JPH02237544A - Oximeter - Google Patents

Oximeter

Info

Publication number
JPH02237544A
JPH02237544A JP1058136A JP5813689A JPH02237544A JP H02237544 A JPH02237544 A JP H02237544A JP 1058136 A JP1058136 A JP 1058136A JP 5813689 A JP5813689 A JP 5813689A JP H02237544 A JPH02237544 A JP H02237544A
Authority
JP
Japan
Prior art keywords
light
light emitting
oxygen saturation
arterial blood
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1058136A
Other languages
Japanese (ja)
Inventor
Yutaka Majima
馬島 豊
Hitoshi Kamezawa
仁司 亀沢
Takao Sakai
坂井 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP1058136A priority Critical patent/JPH02237544A/en
Publication of JPH02237544A publication Critical patent/JPH02237544A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extend the life of a light source by reducing the consumption of a battery and to alleviate the pain of an examinee by stopping light emitting operation for a predetermined time when it is detected that the saturation degree of oxygen in arterial blood is unstable timewise. CONSTITUTION:When a light emitting part 2 starts light emission at predetermined frequency by the light emitting order of an operation part 7, the saturation degree of oxygen in arterial blood and a pulse rate are calculated from the signal outputted from a signal processing part 6 on the basis of the operation of a light detecting part 3 and that of a photoelectric conversion part 4 and the stabilities thereof are investigated. Next, it is judged whether the calculated saturation degree of oxygen in arterial blood and pulse rate are within set ranges and, when the measured values are within an alarm range, measurement is continued. When the measured values are judged to be stable and also judged to be not within the alarm range, an operation part 7 issues a light putting-out order to a light emission control part 5 to stop the light emission of the light emitting part 2. After a predetermined time is elapsed, the light emission of the light emitting part 2 is reopened and the same operation is repeated in the same way.

Description

【発明の詳細な説明】 (産業上の利川分野) 本発明は動脈血の酸素飽和度を測定するオキシメータに
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Icheon) The present invention relates to an oximeter for measuring oxygen saturation of arterial blood.

(従来の技術) オキシメータは二つの波長の光を被検者の測定部位に照
射し、測定部位における透過光或は反射光からの動脈血
中における全ヘモグロビンに対する酸化ヘモグロビンの
割合(酸素飽和度)を算出し記録する装置である。
(Prior art) An oximeter irradiates light of two wavelengths onto the measurement site of a subject, and measures the ratio of oxyhemoglobin to total hemoglobin in arterial blood (oxygen saturation) from the transmitted light or reflected light at the measurement site. This is a device that calculates and records.

上述したオキシメータで一被験者につき長時間測定を必
要とする場合、従来のオキシメー夕では測定動作が継続
されている間、常に一定間隔で光源の発光等が繰り返さ
れるため装置の駆動電池の寿命を縮め、光源の寿命も縮
める等の装置上の問題と共に被験者にも、長時間光を照
射し続けることにより、光源の熱で火傷をおわせたり、
光源に発熱の少ない発光ダイオードを用いた場合でも、
低温火傷をおわせると云った苦痛を与える場合があった
When using the above-mentioned oximeter to measure one subject over a long period of time, conventional oximeters require the light source to emit light at regular intervals while the measurement continues, which can shorten the lifespan of the device's drive battery. In addition to equipment problems such as shortening the lifespan of the light source, exposing subjects to the light for a long time may cause burns from the heat of the light source.
Even when using a light emitting diode that generates little heat as a light source,
In some cases, it caused pain such as low-temperature burns.

(発明が解決しようとする課題) 本発明はオキシメータによる長時間測定を行う場合にお
ける上述した装置上の問題および被験者が受ける苦痛を
解消しようとするものである。
(Problems to be Solved by the Invention) The present invention attempts to solve the above-mentioned problems with the device and the pain experienced by the subject when long-term measurement is performed using an oximeter.

(課穎を解決するための手段) オキシメータを主体へ向けて光を照射する手段と、発光
手段で発光され生体の動脈血を透過あるいは経由した光
を受光する受光手段と、受光手段により受光された受光
量に基づいて動脈血中の酸素飽和度を演算する演算手段
と、演算手段により演算された動脈血中の酸素飽和度の
時間的な安定性を検出する検出手段と、検出手段により
動脈血中の酸素飽和度が時間的に不安定であることが検
出された場合に発光手段の発光動作を所定時間停止する
制御手段とによって構成した。
(Means for solving the problem) A means for directing the oximeter toward a subject and irradiating light, a light receiving means for receiving the light emitted by the light emitting means and transmitted or via the arterial blood of the living body, and a calculation means for calculating the oxygen saturation in the arterial blood based on the amount of light received; a detection means for detecting the temporal stability of the oxygen saturation in the arterial blood calculated by the calculation means; The control means stops the light emitting operation of the light emitting means for a predetermined period of time when it is detected that the oxygen saturation is temporally unstable.

なお、上記検出手段としては、複数個の酸素飽和度と今
回の酸素飽和度との差を求める4とによって時間的な安
定性を検出する構成を用い得る。
Note that the above-mentioned detection means may be configured to detect temporal stability by determining the difference between a plurality of oxygen saturation levels and the current oxygen saturation level.

或は更に上記検出手段は、前回の酸氷飽和度と今回の酸
素飽和度との差を求めることによって1間的な安定性を
検出する構成を用い得る。
Alternatively, the detection means may be configured to detect temporary stability by determining the difference between the previous acid ice saturation and the current oxygen saturation.

(作用) オキシメータは通常一定時間間隔例えば5秒間隔で酸素
飽和度の測定を繰返している。しかし長時間にわたる測
定中には酸素飽和度の変化の大きい時期や安定している
時期が入り混じっている。
(Operation) Oximeters usually repeatedly measure oxygen saturation at fixed time intervals, for example, every 5 seconds. However, during long-term measurements, there are periods of large changes in oxygen saturation and periods of stability.

これを一律に一定時間間隔で測定することは、酸素飽和
度の安定期においては無駄なことである。
Measuring this uniformly at fixed time intervals is wasteful during the stable period of oxygen saturation.

本発明においては、酸素飽和度の変化の少ないか或はな
い期間は測定頻度を下げる、つまり測定の時間間隔を長
くするようにしているので、光源の総点灯時間が減って
電池の消耗が少なくなり、光源の寿命も延長され、被験
者は測定期間中に受ける照射光量が減って火傷等の苦痛
を受けるおそれがなくなる。更に長時間の測定結果を記
憶しておくメモリの所要容量も少な《てすむようになる
In the present invention, the measurement frequency is reduced during periods when there are few or no changes in oxygen saturation, that is, the time interval between measurements is lengthened, so the total lighting time of the light source is reduced and battery consumption is reduced. As a result, the life of the light source is extended, and the amount of light irradiated to the subject during the measurement period is reduced, eliminating the risk of suffering pain such as burns. Furthermore, the required memory capacity for storing long-term measurement results is also reduced.

(実施例) 第1図に本発明の一実施例を示す。1はオキシメータの
センサ一部で、少な《とも相異る二つの波長の光を発す
るLED等から構成された発光部2、発光部2から発光
され生体の測定部位を透過するあるいは反射する光を各
波長ごとにうける受光部3および、その光受光部3によ
り受光された信号を電気信号に変換する光電変換部4か
ら構成されている。5は発光制御部で後述する演算部7
の演算結果に基づいて発光部2の発光制御をおこなう。
(Example) FIG. 1 shows an example of the present invention. Reference numeral 1 is a part of the sensor of the oximeter, which includes a light emitting part 2 composed of an LED or the like that emits light of at least two different wavelengths, and light emitted from the light emitting part 2 and transmitted or reflected from the measurement site of the living body. The light receiving section 3 receives the light for each wavelength, and the photoelectric conversion section 4 converts the signal received by the light receiving section 3 into an electrical signal. 5 is a light emission control section and a calculation section 7, which will be described later.
The light emission control of the light emitting unit 2 is performed based on the calculation result.

6は信号処理部で、充電変換部4から出力される信号に
対しフィルタリング、増幅等の処理をおこない、上記各
波長における充電脈波信号を出力する。発光部2の発光
光は、生体の動脈中を透過あるいは経由して受光部3に
より受光されるので、充電脈波信号の振幅周期あるいは
振幅強度は動脈の脈動の周期あるいは強度に対応してい
る。7はマイクロコンピュータ等によって構成される演
算部で信号処理部6の出力信号より公知の方法によって
、動脈血酸素飽和度(Sad:)、脈拍数を演算する。
A signal processing section 6 performs processing such as filtering and amplification on the signal output from the charging conversion section 4, and outputs a charging pulse wave signal at each wavelength. Since the light emitted from the light emitting unit 2 is received by the light receiving unit 3 after passing through or passing through the artery of the living body, the amplitude period or amplitude intensity of the charging pulse wave signal corresponds to the period or intensity of the pulsation of the artery. . Reference numeral 7 denotes a calculation section constituted by a microcomputer or the like, which calculates arterial blood oxygen saturation (Sad:) and pulse rate from the output signal of the signal processing section 6 using a known method.

8は表示部で演算部7の出力より動脈血酸素飽和度、脈
拍数或は脈波波形の表示をする。
A display section 8 displays arterial oxygen saturation, pulse rate, or pulse wave waveform based on the output of the calculation section 7.

次に本実施例の演算部7の動作を第2図のフ〔−】ーヂ
ャートによって説明する。
Next, the operation of the arithmetic unit 7 of this embodiment will be explained with reference to the graph [-] in FIG.

測定が解しされると、まずステップ#1で演葦部7は発
光制御部5に発光命令をだし、発光制御部5は所定の方
式によって発光部2に所定周波数の発光をおこなわせる
。ステップ#1で発光部2が所定周波数で発光を始める
とステップ#2では、受光部3及び光電変換部4の動作
に基づいて信号処理部6から出力される信号より公知の
方法により動脈血酸素飽和度,脈拍数を求める。次にス
テップ#3では演算された動脈血酸素飽和度及び/ある
いは脈拍数の安定性が調べられ安定とfq断した場合に
はステップ#4に、安定と判断されなかった場合には、
ステップ#2に戻る。
When the measurement is completed, first in step #1, the reproducing section 7 issues a light emission command to the light emission control section 5, and the light emission control section 5 causes the light emission section 2 to emit light at a predetermined frequency according to a predetermined method. When the light emitting section 2 starts emitting light at a predetermined frequency in step #1, in step #2, arterial blood oxygen saturation is determined by a known method based on the signal output from the signal processing section 6 based on the operations of the light receiving section 3 and the photoelectric conversion section 4. Determine the degree and pulse rate. Next, in step #3, the stability of the calculated arterial blood oxygen saturation and/or pulse rate is checked, and if fq is determined to be stable, proceed to step #4, and if it is not determined to be stable,
Return to step #2.

安定性の判断については後述する。ステップ#4におい
ては、算出された動脈血酸素飽和度、脈拍数があらかじ
め決められたあるいは使用とによって設定された警告範
囲内にあるかどうかの判定がおこなわれ、測定値が警告
範囲内にあるならばスデップ#2に戻り、測定を継続す
る。ステップ〃3でfllO定値が安定していると判断
され、かつ、ス・アーツブ#4で測定値が警告範囲無い
にはないとf1断されると、次にステップ#5で演算部
7は発光制御部5に消灯命令を出し発光部2の発光を停
止させる。従って動脈血1’i!2″Ii:飽和度と脈
拍数の演算も停止する。ステップ#6は時間待ちのルー
チンでここで演算部7は所定時間の間その動作を停止す
る。所定時間経過すると、フローはスデップ#1に戻り
発光部2の発光を再開させ、以下同様の動作を繰り返す
Determination of stability will be described later. In step #4, it is determined whether the calculated arterial blood oxygen saturation and pulse rate are within a predetermined warning range or set by use, and if the measured value is within the warning range. Return to step #2 and continue measurement. If it is determined in step 3 that the flO constant value is stable, and f1 is determined in step #4 that the measured value is not within the warning range, then in step #5, the calculation unit 7 emits light. A light-off command is issued to the control unit 5 to stop the light emitting unit 2 from emitting light. Therefore arterial blood 1'i! 2"Ii: The calculation of the saturation level and pulse rate is also stopped. Step #6 is a time waiting routine in which the calculation unit 7 stops its operation for a predetermined time. After the predetermined time has elapsed, the flow returns to step #1. Returning to step 2, the light emitting section 2 is restarted to emit light, and the same operation is repeated.

尚、スデップ#3において動脈血酸素飽和度および脈拍
数の安定性が調べられるが具体的にはこの時点における
複数個の測定値のばらつきを調べることにより、安定性
を判断することができる。
Note that the stability of arterial oxygen saturation and pulse rate is checked at Step #3, and specifically, the stability can be determined by checking the dispersion of a plurality of measured values at this point.

あるいは現時点における測定値の一時点前の測定値から
の変化量を調べ、変化量が所定値より大である場合には
411定値は安定していないと1’41 IIJiする
Alternatively, the amount of change from the measured value at the current point in time is checked, and if the amount of change is greater than a predetermined value, 411 it is determined that the constant value is not stable.

また、上記警告範囲は、酸素飽和度あるいは脈拍数の値
が生体にとって安全ではない範囲に設定されている。従
って、測定値が生体にとって普通ではない異常な範囲で
安定しており、フローがステップ#3からステップ#2
に戻らずステップ#4へ移行した場合にも、スデップ#
4の判断を行うことにより、測定値の安定性にかかわら
ずTilIl定が継続され、効果的な生体監視が可能で
ある。
Further, the above-mentioned warning range is set to a range in which the value of oxygen saturation or pulse rate is unsafe for a living body. Therefore, the measured value is stable in an abnormal range that is not normal for living organisms, and the flow is changed from step #3 to step #2.
Even if you move to step #4 without returning to step #4,
By making the determination in step 4, TilIl determination is continued regardless of the stability of the measured value, and effective biological monitoring is possible.

また上記実施例において、ステップtt 5 + # 
C)では発光部2の発光を完全に停止させているがこれ
を、複数の波長の光のうち一つの波長の光のみを残し他
の波長の光の発光をすべて停止し、脈拍数の演算及び脈
波波形の監視は継続しておこなうことも可能である。こ
の場合複数の波長光の信号より求められる動脈血酸素飽
和度は演算できないが脈拍数を監視することはでき、従
って、万一患者状態が急変した場合でも脈拍数の変動を
検知することにより迅速に対応することができる。また
上記実施例ではスデップ#5において発光部2の発光を
停止し、ステップtt6では演算部7が所定時間その動
作を中止することにより、測定が一時中段されるが、こ
の測定中止時間を使用者が任意に設定できるようにする
ことも可能である。あるいはこの測定中止時間を、動脈
血酸素飽和度あるいは動脈血酸素飽和度と脈拍数の安定
性と、動脈血酸素飽和度の値により決定することも可能
である。たとえば測定値が十分に安定しており、かつ動
脈血酸素飽和度の値が生体にとって安全な範囲にある場
合には測定中止時間を長<シ、測定値があまり安定して
いない場合あるいは動脈血酸素飽和度の絶対値が生体に
とって安全な範囲の限界付近にある場合には測定中止時
間を短くするあるいは測定を中止しないようにする。上
述した方法によって測定中止時間を可変にすることによ
ってより一層きめこまか《本発明の効果をだすことがで
きる。
Further, in the above embodiment, step tt 5 + #
In C), the light emission of the light emitting unit 2 is completely stopped, but this is done by leaving only one wavelength of light out of multiple wavelengths of light and stopping all other wavelengths of light, and calculating the pulse rate. It is also possible to continuously monitor the pulse waveform. In this case, arterial oxygen saturation, which is determined from multiple wavelength light signals, cannot be calculated, but the pulse rate can be monitored. Therefore, even if the patient's condition suddenly changes, by detecting fluctuations in the pulse rate, it is possible to quickly monitor the pulse rate. can be accommodated. Further, in the above embodiment, the light emission of the light emitting unit 2 is stopped at step #5, and the calculation unit 7 suspends its operation for a predetermined period of time at step tt6, so that the measurement is temporarily interrupted. It is also possible to set it arbitrarily. Alternatively, it is also possible to determine the measurement stop time based on the arterial blood oxygen saturation level or the stability of the arterial blood oxygen saturation level and pulse rate, and the value of the arterial blood oxygen saturation level. For example, if the measured value is sufficiently stable and the value of arterial oxygen saturation is within a safe range for the living body, the measurement stop time is longer. If the measured value is not very stable or the arterial oxygen saturation If the absolute value of the temperature is near the limit of the safe range for living organisms, the measurement stop time is shortened or the measurement is not stopped. By making the measurement stop time variable using the method described above, the effects of the present invention can be brought out even more precisely.

(発明の効果) 本発明によれば、長時間の測定において、測定値の変化
の少ない安定期間中は測定頻度を減少させるので、無駄
な測定がな《なり、電池および光源の寿命の延長,測定
結果を記憶させておくメモリ容量の相対的な増加と云っ
た装置上の効果と共に被験者が長時間露光を受けること
によってこうむる苦痛の排除と云った効果が得られる。
(Effects of the Invention) According to the present invention, during long-term measurements, the frequency of measurements is reduced during the stable period when there are few changes in measured values, thereby eliminating unnecessary measurements, extending the life of batteries and light sources, and reducing the frequency of measurements during long-term measurements. The advantages of this method include the relative increase in the memory capacity for storing measurement results, as well as the elimination of the pain experienced by subjects due to long exposures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置のブロック図、第2図は
同実施例の動作のフローヂャートである。 1・・・センサ一部、2・・・発光部、3・・・受光部
、4.・・・向電変換部、5・・・発光制御部、6・・
・信号処理部、7・・・演算、8・・・表示部。 代理人  弁理士 縣  浩 介
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, and FIG. 2 is a flowchart of the operation of the embodiment. 1... Part of the sensor, 2... Light emitting section, 3... Light receiving section, 4. ... Electrostatic conversion section, 5... Light emission control section, 6...
- Signal processing unit, 7... Calculation, 8... Display unit. Agent Patent Attorney Kosuke Agata

Claims (3)

【特許請求の範囲】[Claims] (1)主体へ向けて光を照射する手段と、 発光手段で発光され生体の動脈血を透過あるいは経由し
た光を受光する受光手段と、 受光手段により受光された受光量に基づいて動脈血中の
酸素飽和度を演算する演算手段と、演算手段により演算
された動脈血中の酸素飽和度の時間的な安定性を検出す
る検出手段と、検出手段により動脈血中の酸素飽和度が
時間的に不安定であることが検出された場合に発光手段
の発光動作を所定時間停止する制御手段とを、備えたこ
とを特徴とするオキシメータ。
(1) A means for irradiating light toward a subject; a light receiving means for receiving the light emitted by the light emitting means and transmitted or passed through the arterial blood of the living body; and a light receiving means for detecting oxygen in the arterial blood based on the amount of light received by the light receiving means a calculation means for calculating the degree of saturation; a detection means for detecting the temporal stability of the oxygen saturation in the arterial blood calculated by the calculation means; 1. An oximeter comprising: control means for stopping the light emitting operation of the light emitting means for a predetermined period of time when a certain thing is detected.
(2)上記検出手段は、複数個の酸素飽和度と今回の酸
素飽和度との差を求めることによって時間的な安定性を
検出していることを特徴とする請求項第1項記載のオキ
シメータ。
(2) The oxygen saturation according to claim 1, wherein the detection means detects temporal stability by determining a difference between a plurality of oxygen saturation levels and the current oxygen saturation level. meter.
(3)上記検出手段は、前回の酸素飽和度と今回の酸素
飽和度との差を求めることによって時間的な安定性を検
出していることを特徴とする請求項第1記載のオキシメ
ータ。
(3) The oximeter according to claim 1, wherein said detection means detects temporal stability by determining a difference between a previous oxygen saturation level and a current oxygen saturation level.
JP1058136A 1989-03-10 1989-03-10 Oximeter Pending JPH02237544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058136A JPH02237544A (en) 1989-03-10 1989-03-10 Oximeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058136A JPH02237544A (en) 1989-03-10 1989-03-10 Oximeter

Publications (1)

Publication Number Publication Date
JPH02237544A true JPH02237544A (en) 1990-09-20

Family

ID=13075569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058136A Pending JPH02237544A (en) 1989-03-10 1989-03-10 Oximeter

Country Status (1)

Country Link
JP (1) JPH02237544A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133851A1 (en) * 2008-04-30 2009-11-05 コニカミノルタセンシング株式会社 Device for measuring oxygen saturation degree
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US8624741B2 (en) 2011-02-28 2014-01-07 Covidien Lp Pulse oximeter alarm simulator and training tool
US9211090B2 (en) 2004-03-08 2015-12-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US9351688B2 (en) 2013-01-29 2016-05-31 Covidien Lp Low power monitoring systems and method
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9211090B2 (en) 2004-03-08 2015-12-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
WO2009133851A1 (en) * 2008-04-30 2009-11-05 コニカミノルタセンシング株式会社 Device for measuring oxygen saturation degree
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US8624741B2 (en) 2011-02-28 2014-01-07 Covidien Lp Pulse oximeter alarm simulator and training tool
US9351688B2 (en) 2013-01-29 2016-05-31 Covidien Lp Low power monitoring systems and method

Similar Documents

Publication Publication Date Title
US7254431B2 (en) Physiological parameter tracking system
US5007423A (en) Oximeter sensor temperature control
JP4614047B2 (en) Blood light absorption substance concentration measuring device.
US7292883B2 (en) Physiological assessment system
US4765340A (en) Apnea detector
EP1943943A2 (en) Biometric information measuring apparatus and biometric information measuring system
US20040254473A1 (en) Laser blood-flow meter and system for monitoring bio-data
JPH02237544A (en) Oximeter
JPH0311772B2 (en)
US9506854B2 (en) Method and device for measuring scattering-absorption body
US20150141766A1 (en) Apparatus and method for optical measurement of cardiovascular recovery and/or repiration rate
US20220039705A1 (en) System and method for non-invasive monitoring of hematocrit concentration
JP2010193949A (en) Blood oxygen saturation measuring apparatus
JPH10216115A (en) Highly accurate reflection type degree of oxygen saturation measuring apparatus
JPH06277202A (en) Diagnostic device
US20210321912A1 (en) System and method for non-invasive monitoring of advanced glycation end-products (age)
JP2004290412A (en) Blood analyzer
JP2003310579A (en) Organism monitoring apparatus
US20220117525A1 (en) Sensor and system for neonatal jaundice monitoring and management
JP2002017694A (en) Pulse rate sensor
JP2021129838A5 (en)
JP2005253865A (en) Biological evaluation device, biological evaluation method, biological evaluation program, and recording medium
JPS63290542A (en) Pulse wave monitor apparatus
JP2961608B1 (en) Oxygen saturation measurement device
JP7418872B2 (en) Oxygen saturation measurement device, probe configured for use therewith, and method for oxygen saturation measurement