JPH0223672A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH0223672A
JPH0223672A JP63174488A JP17448888A JPH0223672A JP H0223672 A JPH0223672 A JP H0223672A JP 63174488 A JP63174488 A JP 63174488A JP 17448888 A JP17448888 A JP 17448888A JP H0223672 A JPH0223672 A JP H0223672A
Authority
JP
Japan
Prior art keywords
gate
floating gate
control gate
conductive layer
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63174488A
Other languages
Japanese (ja)
Other versions
JPH07101714B2 (en
Inventor
Hideaki Arima
有馬 秀明
Natsuo Ajika
夏夫 味香
Shinichi Sato
真一 佐藤
Giyoto Watabe
毅代登 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63174488A priority Critical patent/JPH07101714B2/en
Publication of JPH0223672A publication Critical patent/JPH0223672A/en
Publication of JPH07101714B2 publication Critical patent/JPH07101714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To keep unchanged a capacitive coupling ratio between a control gate and a floating gate by reducing a cell area and defining channel length in a self-alignment manner by forming the control gate on the source side wall of the floating gate in a self-alignment manner. CONSTITUTION:After a floating gate 2 is formed, a control gate 3 is formed on the gate 2 and on a source 4 side wall of the gate 2. Thereupon, the gate 3 on the side wall is formed in a self-alignment manner. By forming the control gate in a self-alignment manner the control gate forms a channel between it and a substrate only on the source side wall. Accordingly, channel length of a memory transistor is decided substantially by floating gate length to result in a reduced cell area. Additionally, almost all of capacitive coupling ratio between the floating gate and the control gate is decided by a lamination portion between the control gate on the floating gate and the floating gate. Therefore, there are produced no variations of the capacitive coupling ratio due to misalignment upon pattern formation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体記憶装置に係り、特に1ビツトが1
個のトランジスタで構成される電気的書き換え可能な読
み出し専用メモリEEFROMの改良に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor memory device, and in particular, the present invention relates to a semiconductor memory device in which one bit is one bit.
This invention relates to an improvement of an electrically rewritable read-only memory EEFROM which is composed of transistors.

〔従来の技術〕[Conventional technology]

従来のEEPROMは例えば特公昭62−41431号
公報に示されているように基本セルは2トランジスタで
構成されていたが、集積度の向上に従って、チップ面積
が増大する欠点があった。この点を改良するために1ト
ランジスタ構成で電気的に一括消去できるEEFROM
、即ちフラッシュEEPROMが提案されている。
A conventional EEPROM, as disclosed in Japanese Patent Publication No. 62-41431, has a basic cell consisting of two transistors, but has the disadvantage that the chip area increases as the degree of integration improves. To improve this point, EEFROM, which can be electrically erased all at once with a one-transistor configuration,
, that is, a flash EEPROM has been proposed.

第3図は例えばI EEF、  ジャーナル オブソリ
ソドーステート ケーキツク。第SC−22巻。
Figure 3 shows, for example, IEEF, Journal of Solid State Cakes. Volume SC-22.

第5号、 1987年、  676−683頁(J、 
5olid−3tate C1rcuits、 vol
、5c−22,No、5.1987. pp、676−
683)に示されている従来の1トランジスタ型フラッ
シュEEPROMを示す平面図と断面図である。この図
において、31は半導体基板、32は浮遊ゲート、33
は制御ゲート (ワード線)、34はソ−ス拡散領域、
35はドレイン拡散領域、36はアルミ配線(ビット線
)、37はアルミ配線36とドレイン35との接続用コ
ンタクトホール、38は眉間絶縁膜、39はフィールド
酸化膜(分離領域)、40はフィールド酸化膜39下の
チャネルストッパ、41は浮遊ゲート32と基板31間
のゲート酸化膜、42は制御ゲート33と基板31間の
ゲート酸化膜、43は制御ゲート33と浮遊ゲート32
間の眉間絶縁膜である。第3図(a)が平面図であり、
第3図(blは(a)のA−A線での断面図、第3図(
C1は(a)のB−B線での断面図である。
No. 5, 1987, pp. 676-683 (J,
5olid-3tate C1rcuits, vol.
, 5c-22, No. 5.1987. pp, 676-
FIG. 683) is a plan view and a cross-sectional view showing a conventional one-transistor flash EEPROM shown in FIG. In this figure, 31 is a semiconductor substrate, 32 is a floating gate, and 33 is a semiconductor substrate.
is a control gate (word line), 34 is a source diffusion region,
35 is a drain diffusion region, 36 is an aluminum wiring (bit line), 37 is a contact hole for connecting the aluminum wiring 36 and the drain 35, 38 is an insulating film between the eyebrows, 39 is a field oxide film (separation region), 40 is a field oxide A channel stopper under the film 39; 41 a gate oxide film between the floating gate 32 and the substrate 31; 42 a gate oxide film between the control gate 33 and the substrate 31; 43 a gate oxide film between the control gate 33 and the floating gate 32;
This is the insulating membrane between the eyebrows. FIG. 3(a) is a plan view,
Figure 3 (bl is a sectional view taken along line A-A in (a), Figure 3 (
C1 is a sectional view taken along line BB in (a).

この図に示すように従来のフラッシュEEPROMでは
、浮遊ゲート32のドレイン側の端部は制御ゲート33
とセルファラインになった積層構造をしており、浮遊ゲ
ート32のその他の端部は制御ゲート33で被覆されて
いた。このため、(b)に示すようにメモリトランジス
タのチャネル部は浮遊ゲート32と制御ゲート33が直
列接続した構造をしていた。
As shown in this figure, in the conventional flash EEPROM, the end of the floating gate 32 on the drain side is connected to the control gate 33.
The floating gate 32 had a laminated structure with a self-lined structure, and the other end of the floating gate 32 was covered with a control gate 33. For this reason, the channel portion of the memory transistor had a structure in which a floating gate 32 and a control gate 33 were connected in series, as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のフラッシュEEPROMは以上のように構成され
ているので、次のような問題点があった。
Since the conventional flash EEPROM is configured as described above, it has the following problems.

制御ゲートと浮遊ゲートとのマスク合わせにずれが生ず
ると、□浮遊ゲートのチャネル長および制御ゲートと浮
遊ゲートとの積層部の面積が変化し、一定しない。この
ため、メモリセルの結合容量が一定せず、メモリセルの
書き込み深さや、読み出し電流がバラつく。また、メモ
リトランジスタのチャネル長が長いため、セル面積が比
較的大きくチャネル抵抗も高くなり、セル電流が小さく
なる。
If a misalignment occurs in the mask alignment between the control gate and the floating gate, the channel length of the floating gate and the area of the laminated portion of the control gate and the floating gate change and are not constant. Therefore, the coupling capacitance of the memory cells is not constant, and the write depth and read current of the memory cells vary. Furthermore, since the channel length of the memory transistor is long, the cell area is relatively large, the channel resistance is high, and the cell current is small.

この発明は上記のような問題点を解消するためになされ
たもので、セル面積が小さく、セルファライン的にチャ
ネル長が決まり、制御ゲートと浮遊ゲートとの容量結合
比が一定にできる半導体記憶装置を得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and provides a semiconductor memory device with a small cell area, a channel length determined by a cell line, and a constant capacitive coupling ratio between a control gate and a floating gate. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体記憶装置は、浮遊ゲートを形成し
た後、浮遊ゲート上と浮遊ゲートのソース側側壁に制御
ゲートを形成する際、側壁部の制御ゲートを自己整合で
形成するようにしたものである。
In the semiconductor memory device according to the present invention, after forming the floating gate, when forming the control gate on the floating gate and on the sidewall on the source side of the floating gate, the control gate on the sidewall is formed in a self-aligned manner. be.

〔作用〕[Effect]

この発明においては、浮遊ゲートを形成した後、制御ゲ
ートを形成する際、浮遊ゲート側壁部の制御ゲートは自
己整合的に形成することにより、制御ゲートはソース側
側壁部のみで基板との間でチャネルを形成するため、メ
モリトランジスタのチャネル長は実質的に浮遊ゲート長
で決まることになり、セル面積が小さくなる。また、浮
遊ゲートと制御ゲート間の容量結合比は大部分が浮遊ゲ
ート上の制御ゲートと浮遊ゲート間の積層部分で決まる
ため、パターン形成時のアライメントずれによる容量結
合比の変動はほとんど生じない。
In this invention, when forming the control gate after forming the floating gate, the control gate on the side wall of the floating gate is formed in a self-aligned manner, so that the control gate is connected to the substrate only on the side wall on the source side. Since a channel is formed, the channel length of the memory transistor is substantially determined by the floating gate length, reducing the cell area. Furthermore, since the capacitive coupling ratio between the floating gate and the control gate is mostly determined by the laminated portion between the control gate and the floating gate on the floating gate, there is almost no variation in the capacitive coupling ratio due to misalignment during pattern formation.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)はこの発明の一実施例による半導体記憶装
置を示す平面図、第1図(′b)は第1図(alのAA
線での断面図、第1図(C)は第1図(alのB−B線
での断面図である。第1図において、1は半導体基板、
2は浮遊ゲート、3は制御ゲート(ワード線)、4はメ
モリトランジスタのソース領域、5はメモリトランジス
タのドレイン領域、6はアルミ配vA(ビット線)、7
はアルミ配線6とドレイン5との接続コンタクトホール
、8は眉間絶縁膜、9はフィールド酸化膜(分離領域)
、10はフィールド酸化膜9下のチャネルストッパ、1
1は浮遊ゲート2と基板1間のゲート酸化膜、12は制
御ゲート3と基板1間のゲート酸化膜、13は制御ゲー
ト3と浮遊ゲート2間の眉間絶縁膜である。
FIG. 1(a) is a plan view showing a semiconductor memory device according to an embodiment of the present invention, and FIG. 1('b) is a plan view showing a semiconductor memory device according to an embodiment of the invention.
1(C) is a sectional view taken along line B-B of FIG. 1 (al). In FIG. 1, 1 is a semiconductor substrate;
2 is a floating gate, 3 is a control gate (word line), 4 is a source region of a memory transistor, 5 is a drain region of a memory transistor, 6 is an aluminum wiring (bit line), 7
is a contact hole for connecting the aluminum wiring 6 and the drain 5, 8 is an insulating film between the eyebrows, and 9 is a field oxide film (separation region).
, 10 is a channel stopper under the field oxide film 9, 1
1 is a gate oxide film between the floating gate 2 and the substrate 1, 12 is a gate oxide film between the control gate 3 and the substrate 1, and 13 is an insulating film between the eyebrows between the control gate 3 and the floating gate 2.

この半導体記憶装置は、半導体基板1の主表面上に形成
される浮遊ゲートトランジスタと制御ゲートトランジス
タとを含む。浮遊ゲートトランジスタの浮遊ゲート2は
、半導体基板1の主表面上に形成されたドレイン5と絶
縁膜11を介して一部が重なっている。制御ゲートトラ
ンジスタは制御ゲート3と半導体基板1の主表面上の絶
縁膜12とを含む。制御ゲート3は、眉間絶縁膜13を
介して浮遊ゲート2上に積層している。また浮遊ゲート
2のソース側側壁部には絶縁膜を介して制御ゲート3が
配置される。浮遊ゲート2の側壁部に配置された制御ゲ
ート3と浮遊ゲート2の上部に積層された制御ゲート3
とは、第1図fa+に示されているように同一ワード線
内の少なくとも一ケ所で接続している。浮遊ゲートトラ
ンジスタと制御ゲートトランジスタはソース4とドレイ
ン5に対して直列に配置され、浮遊ゲート2がドレイン
側に制御ゲート3がソース側に位置する。制御ゲートト
ランジスタのゲート絶縁膜12と浮遊ゲートトランジス
タのゲート絶縁膜11とはその膜厚が同一であっても、
異なっていてもどちらでもよい。ソース4とドレイン5
は半導体基板1と逆導電型を持ち、制御ゲート3および
浮遊ゲート2に対して自己整合で形成される。
This semiconductor memory device includes a floating gate transistor and a control gate transistor formed on the main surface of semiconductor substrate 1. Floating gate 2 of the floating gate transistor partially overlaps drain 5 formed on the main surface of semiconductor substrate 1 with insulating film 11 in between. The control gate transistor includes a control gate 3 and an insulating film 12 on the main surface of the semiconductor substrate 1. The control gate 3 is stacked on the floating gate 2 via the glabella insulating film 13. Further, a control gate 3 is arranged on the side wall portion of the floating gate 2 on the source side with an insulating film interposed therebetween. Control gate 3 arranged on the side wall of floating gate 2 and control gate 3 stacked on top of floating gate 2
and are connected at least at one place within the same word line, as shown in FIG. 1 fa+. The floating gate transistor and the control gate transistor are arranged in series with the source 4 and drain 5, with the floating gate 2 located on the drain side and the control gate 3 located on the source side. Even if the gate insulating film 12 of the control gate transistor and the gate insulating film 11 of the floating gate transistor have the same film thickness,
It doesn't matter if they are different. source 4 and drain 5
has a conductivity type opposite to that of the semiconductor substrate 1 and is formed in self-alignment with the control gate 3 and floating gate 2.

また、第2図(a)はこの実施例による半導体記憶装置
の1ビツト等価回路図、第2図(b)は4ビツトをアレ
イ配置したときの等価回路間である。
FIG. 2(a) is a 1-bit equivalent circuit diagram of the semiconductor memory device according to this embodiment, and FIG. 2(b) is an equivalent circuit diagram when 4 bits are arranged in an array.

次に、第1図(a)ないし第1図(e)、第2図(al
、 (b)を参照して動作について述べる。浮遊ゲート
2に電子が注入されるときには、制御ゲート3には書き
込み電圧■CP +  ドレイン5には■DPが印加さ
れ、ソース4と基板1は接地電位に保たれる。このとき
浮遊ゲート2の電位は制御ゲート3と浮遊ゲート2間の
容量結合によりVtpaなる。その結果、・制御ゲート
トランジスタと浮遊ゲートトランジスタはオン状態とな
る。そして、ドレイン端近傍でいわゆるチャネルホット
エレクトロンの一部がゲート絶縁膜11のポテンシャル
バリアを越えて浮遊ゲート2へ突入し、そこで保持され
る。この動作は通常のEPROMの書き込み動作と同じ
である。
Next, Fig. 1(a) to Fig. 1(e), Fig. 2(al
, (b), the operation will be described. When electrons are injected into the floating gate 2, a write voltage CP+ is applied to the control gate 3, DP is applied to the drain 5, and the source 4 and substrate 1 are kept at ground potential. At this time, the potential of the floating gate 2 becomes Vtpa due to capacitive coupling between the control gate 3 and the floating gate 2. As a result, the control gate transistor and floating gate transistor are turned on. Then, near the drain end, a part of the so-called channel hot electrons crosses the potential barrier of the gate insulating film 11, enters the floating gate 2, and is held there. This operation is the same as a normal EPROM write operation.

浮遊ゲート2から電子を引き抜くときには、制御ゲート
3と基板1は接地電位として、ソース4は浮遊状態にす
る。このときドレイン5には消去電位VDEが印加され
、ドレイン5と浮遊ゲート2の重なり部分のゲート絶縁
膜11を通してファウラー−ノルドハイム トンネリン
グ(Fowler−Nordheim Tunneli
ng)によって浮遊ゲート2中の電子をドレイン5へ引
き抜く。
When extracting electrons from the floating gate 2, the control gate 3 and the substrate 1 are set to a ground potential, and the source 4 is placed in a floating state. At this time, the erase potential VDE is applied to the drain 5, and Fowler-Nordheim tunneling is performed through the gate insulating film 11 in the overlapped portion of the drain 5 and the floating gate 2.
ng), the electrons in the floating gate 2 are extracted to the drain 5.

読み出し時には、制御ゲート3を読み出し電位VCRと
し制御ゲートトランジスタをオン状態にする。このとき
ソース4は接地電位とし、ドレイン5に電圧■、が印加
される。この状態で浮遊ゲートトランジスタがオンかオ
フかによってメモリトランジスタ全体のオン/オフが決
まり、浮遊ゲート2のバイナリ状態が判定される。なお
、書き込み時と読み出し時には、選択されたビット線と
ワード線のみに所定の電圧が印加される。消去時、即ち
浮遊ゲート2からドレイン5へ電子を引き抜くときには
、全てのビット線に消去電圧■□が印加され、全てのソ
ース線は浮遊状態にされる。この結果、消去は全ビット
−括で行われる。また、電圧Vcp、  V□+  V
CRI VDRは同一であってもいいし、異なっていて
もかまわない。
At the time of reading, the control gate 3 is set to the read potential VCR and the control gate transistor is turned on. At this time, the source 4 is set to the ground potential, and the drain 5 is applied with a voltage . In this state, whether the floating gate transistor is on or off determines whether the entire memory transistor is on or off, and the binary state of the floating gate 2 is determined. Note that during writing and reading, a predetermined voltage is applied only to selected bit lines and word lines. During erasing, that is, when electrons are extracted from the floating gate 2 to the drain 5, the erasing voltage ■□ is applied to all bit lines, and all source lines are placed in a floating state. As a result, erasing is performed for all bits at once. In addition, the voltage Vcp, V□+V
The CRI VDRs may be the same or different.

この実施例に係るフラッシュEEPROMの製造プロセ
スを第4図(a)ないし第4図(f)を参照して説明す
る。まず基板1が準備され、その上に素子分離用フィー
ルド酸化膜9とチャネルストッパ10が形成される(第
4図(a))。次にゲート絶縁膜11が形成され、第1
の導電層2がゲート絶縁層11の上に形成される。この
第1の導電層2はn型にドープされている。第1導電層
2上に例えばシリコン酸化膜、シリコン窒化膜の2層構
造を持つ絶縁層13が形成され、浮遊ゲート2のパター
ンがエツチングによ、て形成される(第4図(b))。
The manufacturing process of the flash EEPROM according to this embodiment will be explained with reference to FIGS. 4(a) to 4(f). First, a substrate 1 is prepared, and a field oxide film 9 for element isolation and a channel stopper 10 are formed thereon (FIG. 4(a)). Next, a gate insulating film 11 is formed, and the first gate insulating film 11 is formed.
A conductive layer 2 is formed on the gate insulating layer 11 . This first conductive layer 2 is n-type doped. An insulating layer 13 having a two-layer structure of, for example, a silicon oxide film and a silicon nitride film is formed on the first conductive layer 2, and a pattern of the floating gate 2 is formed by etching (FIG. 4(b)). .

浮遊ゲート2の存在しない領域の第1ゲート絶縁膜11
がエツチングにより除去された後、第2ゲート絶縁膜1
2が熱酸化によって形成される。このとき、浮遊ゲート
2上の絶縁膜13は表面がシリコン窒化膜のためほとん
ど酸化されないが、絶縁膜13の存在しない浮遊ゲート
2の側壁部は比較的厚いシリコン酸化膜が形成される。
First gate insulating film 11 in a region where floating gate 2 does not exist
is removed by etching, the second gate insulating film 1 is removed by etching.
2 is formed by thermal oxidation. At this time, the surface of the insulating film 13 on the floating gate 2 is a silicon nitride film and is hardly oxidized, but a relatively thick silicon oxide film is formed on the sidewalls of the floating gate 2 where the insulating film 13 does not exist.

次に第2の導電層3がデポされる(第4図(C))。こ
の後、n型にドープされた第2の導電層3のパターンが
フォトリソグラフィーとエツチング技術によって形成さ
れる。このときのエツチングに非等方性エツチングを用
いることにより浮遊ゲート2の側壁部に第2の導電層3
aを、いわゆるサイドウオールとして自己整合で残す(
第4図(d))。次に第2導電層3上のフォトレジスト
20を残したまま、新たにフォトレジストを塗布し、ソ
ース側に相当する側壁部の第2導電層3aを被覆し、ド
レイン側に相当する側壁部の第2導電層3bを被覆しな
いようなフォトレジストパターンを形成した後、エツチ
ングにより第2導電層3bを除去し、その後金てのフォ
トレジストを除去する(第4図(e))。
Next, a second conductive layer 3 is deposited (FIG. 4(C)). After this, a pattern of the n-type doped second conductive layer 3 is formed by photolithography and etching techniques. By using anisotropic etching at this time, a second conductive layer 3 is formed on the side wall of the floating gate 2.
a is left in self-alignment as a so-called sidewall (
Figure 4(d)). Next, while leaving the photoresist 20 on the second conductive layer 3, a new photoresist is applied to cover the second conductive layer 3a on the side wall corresponding to the source side, and coat the second conductive layer 3a on the side wall corresponding to the drain side. After forming a photoresist pattern that does not cover the second conductive layer 3b, the second conductive layer 3b is removed by etching, and then the gold photoresist is removed (FIG. 4(e)).

以下通常のプロセスフローに従って、基板1と逆導電型
を有するソース領域4.ドレイン領域5が形成され、眉
間絶縁膜8が被着される。さらにコンタクトホール7と
アルミ配線6などが形成され(第4図(f))、最後に
表面保護膜が形成されこの実施例に係るフラッシュEE
PROMが完成される。
Thereafter, according to the normal process flow, source regions 4. A drain region 5 is formed and a glabellar insulating film 8 is deposited. Further, a contact hole 7, an aluminum wiring 6, etc. are formed (FIG. 4(f)), and finally a surface protection film is formed to form a flash EE according to this embodiment.
PROM is completed.

このようなフラッシュEEPROMでは、セルファライ
ン的に制御ゲートトランジスタのチャネル長が決まり、
メモリトランジスタのチャネル長は実質的に浮遊ゲート
長で決まることになるので、従来のフラッシュEEPR
OMに比べてセル面積が小さくなる。また、制御ゲート
と浮遊ゲートとの積層部の面積が一定となるので、制御
ゲートと浮遊ゲートとの容量結合比が一定となる。
In such a flash EEPROM, the channel length of the control gate transistor is determined by the self-line,
Since the channel length of a memory transistor is essentially determined by the floating gate length, conventional flash EEPR
The cell area is smaller than that of OM. Further, since the area of the stacked portion of the control gate and the floating gate is constant, the capacitive coupling ratio between the control gate and the floating gate is constant.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、浮遊ゲートのソース
側側壁に制御ゲートを自己整合で形成するようにしたの
で、パターン形成時のアライメントずれによる結合容量
の変動がほとんどなく、セル面積もほとんど増大させる
ことなしに、高集積化に適した半導体記憶装置を得られ
る効果がある。
As described above, according to the present invention, since the control gate is formed on the source side wall of the floating gate in a self-aligned manner, there is almost no variation in coupling capacitance due to misalignment during pattern formation, and the cell area is also small. There is an effect that a semiconductor memory device suitable for high integration can be obtained without increasing the size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるフラッシュEEPR
OMを示す図、第2図はその等価回路を示す図、第3図
は従来のフラッシュEEPROMを示す図、第4図は第
1図のフラッシュEEPROMの製造プロセスを説明す
るための図である。 図において、1は半導体基板、2は浮遊ゲート、3は制
御ゲート、4はソース領域、5はドにイン領域、6はア
ルミ配線、7はコンタクトホール、8は眉間絶縁膜、9
はフィールド酸化膜、10はチャネルストッパ、11は
浮遊ゲート絶縁膜、12は制御ゲート絶縁膜、13は浮
遊ゲートと制御ゲート間の眉間絶縁膜。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 shows a flash EEPR according to an embodiment of the present invention.
2 is a diagram showing its equivalent circuit, FIG. 3 is a diagram showing a conventional flash EEPROM, and FIG. 4 is a diagram for explaining the manufacturing process of the flash EEPROM shown in FIG. 1. In the figure, 1 is a semiconductor substrate, 2 is a floating gate, 3 is a control gate, 4 is a source region, 5 is a dome region, 6 is an aluminum wiring, 7 is a contact hole, 8 is an insulating film between the eyebrows, 9
10 is a field oxide film, 10 is a channel stopper, 11 is a floating gate insulating film, 12 is a control gate insulating film, and 13 is a glabellar insulating film between the floating gate and the control gate. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型を有する半導体基板と、該半導体基板
の主表面上に第1の絶縁膜を介して形成された浮遊ゲー
ト電極としての第1の導電層と、該第1の導電層の側壁
部および上部に第2の絶縁膜を介して形成された制御ゲ
ート電極としての第2の導電層と、上記半導体基板の主
表面に形成された第2導電型を有するソースおよびドレ
インとしての第3の導電層とを有する半導体記憶装置で
あって、 上記第1の導電層の側壁部に形成された第2の導電層は
上記第1の導電層の上部に形成された第2の導電層と電
気的に接続されており、かつ上記第1の導電層に対して
自己整合的に形成されたものであることを特徴とする半
導体記憶装置。
(1) A semiconductor substrate having a first conductivity type, a first conductive layer as a floating gate electrode formed on the main surface of the semiconductor substrate via a first insulating film, and the first conductive layer. a second conductive layer as a control gate electrode formed on the sidewalls and upper part of the semiconductor substrate via a second insulating film; and a second conductive layer as a source and drain having a second conductivity type formed on the main surface of the semiconductor substrate. a third conductive layer, wherein the second conductive layer formed on the side wall of the first conductive layer is a second conductive layer formed on the top of the first conductive layer; A semiconductor memory device characterized in that the semiconductor memory device is electrically connected to the first conductive layer and formed in a self-aligned manner with respect to the first conductive layer.
JP63174488A 1988-07-12 1988-07-12 Semiconductor memory device Expired - Lifetime JPH07101714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174488A JPH07101714B2 (en) 1988-07-12 1988-07-12 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174488A JPH07101714B2 (en) 1988-07-12 1988-07-12 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH0223672A true JPH0223672A (en) 1990-01-25
JPH07101714B2 JPH07101714B2 (en) 1995-11-01

Family

ID=15979360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174488A Expired - Lifetime JPH07101714B2 (en) 1988-07-12 1988-07-12 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH07101714B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112166A (en) * 1989-09-20 1991-05-13 Samsung Electron Co Ltd Non-volatile semiconductor memory and manufacture theheof
JPH04252072A (en) * 1991-01-28 1992-09-08 Toshiba Corp Semiconductor device
JPH0897309A (en) * 1994-09-29 1996-04-12 Nec Corp Non-volatile semiconductor memory and its manufacture
US6075267A (en) * 1996-02-28 2000-06-13 Ricoh Company, Ltd. Split-gate non-volatile semiconductor memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647569A (en) * 1987-06-29 1989-01-11 Nec Corp Manufacture of semiconductor nonvolatile memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647569A (en) * 1987-06-29 1989-01-11 Nec Corp Manufacture of semiconductor nonvolatile memory

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112166A (en) * 1989-09-20 1991-05-13 Samsung Electron Co Ltd Non-volatile semiconductor memory and manufacture theheof
JPH04252072A (en) * 1991-01-28 1992-09-08 Toshiba Corp Semiconductor device
JPH0897309A (en) * 1994-09-29 1996-04-12 Nec Corp Non-volatile semiconductor memory and its manufacture
US5891775A (en) * 1994-09-29 1999-04-06 Nec Corporation Method of making nonvolatile semiconductor device having sidewall split gate for compensating for over-erasing operation
US6075267A (en) * 1996-02-28 2000-06-13 Ricoh Company, Ltd. Split-gate non-volatile semiconductor memory device

Also Published As

Publication number Publication date
JPH07101714B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JP2921653B2 (en) Trench memory structure and method of manufacturing the same
US5120672A (en) Fabricating a single level merged EEPROM cell having an ONO memory stack substantially spaced from the source region
JPH0210774A (en) Semiconductor storage device and its manufacture
JPS6341240B2 (en)
JP3362970B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH08241932A (en) Nonvolatile semiconductor memory device and its manufacture
JPH0497568A (en) Non-volatile memory and its production
JP3049100B2 (en) Semiconductor device and manufacturing method thereof
RU2168797C2 (en) Process of manufacture of elements of structures of very small size on semiconductor substrate
JPH01291470A (en) Semiconductor device
JPH09213911A (en) Semiconductor device and manufacturing method thereof
JP2001230330A (en) Nonvolatile semiconductor memory and its manufacturing method
JP2980171B2 (en) Manufacturing method of split gate type flash memory cell
JPH0223672A (en) Semiconductor memory device
JPH0334578A (en) Nonvolatile semiconductor storage device and manufacture thereof
US6090665A (en) Method of producing the source regions of a flash EEPROM memory cell array
JPH08139210A (en) Method of forming memory cell of non-volatile semiconductor memory device
JPS62210678A (en) Semiconductor integrated circuit device
JP3398040B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH1022483A (en) Nonvolatile semiconductor storage device and manufacture thereof
JPH04186882A (en) Semiconductor device and manufacture thereof
JP2975824B2 (en) Nonvolatile semiconductor memory device
JPH09121028A (en) Semiconductor device and fabrication thereof
JPH0750351A (en) Nonvolatile semiconductor memory, its manufacture, and use
JP3151772B2 (en) Flash memory and manufacturing method thereof