶法で作製した純モリブデンの単結晶板を使用
し、第5図に示したように試料(N0.1〜N06)を
採取した.また、この接合面(S)をX線ラウエ法によ
り結晶方位測定した。表1は、第5図で採取した接合試
料No. 1と接合試利Na 2の接合の結果を示した
ものであり、接合面の結晶方位を一致させて接合してい
る.実施例1は接合する面を機械加工して面粗さを約2
μmに仕上げ、そのあと電解研磨を行い表面加工層を取
り除いて拡散接合を行っている.接合部には再結晶はみ
られず,接合継手の引張強さは母材の引領強さに達した
. なお、機械加工後の電解研磨により表面加工層を取り除
いていない参考例1の場合には、接合部には再結晶の発
生がみられ、接合継手は機械加工中に破断し、その結合
強さを評価することは出来なかつな.モリブデンを接合
する場合、このように接合部に再結晶が発生するとその
接合強さが著しく低下する。これはモリブデン特有の現
象である。
Example 1 Using a pure molybdenum single crystal plate prepared by the secondary recrystallization method, samples (N0.1 to N06) were collected as shown in FIG. Further, the crystal orientation of this joint surface (S) was measured by the X-ray Laue method. Table 1 shows the joint sample No. taken in FIG. This figure shows the results of joining Sample No. 1 and Joint Test Sample Na No. 2, in which the crystal orientations of the joining surfaces are made to match. In Example 1, the surfaces to be joined are machined to reduce the surface roughness to approximately 2.
After finishing to a micrometer, electrolytic polishing is performed to remove the surface treatment layer and diffusion bonding is performed. No recrystallization was observed in the joint, and the tensile strength of the joint reached the tensile strength of the base metal. In addition, in the case of Reference Example 1, in which the surface treated layer was not removed by electrolytic polishing after machining, recrystallization was observed in the joint, and the joint broke during machining, resulting in a decrease in the bond strength. It is not possible to evaluate. When bonding molybdenum, if recrystallization occurs in the bonded portion, the bonding strength will be significantly reduced. This is a phenomenon unique to molybdenum.

また、表2には銅の単結晶を用いて結晶方位を一致させ
て接合した場合の結果を示している.この接合条件では
銅は変形して、接合継手は再結晶している.しかし、接
合継手の引張強さは母材の引張強さに達している。
Furthermore, Table 2 shows the results of bonding using copper single crystals with the same crystal orientation. Under these bonding conditions, the copper is deformed and the bonded joint is recrystallized. However, the tensile strength of the bonded joint reaches the tensile strength of the base material.

実施例2〜5 表3は、第6図に示したように接合面での結晶方位<1
21>を回転軸として回転させて接合面を接触させ、モ
リブデン単結晶を拡散接合した場合のその捻り角と接合
結果との関係を示したものである。
Examples 2 to 5 Table 3 shows that the crystal orientation at the bonding surface is <1 as shown in FIG.
21> as a rotation axis to bring the bonding surfaces into contact and diffusion bonding molybdenum single crystals, the relationship between the twist angle and the bonding result is shown.

接合する面を機械加工して表面粗さを約2μmに仕上げ
、そのあと電解研磨を行い表面加工層を収り除いて、拡
散接合を行っている。いずれの試料にも接合部に再結晶
はみられなかった。接合面での捻り角が10度以内の場
合、その接合継手の引張り強さは母材の引張り強さに達
した.捻り角が15度以上では接合しない場合が多いが
、捻り角63度まで回転して接合した場合には、第3図
に示したように接合する単結晶の原子が対応し、接合面
での整合性が良くなり、接合強さが大きく向上した..
tな、捻り角90度の場合にも接合面での整合性が良く
なり、接合強さが大きく向上した. 試料を用い、接合面での結晶方位を回転軸として回転さ
せて拡散接合した場合の捻り角と接合との関係を示して
いる.表3に示した結果と同様に、接合面での捻り角が
10度以内の場合、その接合継手の引張強さは母材の引
張強さに達した.しかしながら、捻り角が15度以上で
は接合しなかった。
The surfaces to be bonded are machined to a surface roughness of about 2 μm, and then electrolytically polished to remove the surface-treated layer, and diffusion bonding is performed. No recrystallization was observed at the joint in any of the samples. When the twist angle at the joint surface was within 10 degrees, the tensile strength of the joint reached the tensile strength of the base metal. In many cases, bonding does not occur when the twist angle is 15 degrees or more, but when the twist angle is rotated to 63 degrees and the bond is made, the atoms of the single crystal to be bonded correspond as shown in Figure 3, and the bonding occurs at the bonding surface. The consistency was improved and the bond strength was greatly improved. ..
Even when the twist angle was 90 degrees, the consistency at the joint surface was improved and the joint strength was greatly improved. This figure shows the relationship between the torsion angle and bonding when a sample is diffusion bonded by rotating the crystal orientation at the bonding surface as the rotation axis. Similar to the results shown in Table 3, when the twist angle at the joint surface was within 10 degrees, the tensile strength of the joint reached the tensile strength of the base metal. However, when the twist angle was 15 degrees or more, no bonding occurred.

実施例9〜10 表5は、第5図に示した方法で、試料NQ 5とNα6
とを用いて接合面に傾斜角と捻り角を与えて拡散接合し
た場合の結果を示している.接合面での捻り角と傾斜角
の和が10度以内の場合、その接合継手の引張強さは母
材の引張強さに達した。しかしながら、捻り角と傾斜角
の和が15度以上では接合しなかった. (発明の効果) 以上詳しく説明したように、この発明によれば、結晶粒
界にともなう脱化の問題もなく強度の大きな接合が可能
となる.また、ロウ材等の他の金属を使用しないので、
使用環境温度が高く、耐熱性に優れた接合継手が実現さ
れる.単結晶モリブデンまたはその合金の組立接合が可
能になり、レーザー用光学部品の組立接合、核融合炉お
よび原子炉村などの高性能構造用部品の組立接合が可能
となる.さらに純モリブデンの他、その種々のNiCr
,Ti,V,Nb,W等との合金や粒界脆性が問題とな
って接合困器なタングステン、クロムなどの材料の接合
加工も可能となる.
Examples 9-10 Table 5 shows samples NQ 5 and Nα6 obtained by the method shown in FIG.
The results are shown when diffusion bonding is performed by giving an inclination angle and a torsion angle to the bonding surface. When the sum of the twist angle and the tilt angle at the joint surface was within 10 degrees, the tensile strength of the joint reached the tensile strength of the base material. However, when the sum of the twist angle and the tilt angle was 15 degrees or more, it did not join. (Effects of the Invention) As explained in detail above, according to the present invention, it is possible to bond with high strength without the problem of deoxidization caused by grain boundaries. In addition, since other metals such as brazing materials are not used,
A joint joint with excellent heat resistance is realized in a high usage environment temperature. It becomes possible to assemble and join single-crystal molybdenum or its alloys, and it becomes possible to assemble and join optical parts for lasers, as well as parts for high-performance structures such as fusion reactors and reactor villages. In addition to pure molybdenum, various NiCr
, Ti, V, Nb, W, etc., and materials that are difficult to bond due to grain boundary brittleness, such as tungsten and chromium, can be joined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法について、接合面での接合原
子の配列状況と傾斜角を例示した概念図であり、第2図
は接合面を上からみた接合面での原子の配列状況と捻り
角を例示した概念図である.第3図は接合面を63度捻
ったときの、被接合物同士の原子の対応状況を例示した
概念図である。 第4図は接合面が双晶面の場合の原子の配列状況を例示
した概念図である.第5図は接合試料の採取方法を示し
た斜視図である.第6図は接合試験片の捻り接合部の外
観を示した斜視図である。 1.2・・・単結晶材料 α・・・傾   斜   角 β・・・捻  り  角 沖許出願人  科学技術庁金属材科技術研究所長中川龍
一 第 図 β=63゜ 第 図 S 第 ジ 図
FIG. 1 is a conceptual diagram illustrating the arrangement of bonded atoms and the inclination angle on the bonded surface in the method of the present invention, and FIG. 2 is a conceptual diagram showing the arrangement of atoms on the bonded surface viewed from above. This is a conceptual diagram illustrating twist angles. FIG. 3 is a conceptual diagram illustrating the correspondence of atoms between objects to be bonded when the bonding surfaces are twisted by 63 degrees. Figure 4 is a conceptual diagram illustrating the arrangement of atoms when the bonding plane is a twin plane. Figure 5 is a perspective view showing the method for collecting bonded samples. FIG. 6 is a perspective view showing the appearance of the twisted joint part of the joint test piece. 1.2...Single crystal material α...Tilt Angle β...Twist Applicant: Ryuichi Nakagawa, Director, Research Institute for Metals, Science and Technology Agency, Fig. β = 63°, Fig. S, Fig.

Claims (4)

【特許請求の範囲】[Claims] (1)モリブデンまたはその合金の単結晶材料を非酸化
性雰囲気中において加圧・加熱して拡散接合するにあた
り、接合面の結晶方位関係を制御して直接的に接合する
ことを特徴とする単結晶モリブデンの拡散接合方法。
(1) When bonding a single crystal material of molybdenum or its alloy by pressure and heating in a non-oxidizing atmosphere, the crystal orientation relationship of the bonding surfaces is controlled and the bonding is performed directly. Diffusion bonding method for crystalline molybdenum.
(2)接合に際し、傾斜角および/または接合面の結晶
面に垂直な軸の回りの捻り角を与える請求項(1)記載
の単結晶モリブデンの拡散接合方法。
(2) The method for diffusion bonding single-crystal molybdenum according to claim (1), wherein an inclination angle and/or a twist angle about an axis perpendicular to the crystal plane of the bonding surface is applied during bonding.
(3)傾斜角と捻り角との和を10度以内とする請求項
(2)記載の単結晶モリブデンの拡散接合方法。
(3) The method for diffusion bonding single crystal molybdenum according to claim (2), wherein the sum of the angle of inclination and the angle of twist is within 10 degrees.
(4)接合界面の対向面の原子配列を鏡映関係に制御し
て接合する請求項(1)記載の単結晶モリブデンの拡散
接合方法。
(4) The method for diffusion bonding single-crystal molybdenum according to claim (1), wherein the bonding is performed by controlling the atomic arrangement of opposing surfaces of the bonding interface to have a mirror relationship.
JP5611289A 1989-03-10 1989-03-10 Diffusion joining method for single crystal molybdenum Granted JPH02239200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5611289A JPH02239200A (en) 1989-03-10 1989-03-10 Diffusion joining method for single crystal molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5611289A JPH02239200A (en) 1989-03-10 1989-03-10 Diffusion joining method for single crystal molybdenum

Publications (2)

Publication Number Publication Date
JPH02239200A true JPH02239200A (en) 1990-09-21
JPH0579639B2 JPH0579639B2 (en) 1993-11-04

Family

ID=13018004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5611289A Granted JPH02239200A (en) 1989-03-10 1989-03-10 Diffusion joining method for single crystal molybdenum

Country Status (1)

Country Link
JP (1) JPH02239200A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294579A (en) * 2006-04-24 2007-11-08 Showa Denko Kk GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT, METHOD FOR MANUFACTURING SAME, AND LAMP
CN111270314A (en) * 2020-04-17 2020-06-12 中国电子科技南湖研究院 Method for preparing large-size single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047336A (en) * 1983-08-26 1985-03-14 Hitachi Ltd Manufacture of cylindrical parts for electron gun

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047336A (en) * 1983-08-26 1985-03-14 Hitachi Ltd Manufacture of cylindrical parts for electron gun

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294579A (en) * 2006-04-24 2007-11-08 Showa Denko Kk GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT, METHOD FOR MANUFACTURING SAME, AND LAMP
CN111270314A (en) * 2020-04-17 2020-06-12 中国电子科技南湖研究院 Method for preparing large-size single crystal

Also Published As

Publication number Publication date
JPH0579639B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
US5358796A (en) Joined parts of Ni-Ti alloys with different metals and joining method therefor
Kumar et al. Effect of heat input in pulsed Nd: YAG laser welding of titanium alloy (Ti6Al4V) on microstructure and mechanical properties
US4777643A (en) Composite rotary anode for x-ray tube and process for preparing the composite
JPH11501254A (en) Metal bonding using amorphous intermediate bulk layers
CN110238503B (en) Nickel-based interlayer alloy, preparation method and application thereof and welding method
Nishimoto et al. Transient liquid phase bonding of Ni-base single crystal superalloy, CMSX-2
CN113001024B (en) Laser welding method for dissimilar materials
CN109128575B (en) Nickel-based flaky interlayer alloy and welding method thereof
Reeks et al. A review: Interlayer joining of nickel base alloys
Laik et al. Microstructure and interfacial reactions during active metal brazing of stainless steel to titanium
US4641334A (en) Composite rotary anode for X-ray tube and process for preparing the composite
JPS6026260B2 (en) Structure for rotating anode X-ray tube
Lu et al. TZM/graphite interface behavior in high-temperature brazing by Ti-based brazing filler materials
Wang et al. Effect of Cu interlayer on the microstructure and strength for brazing of tungsten/316L steel
CN113798731A (en) Amorphous Ti-Zr-Cu-Ni solder alloy for SP700 titanium alloy, and preparation method and application thereof
US4645121A (en) Composite rotary anode for X-ray tube and process for preparing the composite
US4689810A (en) Composite rotary anode for X-ray tube and process for preparing the composite
JPH02239200A (en) Diffusion joining method for single crystal molybdenum
Wei et al. Cold Arc MIG welding of titanium Ti6Al4V to aluminum 5A05Al Using Al–Mg5 filler
Vigraman Liquid-solid phase reaction products formation in the diffusion welded joints made between Ti-6Al-4 V and AISI304L with brass interlayer
US4715055A (en) Composite rotary anode for X-ray tube and process for preparing the composite
Ma et al. Effect of welding temperature on microstructure and mechanical properties of TiAl/Ti2AlNb spark plasma diffusion welded joint
Zhang et al. Micro-characteristics of High-Entropy Alloy Weld Formed by Friction Stir Lap Welding of 1060 Al and Al0. 1CoCrFeNi
Wang et al. Progress of research on welding for molybdenum alloys
Zou et al. Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 low-carbon vacuum melted stainless steel: part I. Mechanism of joint formation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term