JPH02238206A - Method and device for catalytic combustion - Google Patents

Method and device for catalytic combustion

Info

Publication number
JPH02238206A
JPH02238206A JP1058214A JP5821489A JPH02238206A JP H02238206 A JPH02238206 A JP H02238206A JP 1058214 A JP1058214 A JP 1058214A JP 5821489 A JP5821489 A JP 5821489A JP H02238206 A JPH02238206 A JP H02238206A
Authority
JP
Japan
Prior art keywords
combustion
catalyst
gas
catalytic combustion
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1058214A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Kimihiko Yoshida
公彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP1058214A priority Critical patent/JPH02238206A/en
Publication of JPH02238206A publication Critical patent/JPH02238206A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13002Catalytic combustion followed by a homogeneous combustion phase or stabilizing a homogeneous combustion phase

Abstract

PURPOSE:To achieve stabilized high-temperature combustion over a long period of time without causing deterioration of catalyst by conveying combustion gas to a region for catalytic combustion where the gas is made to undergo catalytic combustion at temperatures below 1,100 deg.C and, following the passage through the catalytic combustion region, to a region for vapor-phase combustion where the gas is made to undergo gas-phase combustion at temperature below 1,500 deg.C. CONSTITUTION:In a gas passageway 1 are disposed a preheater 2, a catalyst layer 3, and a mechanical layer 4 in this sequence in the direction of the gas flow. The catalyst layer 3 forms a region for catalytic combustion A of combustion gas and the mechanical layer 4 a region for vapor-phase combustion B. To prevent deterioration of the catalyst, the gas having passed the region for catalytic combustion A is designed to have a temperature below, 1,100 deg.C. In the region for vapor-phase combustion B, it is preferable to make the combustion temperature lower than 1,500 deg.C, since, at temperatures over 1,500 deg.C, N2 and O2 in air react to form NOx. This method ensures stability in the use over a long period of time.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、バーナー、ガスタービン、ボイラー等におい
て、燃料ガスを酸化反応させて熱エネルギーを発生させ
る接触燃焼方法とその燃焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a catalytic combustion method and combustion apparatus for oxidizing fuel gas to generate thermal energy in a burner, gas turbine, boiler, or the like.

く従来の技術と発明が解決しようとする問題点〉通常、
燃焼とは空気中で可燃物質が酸化されて炎を発生させる
化学変化をいう。しかしながら、通常の燃焼では燃焼反
応の制御が非常に困難であると共に、窒素酸化物No 
 等の有害物質が発生X するという問題がある。
Problems to be solved by conventional techniques and inventions>Usually,
Combustion is a chemical change in which combustible substances are oxidized in the air and produce flame. However, in normal combustion, it is very difficult to control the combustion reaction, and nitrogen oxides
There is a problem that harmful substances such as X are generated.

そこで、大気汚染防止のためNo  の生成を抑X 制し、かつ安定燃焼を容易にする観点から、固体触媒上
で燃料ガス(CH4)と空気とを完全酸化反応させる触
媒燃焼方式が提案されている。かかる触媒燃焼方式では
触媒表面で燃料ガスにいわゆる無炎燃焼反応を起こさせ
ることにより、燃料ガスをCO2とH2 0とに変化さ
せ、同時に熱エネルギーを得る。
Therefore, from the viewpoint of suppressing the generation of NO and facilitating stable combustion in order to prevent air pollution, a catalytic combustion method has been proposed in which fuel gas (CH4) and air undergo a complete oxidation reaction on a solid catalyst. There is. In such a catalytic combustion method, the fuel gas is changed into CO2 and H20 by causing a so-called flameless combustion reaction on the surface of the catalyst, and at the same time, thermal energy is obtained.

しかしながら、触媒燃焼では、触媒の耐熱性に問題があ
るため、通常1100〜1000℃以下の温度で燃焼が
行われているが、ガスタービン、ボイラーなどのように
熱あるいは動力の形でエネルギーを回収する場合には、
エネルギー効率を向上させるために、ガス温度は高いほ
うが好ましく、従って触媒燃焼方式を使用することは困
難であった。このため、1200〜1300℃程度の温
度での燃焼に充分に耐えうる耐熱性触媒の開発が要望さ
れているのが現状である。
However, in catalytic combustion, there is a problem with the heat resistance of the catalyst, so combustion is usually carried out at temperatures below 1100 to 1000 degrees Celsius, but energy is recovered in the form of heat or power, such as in gas turbines and boilers. If you do,
In order to improve energy efficiency, it is preferable for the gas temperature to be high, so it has been difficult to use a catalytic combustion method. Therefore, there is currently a demand for the development of a heat-resistant catalyst that can sufficiently withstand combustion at temperatures of about 1200 to 1300°C.

本発明は叙上の問題に鑑みてなされたものであって、公
知の触媒を使用して触媒の劣化を生じさせることなく、
長期間にわたって安定に高温燃焼(すなわち燃焼ガスの
完全酸化分解)を行わせることができ、No  等の有
害物質を発生させるこX とのない接触燃焼方法とその燃焼装置を提供することを
目的とする。
The present invention has been made in view of the above problems, and uses a known catalyst without causing deterioration of the catalyst.
The purpose of the present invention is to provide a catalytic combustion method and its combustion device that can stably perform high-temperature combustion (that is, complete oxidative decomposition of combustion gas) over a long period of time and do not generate harmful substances such as No. do.

く問題点を解決するための手段および作用〉本発明の接
触燃焼方法は、燃料ガスを触媒燃焼領域に導いて110
0℃以下の温度で触媒燃焼させ、ついで前記触媒燃焼領
域を通過したガスを気相燃焼領域に導いて1500℃以
下の温度で気相燃焼させるものである。
Means and operation for solving the above problems> The catalytic combustion method of the present invention leads fuel gas to a catalytic combustion region and
Catalytic combustion is performed at a temperature of 0° C. or lower, and then the gas that has passed through the catalytic combustion region is guided to a gas phase combustion region and gas phase combustion is performed at a temperature of 1500° C. or lower.

かかる本発明によれば、触媒燃焼が1100℃以下の比
較的低温度域で行われるため、触媒を劣化させることが
なく、長期間にわたって安定に使用することができる。
According to the present invention, catalytic combustion is performed at a relatively low temperature range of 1100° C. or lower, so the catalyst does not deteriorate and can be used stably over a long period of time.

また、触媒燃焼での未燃焼ガスや部分酸化生成物はより
高温度域で気相燃焼させるため、完全酸化分解が可能と
なり、NOx等の有害物質を発生させることがない。従
って、本発明における触媒燃焼には従来公知の種々の触
媒が使用可能となる。
Further, unburned gas and partial oxidation products from catalytic combustion are burned in a gas phase at a higher temperature range, so complete oxidative decomposition is possible, and no harmful substances such as NOx are generated. Therefore, various conventionally known catalysts can be used for catalytic combustion in the present invention.

ここで、気相燃焼とはCH4等の有機物を空気存在下、
触媒なしで酸化分解することをいう。かかる気相燃焼で
は、完全酸化分解反応を行わせる上で、燃焼速度を促進
させることが必要である。
Here, gas phase combustion refers to organic matter such as CH4 in the presence of air.
This refers to oxidative decomposition without a catalyst. In such gas phase combustion, it is necessary to accelerate the combustion rate in order to carry out a complete oxidative decomposition reaction.

そこで、本発明では、気相燃焼を促進させる構造を有す
る接触燃焼装置が使用される。より詳しくは、本発明の
接触燃焼装置は、燃料ガスの流路に、燃料ガスの流れ方
向に沿って、触媒燃焼を起こさせる触媒層と、気相燃焼
を起こさせる構造体層とをこの順に設けると共に、前記
構造体層がハニカム状物または多数の独立した小孔を有
する網状物もしくは板状物であることを特徴とする。
Therefore, in the present invention, a catalytic combustion device having a structure that promotes gas phase combustion is used. More specifically, the catalytic combustion device of the present invention includes a catalyst layer that causes catalytic combustion and a structure layer that causes gas phase combustion in a fuel gas flow path along the flow direction of the fuel gas in this order. In addition, the structure layer is characterized in that it is a honeycomb-like object or a net-like object or a plate-like object having a large number of independent small holes.

以下、図面を用いてこの発明の接触燃焼方法とその燃焼
装置を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The catalytic combustion method and combustion apparatus of the present invention will be explained in detail below with reference to the drawings.

第1図は本発明にかかる接触燃焼装置の概略図である。FIG. 1 is a schematic diagram of a catalytic combustion apparatus according to the present invention.

同図において、(1)は所定の断面積を有するガス流路
(反応器)であり、燃料ガスは矢印で示す方向に流され
る。ガス流路(1)内にはガスの流れ方向に沿ってブレ
ヒータ(2J1触媒層口)および構造体層(4)が順次
配置される。触媒層G)は燃焼ガスの触媒燃焼領域Aと
なり、構造体層(4)は気相燃焼領域Bとなる。
In the figure, (1) is a gas flow path (reactor) having a predetermined cross-sectional area, and fuel gas is flowed in the direction shown by the arrow. A bre-heater (2J1 catalyst layer inlet) and a structure layer (4) are sequentially arranged in the gas flow path (1) along the gas flow direction. The catalyst layer G) becomes the catalytic combustion region A of combustion gas, and the structure layer (4) becomes the gas phase combustion region B.

燃料ガスは、プレヒータ(2)で約300℃以上に予熱
された後、触媒燃焼領域Aに導入され、触媒燃焼される
。このとき、触媒の劣化を防止するために、触媒燃焼領
域Aを通過したガスは、温度が1100℃以下、より好
ましくは1000℃以下となるようにする。一方、気相
燃焼領域Bでは、ガスタービンやボイラーの燃焼温度を
高めエネルギー効率を向上させるためにガスの燃焼温度
を高めることが望まれるが、1500℃を越えると、空
気中のN2と02とが反応してNo  が生成すX るので、燃焼温度は1500℃以下とするのが好ましい
After the fuel gas is preheated to about 300° C. or higher by the preheater (2), it is introduced into the catalytic combustion area A and catalytically combusted. At this time, in order to prevent deterioration of the catalyst, the temperature of the gas that has passed through the catalytic combustion area A is set to be 1100° C. or lower, more preferably 1000° C. or lower. On the other hand, in gas phase combustion region B, it is desirable to raise the combustion temperature of the gas in order to increase the combustion temperature of gas turbines and boilers and improve energy efficiency. The combustion temperature is preferably 1500° C. or lower because X reacts with No and generates No.

第2図のグラフは予熱、触媒燃焼および気相燃焼での上
限温度をそれぞれ300℃、1100℃および1500
℃とした時のガスの温度変化を示している。
The graph in Figure 2 shows the upper limit temperatures for preheating, catalytic combustion, and gas phase combustion at 300°C, 1100°C, and 1500°C, respectively.
It shows the temperature change of the gas when it is set to °C.

本発明における前記触媒層(3)としては、通常の触媒
燃焼において使用される触媒層がいずれも好適に使用可
能であり、例えばハニカム型担体や網状物、板状物など
の担体に直接触媒成分を担持させたもの、あるいはこれ
らの担体を基体としてこれに担体成分を付着させた後、
触媒成分を担持させたものなどがあげられる。前記ハニ
カム型担体としては、コージェライト、ムライト、γ−
アルミナなどから作られたものがあげられる。また、前
記網状物、板状物は反応性および圧力損失を考慮して径
が30μm以下の小孔を多数有するものを使用するのが
好ましい。
As the catalyst layer (3) in the present invention, any catalyst layer used in normal catalytic combustion can be suitably used. For example, the catalyst component may be directly applied to a carrier such as a honeycomb carrier, a net-like material, or a plate-like material. or after using these carriers as a base and attaching carrier components to them,
Examples include those on which a catalyst component is supported. As the honeycomb type carrier, cordierite, mullite, γ-
Examples include those made from alumina, etc. Furthermore, in consideration of reactivity and pressure loss, it is preferable to use a net-like material or a plate-like material having a large number of small pores having a diameter of 30 μm or less.

網状物、板状物の材質としては、例えばSUS430等
のステンレス鋼があげられるが、より耐熱性が要求され
る場合はクロム・ニッケル鋼、マンガン番クロム鋼、ニ
ッケル・クロム争コバルト鋼、クロム・アルミニウム鋼
などの金属系のほか、アルミナ、ムライト、コージェラ
イトなどのセラミック系が使用可能であり、これらは金
網の形態あるいは薄板をパンチング加工、ラス加工した
形態で使用される。さらに、有機繊維を網状に加工した
ものに担体成分としてセラミックスラリーを付着させ高
温で焼成したもの、有機紙をパンチング加工したものに
上記セラミックスラリーを付着させ高温で焼成したもの
、無機繊維紙にバンチング加工したものなども使用可能
である。
Examples of materials for mesh and plate-like objects include stainless steel such as SUS430, but if higher heat resistance is required, chrome-nickel steel, manganese-grade chrome steel, nickel-chrome cobalt steel, chrome-nickel steel, etc. In addition to metals such as aluminum steel, ceramics such as alumina, mullite, and cordierite can be used, and these are used in the form of wire mesh or in the form of punched or lathed thin plates. In addition, we have produced organic fibers processed into a net shape with ceramic slurry attached as a carrier component and fired at high temperatures, organic paper punched with the above ceramic slurry attached and fired at high temperatures, and inorganic fiber paper with bunching. Processed products can also be used.

前記担体成分としては、例えば従来から使用されている
ANz 03 、SiOz 、TiOz、Z r O 
2 、耐熱性が要求される場合にはBa0・6ADz 
Os 、SrO●6Affz Os 、CaO働6Af
I2 03 、Mg0・9Agz03などのマグネトプ
ランバイト型複合酸化物、 La・β−ANz 03 、Ai)z 03−Ti02
、BaO−Ag2 03 −T i 02などを使用す
るのが好ましい。
Examples of the carrier component include conventionally used ANz 03 , SiOz , TiOz, Z r O
2. Ba0・6ADz when heat resistance is required
Os, SrO6Affz Os, CaO6Af
I2 03 , magnetoplumbite-type composite oxides such as Mg0・9Agz03, La・β-ANz 03 , Ai)z 03-Ti02
, BaO-Ag2 03 -T i 02 and the like are preferably used.

また、触媒成分としては、従来公知のものが使用可能で
あり、例えばPt,Pdなどの貴金属系触媒,Mn02
 ,Co304 SC r2 03 ,C u O S
F e 2 0 3などの金属酸化物、La   AO
3  (ただし、AはCO、Mn,Fe,1−x CuSNi,CrSCe,xはO〜0.5)などのべロ
ブス力イト型酸化物あるいはこれらの複合触媒(Pt−
Pd,CO3 04 −Mn02 、CuO−F ez
 03 、P t−La   A03など)な1−x どかあげられ、これらは1種または2種以上を混合して
使用することができる。
In addition, conventionally known catalyst components can be used, such as noble metal catalysts such as Pt and Pd, Mn02
, Co304 SC r2 03 , C u O S
Metal oxides such as Fe2O3, LaAO
3 (A is CO, Mn, Fe, 1-x CuSNi, CrSCe, x is O~0.5) or a composite catalyst of these (Pt-
Pd, CO3 04 -Mn02 , CuO-F ez
03, Pt-La A03, etc.) and 1-x, and these can be used alone or in combination of two or more.

また、前記触媒層(3)は単一層である必要はなく、種
々の触媒成分を複数層にわたって配置することができる
。例えば、燃料がメタンガスである場合には、燃焼開始
温度が低い田触媒と燃焼開始温度が高いが完全酸化能の
高い汽触媒とを組み合わせ、第3図に示すように、ガス
の流れ方向に沿って〜触媒一円一円混合触媒一Pt触媒
のように配置するのが燃焼性を高める上で好ましい。特
に、この例では一一円混合触媒における田/汽比を段階
的に変えて、より燃焼性を高めるようにしている。また
、第3図に示す各触媒層の長さは1/4、1/4、2/
4の割合にしているが、通常は、触媒層(3)の全長に
対して、田触媒領域が1/6〜1/4、出−Pt混合触
媒領域が1/6〜1/3、PT触媒領域が5/12〜2
/3の範囲であるのが、触媒燃焼性を向上させると共に
、気相燃焼領域Bでの燃焼を充分に行わせる上で好まし
い。
Further, the catalyst layer (3) does not need to be a single layer, and various catalyst components can be arranged in multiple layers. For example, when the fuel is methane gas, a rice catalyst with a low combustion start temperature and a steam catalyst with a high combustion start temperature but high complete oxidation ability are combined, and as shown in Fig. In order to improve combustibility, it is preferable to arrange the catalysts in a manner such that one catalyst is mixed with one Pt catalyst. In particular, in this example, the rice/steam ratio in the 11 yen mixed catalyst is changed in stages to further improve combustibility. In addition, the length of each catalyst layer shown in Fig. 3 is 1/4, 1/4, 2/4.
Normally, the total length of the catalyst layer (3) is 1/6 to 1/4 for the Pt catalyst area, 1/6 to 1/3 for the Pt mixed catalyst area, and 1/6 to 1/3 for the Pt mixed catalyst area. Catalyst area is 5/12~2
The range of /3 is preferable in order to improve the catalytic combustibility and to ensure sufficient combustion in the gas phase combustion region B.

気相燃焼領域Bを構成する構造体層(4)では、ガスを
1500℃以下で燃焼させることから、構造体層(4)
は1500℃程度の温度に耐えうろことが要求され、従
って、例えばアルミナ、ジルコニア、ムライト、コジエ
ライトなどの材質から作られる。
In the structure layer (4) constituting the gas phase combustion region B, since the gas is burned at 1500°C or lower, the structure layer (4)
It is required to withstand temperatures of about 1500° C., and is therefore made of materials such as alumina, zirconia, mullite, and codierite.

また、構造体層(4)の構造としては、圧力損失を考慮
したとき、前述の触媒層(3)におけるのと同様なハニ
カム状物や径が30μm以上の小孔を多数有する網状物
、板状物等があげられる。圧力損失は触媒燃焼領域Aと
気相燃焼領域Bとの全体で500mmHz O以下であ
るのが実用上好ましい。
In addition, considering the pressure loss, the structure of the structure layer (4) may be a honeycomb-like material similar to that in the catalyst layer (3) described above, a net-like material having many small holes with a diameter of 30 μm or more, or a plate. Examples include things like this. It is practically preferable that the pressure loss in the entire catalytic combustion region A and gas phase combustion region B is 500 mmHz O or less.

気相燃焼領域Bにおいて、気相燃焼を促進させる上で、
燃焼ガスの線速度と構造体層(4)の開口率が重要なフ
ァクターとなる。すなわち、線速度が遅い場合(特にハ
ニカム状物において)には気相燃焼が起こりにくくなる
。また、開口率は低いほど、ガスの乱れが生じ、気相燃
焼を起こさせるのに好適な条件となるが、圧力損失゜が
大きくなるという問題がある。従って、これらを勘案す
ると、好ましい気相燃焼条件としては、線速度が通常0
.5Nm/秒以上、好ましくはハニカム状物でINm/
秒以上、なかんづ<3Nm/秒以上、網状物、板状物で
INm/秒以上であるのが適当であり、これらの線速度
に対して構造体層(4)は開口率が70%以上、好まし
くは40〜60%であるのが適当である。
In promoting gas phase combustion in gas phase combustion region B,
The linear velocity of the combustion gas and the aperture ratio of the structure layer (4) are important factors. That is, when the linear velocity is low (particularly in a honeycomb-like material), gas phase combustion is less likely to occur. Furthermore, the lower the aperture ratio, the more turbulent the gas will be, which will be a more suitable condition for causing gas-phase combustion, but there will be a problem in that the pressure loss will be larger. Therefore, taking these into consideration, the preferred gas phase combustion conditions are that the linear velocity is usually 0.
.. 5 Nm/sec or more, preferably INm/sec with a honeycomb-like object
It is appropriate that the linear velocity is at least 3 Nm/sec, in particular <3 Nm/sec or more, and at least INm/sec for net-like or plate-like materials, and the aperture ratio of the structure layer (4) is 70% for these linear velocities. As mentioned above, preferably 40 to 60% is appropriate.

く発明の効果〉 本発明の触媒燃焼方法によれば、触媒燃焼と気相燃焼と
を組み合わせたので、触媒燃焼を触媒の耐熱温度である
1100℃以下で行うことができ、従って通常の触媒を
使用して長期間にわたって安定した触媒燃焼を行わせる
ことができる。また、気相燃焼を1500℃以下の温度
で行わせるので、気相燃焼時に空気中のN2と02とが
反応してNo  を生じさせることがなく、大気汚染の
防止X にも大きく寄与することができる。
Effects of the Invention According to the catalytic combustion method of the present invention, since catalytic combustion and gas-phase combustion are combined, catalytic combustion can be performed below 1100°C, which is the allowable temperature limit of the catalyst. It can be used to achieve stable catalytic combustion over a long period of time. In addition, since gas phase combustion is performed at a temperature of 1500°C or lower, N2 and 02 in the air do not react with each other during gas phase combustion to produce NO, which greatly contributes to the prevention of air pollution. I can do it.

本発明の触媒燃焼装置によれば、気相燃焼を起こさせる
構造体層が、ハニカム状物または多数の独立した小孔を
有する網状物もしくは板状物であるため、気相燃焼が促
進されるという効果がある。
According to the catalytic combustion device of the present invention, the structure layer that causes gas-phase combustion is a honeycomb-like material or a net-like material or a plate-like material having a large number of independent small holes, so that gas-phase combustion is promoted. There is an effect.

従って、本発明の方法および装置はガスタービンやバー
ナー等のように、燃料ガスから熱あるいは動力の形でエ
ネルギーを回収する装置に好適に採用しうるものである
Therefore, the method and device of the present invention can be suitably employed in devices that recover energy in the form of heat or power from fuel gas, such as gas turbines and burners.

く実施例〉 以下、参考例、実施例および比較例をあげて本発明を詳
細に説明する。
Examples> Hereinafter, the present invention will be explained in detail with reference to Reference Examples, Examples, and Comparative Examples.

参考例1(触媒成分の調製) 硝酸バリウムと硝酸アルミニウムとを酸化物換算(Ba
O、All 2 03 )でそれぞれ154gおよび6
12g秤量し、これに蒸留水10gを加え、溶解した。
Reference Example 1 (Preparation of catalyst components) Barium nitrate and aluminum nitrate were converted into oxides (Ba
154 g and 6
12g was weighed out, and 10g of distilled water was added thereto to dissolve it.

ついで、常温で、この水溶液を高速ディスパーサー(回
転数5000rpm)で攪拌しながら、炭酸アンモニウ
ム水溶液(50g/ff)を徐々に投入し、沈澱反応を
行わせた。このとき、最終pHは7.0とした。さらに
、常温で8時間熟成させた後、沈澱物を濾別し、充分に
水洗し、100℃で18時間乾燥さ・せ、1200℃で
3時間焼成してマグネトブランバイ斗型のBa0・6A
NzO3を得た。このものの比表面積は25.8m 2
 / gであった。
Then, at room temperature, while stirring this aqueous solution with a high-speed disperser (rotation speed: 5000 rpm), an aqueous ammonium carbonate solution (50 g/ff) was gradually added to cause a precipitation reaction. At this time, the final pH was set to 7.0. Furthermore, after aging at room temperature for 8 hours, the precipitate was filtered out, thoroughly washed with water, dried at 100°C for 18 hours, and fired at 1200°C for 3 hours to form a magnetobranchite Ba0.6A.
NzO3 was obtained. The specific surface area of this product is 25.8 m 2
/g.

このBa0・6Ag203に塩化白金酸および/または
塩化パラジウム水溶液を含浸させ、噴霧乾燥した後、1
000℃で1時間焼成し、Ba0・6ANzO3に田、
h一田、hを担持した触媒粉をそれぞれ得た。これらの
触媒活性金属(Rj,円一円、Pt)の担持率はいずれ
も0.5重量%とした。また、汽一円触媒はPt / 
Pa比が0、25/0.375、 0.25/0.25および 0.375/0、25 の3種類を調−した。
After impregnating this Ba0.6Ag203 with chloroplatinic acid and/or palladium chloride aqueous solution and spray drying, 1
After firing at 000℃ for 1 hour, the Ba0.6ANzO3
Catalyst powders supporting h Ichida and h were obtained, respectively. The supporting ratio of these catalytically active metals (Rj, 1 yen, Pt) was 0.5% by weight. In addition, the steam catalyst is Pt/
Three types were prepared with Pa ratios of 0, 25/0.375, 0.25/0.25 and 0.375/0,25.

参考例2(金網) 20Cr−5Aj7のクロム・アルミニウム鋼線(直径
180μ)を平織した48メッシュの金網を900℃で
1時間焼成し、表面にA1lzo3ウィス力一を生成さ
せた。
Reference Example 2 (Wire Mesh) A 48-mesh wire mesh made of a plain weave of 20Cr-5Aj7 chromium aluminum steel wire (diameter 180μ) was fired at 900° C. for 1 hour to generate A1lzo3 wire on the surface.

参考例3(ムライトパンチングシ一ト)アルミナとシリ
カとをモル比で3:2の割合で配合したアルミナ・シリ
カ粉100gと、ニチアス製のムライト繊維20gとに
水1gを加え、叩解したのち、手抄機により厚さ0.2
mmのシートを得た。これに、貫通孔径0.5mm、ピ
ッチ1.5mmのパンチング加工を施した。
Reference Example 3 (Mullite punching sheet) After adding 1 g of water to 100 g of alumina/silica powder, which is a mixture of alumina and silica in a molar ratio of 3:2, and 20 g of mullite fiber manufactured by Nichias, and beating the mixture, Thickness 0.2 by hand paper machine
A sheet of mm was obtained. This was punched with a through hole diameter of 0.5 mm and a pitch of 1.5 mm.

参考例4(ムライトハニカム) 徳山曹達■製のシリカ(ファインシール)と住友化学工
業■製のアルミナ(A−11)とをモル比で3=2の割
合で混合した混合物20kgにメチルセルロース4kg
,水6kgを加え、加湿混合した後、充分に混練を行い
、金型を装着した押出成形機にて押出しを行い、通風乾
燥後、1500℃で3時間焼成し、下記に示す種々のム
ライトハニカムを得た。
Reference Example 4 (Mullite Honeycomb) 4 kg of methylcellulose was added to 20 kg of a mixture of silica (Fine Seal) manufactured by Tokuyama Soda ■ and alumina (A-11) manufactured by Sumitomo Chemical ■ in a molar ratio of 3=2.
, 6 kg of water was added, humidified and mixed, thoroughly kneaded, extruded using an extruder equipped with a mold, dried through ventilation, and fired at 1500°C for 3 hours to produce various mullite honeycombs shown below. I got it.

(開口率%)   (ピッチ)   (壁厚mm)83
      3.  3     0.  374  
 1. 8   屹25 69      1.8     0。360    
  1. 8     0. 444      1.
 8     0. 6参考例5(金網触媒) 参考例1で得た触媒粉(平均粒径35μ)の50gと、
アルミナゾル(10重量%)の10m(lと、シリカゾ
ル(20重量%)の10m[と、水30r+lとを充分
に混合したスラリーに、参考例2で得た金網を浸漬し、
ついで熱風ドライヤにて乾燥した。これを500℃で1
時間焼成して、平均担持率が12.4%の金網触媒を得
た。
(Opening ratio %) (Pitch) (Wall thickness mm) 83
3. 3 0. 374
1. 8 屹25 69 1.8 0.360
1. 8 0. 444 1.
8 0. 6 Reference Example 5 (wire mesh catalyst) 50 g of the catalyst powder (average particle size 35 μ) obtained in Reference Example 1,
The wire mesh obtained in Reference Example 2 was immersed in a slurry sufficiently mixed with 10 m (l) of alumina sol (10 wt%), 10 m (l) of silica sol (20 wt%), and 30 r+l of water,
It was then dried with a hot air dryer. 1 at 500℃
After firing for several hours, a wire mesh catalyst with an average support rate of 12.4% was obtained.

参考例6(パンチングシ一ト触媒) 金網に代えてパンチングシ一トを使用したほかは参考例
5と同様にして、平均担持率が29.5%のパンチング
シ一ト触媒を得た。
Reference Example 6 (Punched Sheet Catalyst) A punched sheet catalyst with an average loading rate of 29.5% was obtained in the same manner as in Reference Example 5, except that a punched sheet was used instead of the wire mesh.

参考例7(ハニカム触媒) 参考例1で得た触媒粉100gと、アルミナゾル(10
重量%)の20mRと、シリカゾル(20重二%)の2
0rrlと、水80mgとを充分に混合したスラリーに
ハニカム担体を浸漬し、ついで過剰スラリーを除去した
後、通風乾燥した。
Reference Example 7 (Honeycomb Catalyst) 100 g of catalyst powder obtained in Reference Example 1 and alumina sol (10
20mR of silica sol (20wt%) and 20mR of silica sol (20wt%)
The honeycomb carrier was immersed in a slurry in which 0rrl and 80 mg of water were thoroughly mixed, and then, after removing the excess slurry, it was dried by ventilation.

これを500℃で1時間焼成して、平均担持率が34.
3%のハニカム触媒を得た。
This was baked at 500°C for 1 hour, and the average support rate was 34.
A 3% honeycomb catalyst was obtained.

実施例1 第4図に示す燃焼装置を作製した。すなわち、ガス流路
(反応器)内の触媒燃焼領域Aに、出、Pt − Pt
tおよびPtを担持した参考例5の各金網触媒を以下の
枚数で配置した。
Example 1 A combustion device shown in FIG. 4 was manufactured. That is, in the catalytic combustion area A in the gas flow path (reactor), Pt - Pt
Each of the wire mesh catalysts of Reference Example 5 supporting t and Pt was arranged in the following numbers.

田の金網触媒・・・3枚、 Pt−円の金網触媒・・・3枚 汽のの金網触媒・・・6枚 ただし、Pt − Pa触媒域ではPt/Fb比が0、
25/0.375 旧25/0. 25 0.375/0、25 の3種類の金網触媒を各1枚ずつガスの流れ方向に沿っ
てこの順に配置して構成した。
Rice wire mesh catalyst: 3 sheets, Pt-circle wire mesh catalyst: 3 sheets Steam wire mesh catalyst: 6 sheets However, in the Pt-Pa catalyst area, the Pt/Fb ratio is 0,
25/0.375 Old 25/0. Three types of wire mesh catalysts, 25 0.375/0 and 25 , were arranged in this order along the gas flow direction.

また、気相燃焼領域Bは、参考例3で得た開口率35%
のムライトパンチングシ一ト6枚を配置して構成した。
In addition, the gas phase combustion region B has an aperture ratio of 35% obtained in Reference Example 3.
It was constructed by arranging six sheets of mullite punching sheets.

実施例2 円一田触媒域において、Pt/円が0.25/0.25
の汽一出金網触媒3枚のみを使用したほかは実施例1と
同様にして燃焼装置を作製した。
Example 2 In the Yen-Ichita catalyst area, Pt/yen is 0.25/0.25
A combustion device was produced in the same manner as in Example 1 except that only three pieces of the steam wire mesh catalyst were used.

実施例3 第5図に示すように、触媒燃焼領域Aに、以下の金網触
媒を使用したほかは実施例1と同様にして燃焼装置を作
製した。
Example 3 As shown in FIG. 5, a combustion apparatus was produced in the same manner as in Example 1 except that the following wire mesh catalyst was used in the catalytic combustion area A.

田の金網触媒・・・6枚、 Ptの金網触媒・・・6枚 実施例4 第6図に示すように、触媒燃焼領域Aに、Ptの金網触
媒( Pt担持率0、5重量%)の12枚のみを使用し
たほかは実施例1と同様にして燃焼装置を作製した。
Field wire mesh catalyst: 6 sheets Pt wire mesh catalyst: 6 sheets Example 4 As shown in Figure 6, a Pt wire mesh catalyst (Pt loading rate 0.5% by weight) was placed in the catalytic combustion area A. A combustion device was produced in the same manner as in Example 1, except that only 12 sheets were used.

実施例5 Ptの金網触媒に代えて、円の金網触媒(Pt担持率0
.5重量%)の12枚のみを使用したほかは実施例4と
同様にして燃焼装置を作製した。
Example 5 Instead of a Pt wire mesh catalyst, a circular wire mesh catalyst (Pt loading rate 0) was used.
.. A combustion device was produced in the same manner as in Example 4, except that only 12 sheets containing 5% by weight) were used.

実施例6 気相燃焼領域Bを構成するムライトパンチングシ一トに
代えて開口率69%のムライトハニカム(ガス流れ方向
の長さが241)を使用したほかは実施例2と同様にし
て第4図に示す燃焼装置を作製した。
Example 6 The fourth example was prepared in the same manner as in Example 2, except that a mullite honeycomb with an aperture ratio of 69% (length in the gas flow direction was 241 mm) was used instead of the mullite punched sheet constituting the gas phase combustion region B. The combustion device shown in the figure was constructed.

実施例7 気相燃焼領域Bを構成する開口率69%のムライトハニ
カムに代えて、開口率60%のムライトハニカムを使用
したほかは実施例6と同様にして第4図に示す燃焼装置
を作製した。
Example 7 The combustion device shown in FIG. 4 was produced in the same manner as in Example 6 except that a mullite honeycomb with an aperture ratio of 60% was used in place of the mullite honeycomb with an aperture ratio of 69% constituting the gas phase combustion region B. did.

実施例8 気相燃焼領域Bを構成する開口率69%のムライトハニ
カムに代えて、開口率44%のムライトハニカムを使用
したほかは実施例6と同様にして第4図に示す燃焼装置
を作製した。
Example 8 The combustion device shown in FIG. 4 was produced in the same manner as in Example 6 except that a mullite honeycomb with an aperture ratio of 44% was used in place of the mullite honeycomb with an aperture ratio of 69% constituting the gas phase combustion region B. did.

実施例9 実施例6の燃焼装置(第4図)において、ガス流路の断
面積を3倍にし、かつガスの線速度を173倍とした上
で、触媒容積が実施例4と同じになるように、触媒燃焼
領域Aに、以下の金網触媒を使用した。
Example 9 In the combustion device of Example 6 (Figure 4), the cross-sectional area of the gas flow path was tripled, the linear velocity of the gas was increased 173 times, and the catalyst volume was the same as in Example 4. The following wire mesh catalyst was used in the catalytic combustion area A.

円の金網触媒・・・1枚 円一円の金網触媒・・・1枚 (Pt/Pd−0.25/0.25) Ptの金網触媒・・・2枚 さらに、気相燃焼領域には開口率69%のムライトハニ
カムを長さ12mmで使用して燃焼装置を作製した。
Circular wire mesh catalyst... 1 piece Circle wire mesh catalyst... 1 piece (Pt/Pd-0.25/0.25) Pt wire mesh catalyst... 2 pieces In addition, in the gas phase combustion area A combustion device was fabricated using a mullite honeycomb with an aperture ratio of 69% and a length of 12 mm.

実施例10 実施例6の燃焼装置(第4図)において、ガス流路の断
面積を172倍にし、かつガスの線速度を173倍とし
た上で、触媒容積が実施例6と同じになるように、触媒
燃焼領域Aに、以下の金網触媒を使用した。
Example 10 In the combustion device of Example 6 (Fig. 4), the cross-sectional area of the gas flow path was increased by 172 times, the linear velocity of the gas was increased by 173 times, and the catalyst volume was the same as in Example 6. The following wire mesh catalyst was used in the catalytic combustion area A.

田の金網触媒・・・6枚、 円一田の金網触媒・・・6枚 (Pt/円−0.25/0.25) 円の金網触媒・・・12枚 さらに、気相燃焼領域には開口率69%のムライトハニ
カムを長さ12mmで使用して燃焼装置を作製した。
Rice wire mesh catalyst: 6 sheets, Yen-ichida wire mesh catalyst: 6 sheets (Pt/yen -0.25/0.25) Circle wire mesh catalyst: 12 sheets In addition, in the gas phase combustion region fabricated a combustion device using a mullite honeycomb with a length of 12 mm and an aperture ratio of 69%.

実施例11 気相燃焼領域Bを構成する開口率69%のムライトハニ
カムに代えて、開口率83%のムライトハニカムを使用
したほかは実施例6と同様にして第4図に示す燃焼装置
を作製した。
Example 11 The combustion device shown in FIG. 4 was produced in the same manner as in Example 6 except that a mullite honeycomb with an aperture ratio of 83% was used in place of the mullite honeycomb with an aperture ratio of 69% constituting the gas phase combustion region B. did.

実施例12 第5図に示す燃焼装置において、触媒燃焼領域Aに、以
下のハニカム触媒を使用した。なお、以下の説明におい
て、長さとあるのは、ガスの流れ方向の長さを示すもの
とする。
Example 12 In the combustion apparatus shown in FIG. 5, the following honeycomb catalyst was used in the catalytic combustion area A. Note that in the following description, length refers to the length in the gas flow direction.

円のハニカム触媒 (Pt担持率0.5重量%)・・・長さ45fflII
Ihのハニカム触媒 (Pt担持率0.5重量%)・・・長さ45m+nさら
に、気相燃焼領域には開口率60%のムライトハニカム
(ピッチ1.8mm,壁厚0.4mm)を長さ45mm
で使用して燃焼装置を作製した。
Circular honeycomb catalyst (Pt loading rate 0.5% by weight)...Length 45fflII
Ih honeycomb catalyst (Pt loading rate 0.5% by weight)...Length 45m+n Furthermore, in the gas phase combustion region, a mullite honeycomb (pitch 1.8mm, wall thickness 0.4mm) with an aperture ratio of 60% was installed. 45mm
A combustion device was created using it.

実施例13 開口率60%のムライトハニカムに代えて、開口率44
%のムライトハニカム(ピッチ1.8mm,壁厚0.6
mm)を使用したほかは実施例12と同様にして燃焼装
置を作製した。
Example 13 Instead of mullite honeycomb with an aperture ratio of 60%, an aperture ratio of 44
% mullite honeycomb (pitch 1.8mm, wall thickness 0.6
A combustion device was produced in the same manner as in Example 12, except that 2 mm) was used.

実施例14 開口率60%、長さ45mmのムライトハニカムに代え
て、開口率44%、長さ22.5mmのムライトハニカ
ム(ピッチ1.8mm,壁厚0.6mm)を使用したほ
かは実施例12と同様にして燃焼装置を作製した。
Example 14 Example except that a mullite honeycomb with an aperture ratio of 44% and a length of 22.5 mm (pitch 1.8 mm, wall thickness 0.6 mm) was used instead of a mullite honeycomb with an aperture ratio of 60% and a length of 45 mm. A combustion device was produced in the same manner as in No. 12.

実施例15 実施例12の燃焼装置(第5図)において、ガス流路の
断面積を5倍にし、かつガスの線速度を175倍(IN
m/秒)とした上で、触媒燃焼領域Aに、以下のハニカ
ム触媒を使用した。
Example 15 In the combustion apparatus of Example 12 (Fig. 5), the cross-sectional area of the gas flow path was increased by 5 times, and the linear velocity of the gas was increased by 175 times (IN
m/sec), and the following honeycomb catalyst was used in the catalytic combustion region A.

田のハニカム触媒 (Pt担持率0.5重量%)・・・長さ9IIIPtの
ハニカム触媒 (Pt担持率0.5重量%)・・・長さ9■諷さらに、
気相燃焼領域には開口率60%のムライトハニカムを長
さ9 mmで使用して燃焼装置を作製した。
Honeycomb catalyst (Pt loading rate 0.5% by weight)...Length 9IIIPt honeycomb catalyst (Pt loading rate 0.5% by weight)...Length 9■ In addition,
A combustion device was fabricated using a 9 mm long mullite honeycomb with an aperture ratio of 60% in the gas phase combustion region.

実施例16 実施例12の燃焼装置(第5図)において、ガス流路の
断面積を2倍にし、かつガスの線速度を1/2倍とした
上で、触媒燃焼領域Aに、以下のハニカム触媒を使用し
た。
Example 16 In the combustion apparatus of Example 12 (Fig. 5), the cross-sectional area of the gas flow path was doubled, the linear velocity of the gas was increased to 1/2, and the following was added to the catalytic combustion area A. A honeycomb catalyst was used.

田のハニカム触媒 (Pt担持率0.5重量%)・・・長さ22.5mm円
のハニカム触媒 (Pt担持率0.5重量%)・・・長さ22.5mmさ
らに、気相燃焼領域には開口率60%のムライトハニカ
ムを長さ22.5mmで使用して燃焼装置を作製した。
Honeycomb catalyst (Pt loading rate: 0.5% by weight)...Length: 22.5mm Circular honeycomb catalyst (Pt loading rate: 0.5% by weight)...Length: 22.5mm Furthermore, gas phase combustion region A combustion device was manufactured using a mullite honeycomb with a length of 22.5 mm and an aperture ratio of 60%.

比較例1 第7図に示すように、ガス流路内の触媒燃焼領域Aに、
以下の金網触媒を使用し、気相燃焼領域を使用しない燃
焼装置を作製した。
Comparative Example 1 As shown in FIG. 7, in the catalytic combustion area A in the gas flow path,
A combustion device using the following wire mesh catalyst and not using a gas phase combustion region was fabricated.

田の金網触媒・・・3枚 氏の金網触媒・・・15枚 比較例2 第8図に示すように、ガス流路内の触媒燃焼領域Aに、
以下の金網触媒を使用し、気相燃焼領域を使用しない燃
焼装置を作製した。
Field wire mesh catalyst: 3 sheets Field wire mesh catalyst: 15 sheets Comparative example 2 As shown in Fig. 8, in the catalytic combustion area A in the gas flow path,
A combustion device using the following wire mesh catalyst and not using a gas phase combustion region was fabricated.

円の金網触媒・・・6枚 hの金網触媒・・・6枚 燃焼試験 第4図に示すように、反応器となるガス流路内の各所定
位置の温度T  −T i,を測定できるようO に温度測定器を設置し、ガス流路の人口よりメタンガス
と空気との所定量をそれぞれ流量計を介して導入した。
Circular wire mesh catalyst: 6 wire mesh catalysts: 6 wire combustion test As shown in Figure 4, the temperature T -T i at each predetermined position in the gas flow path that becomes the reactor can be measured. A temperature measuring device was installed in the chamber, and predetermined amounts of methane gas and air were introduced into the gas flow path through flowmeters, respectively.

このとき、空気は予めブレヒータ(5)によって予熱し
、燃焼直前のガス温度T をO 350℃と設定した。
At this time, the air was preheated in advance by a breech heater (5), and the gas temperature T immediately before combustion was set at O 350°C.

このとき、実施例1では、メタンガスと空気とを混合し
た燃料ガス中のメタンガス濃度が2%、3%および4%
のそれぞれについて試験し、他の実施例および比較例で
は3%に設定して試験した。
At this time, in Example 1, the methane gas concentration in the fuel gas mixed with methane gas and air was 2%, 3%, and 4%.
In other Examples and Comparative Examples, the test was conducted with the concentration set to 3%.

ただし、メタンガス濃度が4%の場合にはPtの金網触
媒枚数を4枚とし、さらにムライトパンチングシ一トの
枚数を8枚とした。
However, when the methane gas concentration was 4%, the number of Pt wire mesh catalysts was 4, and the number of mullite punching sheets was 8.

また、燃料ガスの線速度(LV)は触媒の空間容積(S
V)との関係から以下のように設定した。
In addition, the linear velocity (LV) of the fuel gas is the spatial volume (S) of the catalyst
The following settings were made in relation to V).

(1)金網触媒(開口率18%) SV−1,000,000hr− LV−0.2Nm/秒 0.6Nm/秒 1.2Nm/秒 (2)ハニカム触媒 S V − 2 0 0 .  0 0 0 hr−L
V−0.5Nm/秒 INm/秒 3Nm/秒 5Nm/秒 燃焼後の排ガス組成は赤外線吸収式のCH4メーターお
よびCO2メーターによって測定し、これからメタンか
ら炭酸ガスへの変換率を求めた。
(1) Wire mesh catalyst (opening ratio 18%) SV-1,000,000hr- LV-0.2Nm/sec 0.6Nm/sec 1.2Nm/sec (2) Honeycomb catalyst SV-200. 0 0 0 hr-L
V-0.5 Nm/sec INm/sec 3 Nm/sec 5 Nm/sec The exhaust gas composition after combustion was measured by an infrared absorption type CH4 meter and CO2 meter, and the conversion rate from methane to carbon dioxide gas was determined from this.

これらの試験結果を第1表に示す。The results of these tests are shown in Table 1.

(以下余白) 第1表から、実施例では、触媒燃焼領域と気相燃焼領域
とを組み合わせることにより、高い燃焼効率が得られて
いることがわかる。特に、田触媒とPt触媒とを併用す
ることにより、より好ましくは田触媒とRj − Pt
触媒と円触媒とを併用することにより、燃焼性が大幅に
向上している。
(The following is a blank space) From Table 1, it can be seen that in the examples, high combustion efficiency is obtained by combining the catalytic combustion region and the gas phase combustion region. In particular, by using a combination of a catalyst and a Pt catalyst, it is more preferable to use a combination of a catalyst and a Pt catalyst.
By using a catalyst and a circular catalyst together, combustibility is greatly improved.

一方、比較例1でも高い燃焼効率が得られているが、こ
のものは次に述べるように耐久性に問題がある。
On the other hand, although high combustion efficiency was obtained in Comparative Example 1, this product had a problem in durability as described below.

耐久試験 実施例1の燃焼装置と比較例1のそれについて、それぞ
れ連続燃焼試験を行い、開始時、100時間後、100
0時間後、5000時間後における変換率を求めた。そ
の結果を第2表に示す。
Continuous combustion tests were conducted on the combustion apparatus of Durability Test Example 1 and that of Comparative Example 1, and the
The conversion rates after 0 hours and 5000 hours were determined. The results are shown in Table 2.

(以下余白) 第2表から、実施例1は比較例1に比べて触媒の耐久性
が向上していることがわかる。これは、実施例1では触
媒燃焼が1100℃以下であるので、触媒の劣化が起こ
らないのに対して、比較例1では1500℃近くで燃焼
させているために、触媒が劣化したためと考えられる。
(The following is a blank space) From Table 2, it can be seen that the durability of the catalyst in Example 1 is improved compared to Comparative Example 1. This is thought to be because in Example 1, the catalytic combustion was at 1,100°C or lower, so no catalyst deterioration occurred, whereas in Comparative Example 1, combustion was performed at nearly 1,500°C, which caused the catalyst to deteriorate. .

なお、参考例6で得たパンチングシ一ト触媒を使用した
場合も上記燃焼試験および耐久試験と略同様の結果が得
られた。さらに、気相燃焼の構造体層または触媒層の担
体として市販のコージェライトハニカム(例えばピッチ
1.3a+m,壁厚0.2■、日本電装製およびピッチ
1.8mm,壁厚0.3 sv,日本碍子製)を用いた
場合も同様であった。
In addition, when the punched sheet catalyst obtained in Reference Example 6 was used, substantially the same results as the above combustion test and durability test were obtained. Furthermore, commercially available cordierite honeycomb (for example, pitch 1.3a+m, wall thickness 0.2cm, manufactured by Nippon Denso; pitch 1.8mm, wall thickness 0.3 sv, The same was true when using Nippon Insulator).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる接触燃焼装置を示す概略説明図
、第2図は燃焼装置内でのガスの流れと温度との関係を
示すグラフ、第3図は本発明における触媒層を構成する
田触媒と汽触媒との割合を示すグラフ、第4図〜第6図
は本発明の実施例で使用した燃焼装置を示す概略説明図
、第7図および第8図は比較例1および2の燃焼装置を
示す概略説明図である。
Fig. 1 is a schematic explanatory diagram showing a catalytic combustion device according to the present invention, Fig. 2 is a graph showing the relationship between gas flow and temperature within the combustion device, and Fig. 3 constitutes a catalyst layer in the present invention. Graphs showing the proportions of rice and steam catalysts, Figures 4 to 6 are schematic explanatory diagrams showing combustion equipment used in Examples of the present invention, and Figures 7 and 8 are graphs showing the ratios of Comparative Examples 1 and 2. It is a schematic explanatory view showing a combustion device.

Claims (1)

【特許請求の範囲】 1、燃料ガスを触媒燃焼領域に導いて 1100℃以下の温度で触媒燃焼させ、 ついで前記触媒燃焼領域を通過したガス を気相燃焼領域に導いて1500℃以下 の温度で気相燃焼させることを特徴とす る接触燃焼方法。 2、燃料ガスの流路に、燃料ガスの流れ方 向に沿って順に、触媒燃焼を起こさせる 触媒層と、気相燃焼を起こさせる構造を 有する構造体層とを設けると共に、前記 構造体層がハニカム状物または多数の独 立した小孔を有する網状物もしくは板状 物であることを特徴とする接触燃焼装置。 3、前記触媒層が燃料ガスの流れ方向に沿 って順にPb単独層とPb−Pt混合層とPt単独層と
を配置したものである請求項2の 接触燃焼装置。 4、前記構造体層が、線速度約0.5Nm /秒以上の燃料ガスに対して70%以下 の開口率を有する構造体からなる請求項 2の接触燃焼装置。
[Claims] 1. Fuel gas is introduced into a catalytic combustion region and catalytically combusted at a temperature of 1,100°C or less, and then the gas that has passed through the catalytic combustion region is led to a gas phase combustion region at a temperature of 1,500°C or less. A catalytic combustion method characterized by gas phase combustion. 2. A catalyst layer that causes catalytic combustion and a structure layer that has a structure that causes gas phase combustion are provided in the flow path of the fuel gas in order along the flow direction of the fuel gas, and the structure layer is A catalytic combustion device characterized in that it is a honeycomb-like object or a net-like object or a plate-like object having a large number of independent small holes. 3. The catalytic combustion apparatus according to claim 2, wherein the catalyst layer includes a Pb single layer, a Pb-Pt mixed layer, and a Pt single layer arranged in this order along the flow direction of the fuel gas. 4. The catalytic combustion apparatus according to claim 2, wherein the structure layer is made of a structure having an aperture ratio of 70% or less for fuel gas having a linear velocity of about 0.5 Nm 2 /sec or more.
JP1058214A 1989-03-10 1989-03-10 Method and device for catalytic combustion Pending JPH02238206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058214A JPH02238206A (en) 1989-03-10 1989-03-10 Method and device for catalytic combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058214A JPH02238206A (en) 1989-03-10 1989-03-10 Method and device for catalytic combustion

Publications (1)

Publication Number Publication Date
JPH02238206A true JPH02238206A (en) 1990-09-20

Family

ID=13077805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058214A Pending JPH02238206A (en) 1989-03-10 1989-03-10 Method and device for catalytic combustion

Country Status (1)

Country Link
JP (1) JPH02238206A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
EP0668471A2 (en) * 1994-02-17 1995-08-23 PFEFFERLE, William C. Catalytic method
US5453003A (en) * 1991-01-09 1995-09-26 Pfefferle; William C. Catalytic method
NL1004051C2 (en) * 1996-09-17 1998-03-18 Gastec Nv Catalytic radiation burner.
EP1334307A2 (en) * 2000-10-27 2003-08-13 Catalytica Energy Systems, Inc. Method of thermal nox reduction in catalytic combustion systems

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5453003A (en) * 1991-01-09 1995-09-26 Pfefferle; William C. Catalytic method
EP0668471A2 (en) * 1994-02-17 1995-08-23 PFEFFERLE, William C. Catalytic method
EP0668471A3 (en) * 1994-02-17 1997-06-11 William C Pfefferle Catalytic method.
NL1004051C2 (en) * 1996-09-17 1998-03-18 Gastec Nv Catalytic radiation burner.
WO1998012476A1 (en) * 1996-09-17 1998-03-26 Gastec N.V. Catalytic radiant heater
EP1334307A2 (en) * 2000-10-27 2003-08-13 Catalytica Energy Systems, Inc. Method of thermal nox reduction in catalytic combustion systems
EP1334307A4 (en) * 2000-10-27 2007-07-04 Kawasaki Heavy Ind Ltd Method of thermal nox reduction in catalytic combustion systems

Similar Documents

Publication Publication Date Title
JP5356242B2 (en) NOx forming catalyst with little or no ammonia and carbon monoxide double oxidation catalyst
RU2065766C1 (en) Structure of catalyst with one-piece heat-exchange surfaces
KR100261782B1 (en) Palladium partial combustion catalysts and a process for using them
US5425632A (en) Process for burning combustible mixtures
US3928961A (en) Catalytically-supported thermal combustion
KR940000867B1 (en) Exhaust gas cleaning catalyst and its preparation
JPH0347537A (en) Treatment by means of catalyst
US20090155151A1 (en) Methods and Systems Including CO Oxidation Catalyst With Low NO to NO2 Conversion
JPH02238206A (en) Method and device for catalytic combustion
KR100261783B1 (en) Multistage process for combustion fuel mixtures
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH03202129A (en) Reduction of harmful substance from flue gas in combustion process and device using said method
JPS61252409A (en) Method of igniting methane fuel
Thevenin Catalytic combustion of methane
JPS60147243A (en) Gas turbine combustor
JPS63267804A (en) Oxidizing catalyst for high temperature service
JPH0545295B2 (en)
JPS6054736A (en) Oxidation catalyst
JPH0545293B2 (en)
RU2796831C1 (en) Device for neutralization of toxic components of flue gases without introduction of external reagent
RU2792608C1 (en) Device for neutralization of toxic components of flue gases without introduction of external reagent
RU215634U1 (en) Flue gas cleaning device
Menon et al. Catalytic combustion for pollution abatement and cleaner thermal power generation
JPH039771B2 (en)
WO1995031675A1 (en) Catalytic combustion