JPH0223671A - Non-volatile semiconductor memory device and manufacture thereof - Google Patents

Non-volatile semiconductor memory device and manufacture thereof

Info

Publication number
JPH0223671A
JPH0223671A JP17354288A JP17354288A JPH0223671A JP H0223671 A JPH0223671 A JP H0223671A JP 17354288 A JP17354288 A JP 17354288A JP 17354288 A JP17354288 A JP 17354288A JP H0223671 A JPH0223671 A JP H0223671A
Authority
JP
Japan
Prior art keywords
diffusion layer
type diffusion
type
semiconductor substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17354288A
Other languages
Japanese (ja)
Inventor
Daisuke Toyama
大介 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP17354288A priority Critical patent/JPH0223671A/en
Publication of JPH0223671A publication Critical patent/JPH0223671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To prevent erroneous write operation upon reading from being produced and a read current in write operation from being lowered by forming a p type diffusion layer in a first n type diffusion layer and opening, by deposition of an interlayer insulating film over the whole surface of the p type diffusion layer, a connection hole with a gate electrode, a connection hole with a second n type diffusion layer, and a common connection hole between the first n type diffusion layer and the p type diffusion layer, and further burying metal in those holes. CONSTITUTION:After formation of a floating gate 7a, a p type diffusion layer 9 is formed in an n type diffusion layer 2, and an n type diffusion layer 8 is formed so as to hold a p type semiconductor substrate 1 channel between it and the layer 2. An insulating film 20 is deposited, a common gate electrode 15 between the layers 2 and 9 is formed, a connection hole between the gate electrode 15 and the layer 8 is opened, and metal is buried to form electrodes 21a, b, c. Write operation is performed by an n type transistor which employs between the drain layer 2 and the source layer 8 as a channel, while read operation is performed by a p type transistor which employs between the substrate 1 and the source layer 9 as a channel. Hereby, erroneous write operation upon reading is prevented as well as lowering of a read current upon write operation is prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は不揮発性半導体記憶装置およびその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a nonvolatile semiconductor memory device and a method for manufacturing the same.

(従来の技術) 従来のEPROMの断面を第5図に示す。このEPRO
Mはp型シリコン基板1内にドレイン2a、およびソー
ス2bとなるn型拡散層が形成されている。そして、p
型シリコン基板1のチャネルとなる領域上にゲート酸化
膜3aを介してポリシリコンからなる浮遊ゲート4.絶
縁膜5.およびポリシリコンからなる制御ゲート6を有
している2層構造のゲート電極が形成されており、また
ソースとなるn型拡散層2bと浮遊ゲート4との間に絶
縁膜3bを介してポリシリコンからなる浮遊ゲー)7a
が形成されている。
(Prior Art) A cross section of a conventional EPROM is shown in FIG. This EPRO
M has an n-type diffusion layer formed in a p-type silicon substrate 1 to become a drain 2a and a source 2b. And p
A floating gate 4 made of polysilicon is formed on a region of the silicon substrate 1 that will become a channel via a gate oxide film 3a. Insulating film5. A gate electrode with a two-layer structure having a control gate 6 made of polysilicon and polysilicon is formed, and polysilicon Floating game consisting of) 7a
is formed.

上述のEPROMの書き込みおよび読み出しの動作原理
を第6図を用いて説明する。
The operating principle of writing and reading the above-mentioned EPROM will be explained with reference to FIG.

書き込み時は制御ゲート6に10数■、ドレインとなる
n型拡散層2aに数Vの電圧をそれぞれ印加し、p型シ
リコン基板1およびソースとなるn型拡散層を接地する
。すると容量比により浮遊ゲート4、および7aに電位
が生じ、p型シリコン基板1のチャネル領域表面に反転
層11が形成される。そしてドレインとなるn型拡散層
2aに印加された数Vの電圧は、はとんど絶縁物3b直
下の基板に生じる空乏層10に掛り、空乏層10に高電
界が生じる。このため空乏層10中で電子および正孔が
発生し、ゲート酸化膜3aを通して浮遊ゲート4に電子
が注入される。
During writing, a voltage of several volts is applied to the control gate 6 and a voltage of several volts to the n-type diffusion layer 2a, which becomes the drain, and the p-type silicon substrate 1 and the n-type diffusion layer, which becomes the source, are grounded. Then, a potential is generated at the floating gates 4 and 7a due to the capacitance ratio, and an inversion layer 11 is formed on the surface of the channel region of the p-type silicon substrate 1. The voltage of several volts applied to the n-type diffusion layer 2a serving as the drain is applied to the depletion layer 10 formed in the substrate directly under the insulator 3b, and a high electric field is generated in the depletion layer 10. Therefore, electrons and holes are generated in the depletion layer 10, and the electrons are injected into the floating gate 4 through the gate oxide film 3a.

これに対して読み出し時は、制御ゲート6に数v1 ド
レインとなる拡散層2aに数Vの電圧をそれぞれ印加し
、p型シリコン基板1およびソースとなるn型拡散層2
bを接地する。すると浮遊ゲート4に電子が注入されて
いる場合は反転層11が形成されず電流は流れない。ま
た、電子が注入されていない場合は反転層11が形成さ
れ、電流は流れる。
On the other hand, at the time of reading, a voltage of several volts is applied to the control gate 6 and a voltage of several volts is applied to the diffusion layer 2a which becomes the drain, and the voltage of several volts is applied to the p-type silicon substrate 1 and the n-type diffusion layer 2a which becomes the source.
Ground b. Then, when electrons are injected into the floating gate 4, the inversion layer 11 is not formed and no current flows. Furthermore, when no electrons are injected, an inversion layer 11 is formed and current flows.

(発明が解決しようとする課題) このように従来のEPROMの書き込み動作(浮遊ゲー
ト4への電子の注入)は、絶縁膜3bで隔てられた反転
層11の間に、ドレインとなるn型拡散層2aに印加さ
れる電圧によって空乏層10を生じさせ、この空乏層1
0の電界によって発生した電子、正孔対を制御ゲート6
に印加される電圧によって浮遊ゲート4へ電子注入させ
る。
(Problem to be Solved by the Invention) As described above, in the write operation (injection of electrons into the floating gate 4) of the conventional EPROM, an n-type diffusion that becomes the drain is performed between the inversion layer 11 separated by the insulating film 3b. A depletion layer 10 is generated by the voltage applied to the layer 2a, and this depletion layer 1
A control gate 6 controls electron and hole pairs generated by an electric field of 0.
Electrons are injected into the floating gate 4 by the voltage applied to the floating gate 4.

また、読み出し動作においても反転層11の間に空乏層
を生じさせなければチャネル電流を得ることができず、
空乏層10中で電子・正孔対が発生してしまう。この時
、反転層11を形成するためには、制御ゲート6に電位
を与えなければならず、読み出し動作を行うことにより
軽い書き込み動作(誤書き込み動作)が発生してしまう
という問題点があった。また、書き込み動作中に浮遊ゲ
−17aへの電子注入も軽く起こり、読み出し電流を低
下させるという問題点もあった。
Furthermore, in the read operation, a channel current cannot be obtained unless a depletion layer is created between the inversion layers 11.
Electron/hole pairs are generated in the depletion layer 10. At this time, in order to form the inversion layer 11, it is necessary to apply a potential to the control gate 6, and there is a problem in that a light write operation (erroneous write operation) occurs when a read operation is performed. . Further, there is also the problem that electron injection into the floating gate 17a occurs lightly during the write operation, reducing the read current.

本発明は上記問題点を考慮してなされたものであって、
読み出し時に誤書き込み動作を発生させることがなく、
また書き込み動作中に読み出し電流の低下を生じさせな
い不揮発性半導体記憶装置およびその製造方法を提供す
ることを目的とする。
The present invention has been made in consideration of the above problems, and includes:
No erroneous write operation occurs during reading,
Another object of the present invention is to provide a nonvolatile semiconductor memory device that does not cause a drop in read current during a write operation, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明による不揮発性半導体記憶装置の製造方法は、p
型半導体基板上の所定の領域に第1のn型拡散層を形成
する工程と、p型半導体基板上に第1のゲート酸化膜を
形成する工程と、第1のゲート酸化膜上に第1ポリシリ
コン膜、絶縁膜、および第2ポリシリコン膜を順次積層
する工程と、第1ポリシリコン膜、絶縁膜、および第2
ポリシリコン膜からなる積層膜をパターニングして第1
のn型拡散層の境界の一部を含む近傍領域上にゲート電
極を形成する工程と、ゲート電極直下以外の第1のゲー
ト酸化膜を除去する工程と、p型半導体基板のゲート電
極形成面側に第2のゲート酸化膜および第3ポリシリコ
ン膜を順次積層する工程と、第1のn型拡散層側の第3
ポリシリコン膜を除去する工程と、前記ゲート電極を挟
んで第1のn型拡散層と反対側のp型半導体基板上に第
2のn型拡散層を形成する工程と、前記第1のn型拡散
層中にn型拡散層を形成する工程と、全面に層間絶縁膜
を堆積する工程と、ゲート電極との接続孔および第2の
n型拡散層との接続孔、ならびに第1のn型拡散層とn
型拡散層との共用接続孔をそれぞれ開孔する工程と、開
孔された接続孔に金属を埋め込む工程とを備えているこ
とを特徴とする。
(Means for Solving the Problems) A method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes p
forming a first n-type diffusion layer in a predetermined region on the p-type semiconductor substrate, forming a first gate oxide film on the p-type semiconductor substrate, and forming a first n-type diffusion layer on the first gate oxide film. A step of sequentially stacking a polysilicon film, an insulating film, and a second polysilicon film;
The first layer is patterned by patterning the laminated film made of polysilicon film.
a step of forming a gate electrode on a neighboring region including a part of the boundary of the n-type diffusion layer; a step of removing the first gate oxide film other than directly under the gate electrode; and a step of forming the gate electrode on the gate electrode formation surface of the p-type semiconductor substrate. a process of sequentially laminating a second gate oxide film and a third polysilicon film on the side of the first n-type diffusion layer;
a step of removing the polysilicon film; a step of forming a second n-type diffusion layer on the p-type semiconductor substrate on the opposite side of the first n-type diffusion layer with the gate electrode in between; A step of forming an n-type diffusion layer in the type diffusion layer, a step of depositing an interlayer insulating film on the entire surface, a connection hole with the gate electrode, a connection hole with the second n-type diffusion layer, and the first n-type diffusion layer. type diffusion layer and n
The method is characterized by comprising the steps of respectively opening common connection holes with the mold diffusion layer, and filling the opened connection holes with metal.

本発明による不揮発性半導体記憶装置は、p型半導体基
板上のチャネルとなる領域を挟んでソースおよびドレイ
ンとなるn型拡散層を前記p型半導体基板上に形成し、
ドレインとなるn型拡散層中にp型半導体基板をドレイ
ンとし、ドレインとなるn型拡散層をチャネルとする領
域を挟んでソースとなるn型拡散層を形成し、p型半導
体基板上のチャネルとなる領域の一部とn型拡散層のチ
ャネルとする領域とにまたがるようにゲート酸化膜を介
して第1の浮遊ゲートを形成し、この第1の浮遊ゲート
上に絶縁膜を介して制御ゲートを形成し、ソースとなる
n型拡散層と第1の浮遊ゲトとの間の、p型半導体基板
上のチャネルとなる領域上に、p型半導体基板とはゲー
ト酸化膜を介し、第1の浮遊ゲートとは絶縁膜を介して
第2の浮遊ゲートを形成したことを特徴とする。
A non-volatile semiconductor memory device according to the present invention includes forming an n-type diffusion layer to become a source and a drain on the p-type semiconductor substrate, sandwiching a region to become the channel on the p-type semiconductor substrate;
A p-type semiconductor substrate is used as a drain in an n-type diffused layer that becomes a drain, and an n-type diffused layer that becomes a source is formed with a region that uses the n-type diffused layer that becomes a drain as a channel, and a channel on the p-type semiconductor substrate is formed. A first floating gate is formed via a gate oxide film so as to straddle a part of the region to be used as a channel of the n-type diffusion layer, and a control gate is formed on this first floating gate via an insulating film. The p-type semiconductor substrate is connected to the p-type semiconductor substrate via a gate oxide film on the region that will become the channel between the n-type diffusion layer that forms the gate and becomes the source and the first floating gate. The floating gate is characterized in that a second floating gate is formed with an insulating film interposed therebetween.

(作 用) このように構成された本発明による不揮発性半導体記憶
装置およびその製造方法によれば、ドレインとなる第1
のn型拡散層中にp型の拡散層が形成される。そして書
き込みは第1のn型拡散層とソースとなる第2のn型拡
散層間をチャネルとするn型トランジスタで行わせ、読
み出しはp型半導体基板とn型拡散層間の第1のn型拡
散層をチャネルとするp型トランジスタで行わせること
により読み出し時に誤書き込み動作を発生させることが
なく、又、書き込み動作中に読み出し電流の低下を生じ
させないこととなる。
(Function) According to the nonvolatile semiconductor memory device and the manufacturing method thereof according to the present invention configured as described above, the first
A p-type diffusion layer is formed in the n-type diffusion layer. Writing is performed using an n-type transistor whose channel is between the first n-type diffusion layer and a second n-type diffusion layer serving as a source, and reading is performed using the first n-type diffusion layer between the p-type semiconductor substrate and the n-type diffusion layer. By using a p-type transistor that uses the layer as a channel, an erroneous write operation will not occur during reading, and a drop in read current will not occur during the write operation.

(実施例) 第1図に本発明による不揮発性半導体記憶装置の製造工
程の一実施例を示す。第1図(a)において、p型シリ
コン基板1の表層内にイオン注入によってドレインとな
るn型拡散層2を形成する。
(Example) FIG. 1 shows an example of the manufacturing process of a nonvolatile semiconductor memory device according to the present invention. In FIG. 1(a), an n-type diffusion layer 2 which becomes a drain is formed in the surface layer of a p-type silicon substrate 1 by ion implantation.

その後、熱酸化により数百オングストローム(人)のゲ
ート酸化膜3aを形成し、その上にポリシリコン膜4、
絶縁膜5、およびポリシリコン膜6を順次積層する(第
1図(a)参照)。次にレジストを塗布してマスク(図
示せず)を形成し、このマスクを用いてエツチングを行
って、ポリシリコン膜4、絶縁膜5、およびポリシリコ
ン膜6からなるゲート電極15を形成する(第1図(b
)参照)。なおこの時、ゲート電極15をn型拡散層2
とp型半導体基板1のチャネルとなる領域にまたかるよ
うに形成する。ゲート電極15を形成後、ゲート電極1
5直下の部分を除いてフッ化アンモニウム等を用いてゲ
ート酸化膜3aを除去する(第1図(b)参照)。その
後熱酸化によりゲート酸化膜3bを形成し、その上にポ
リシリコンを堆積してポリシリコン膜7を形成する(第
1図(b)参照)。
Thereafter, a gate oxide film 3a of several hundred angstroms (thickness) is formed by thermal oxidation, and a polysilicon film 4,
An insulating film 5 and a polysilicon film 6 are sequentially laminated (see FIG. 1(a)). Next, a resist is applied to form a mask (not shown), and etching is performed using this mask to form a gate electrode 15 consisting of a polysilicon film 4, an insulating film 5, and a polysilicon film 6 ( Figure 1 (b
)reference). At this time, the gate electrode 15 is connected to the n-type diffusion layer 2.
and a region of p-type semiconductor substrate 1 that will become a channel. After forming the gate electrode 15, the gate electrode 1
The gate oxide film 3a is removed using ammonium fluoride or the like, except for the portion immediately below the gate oxide film 3a (see FIG. 1(b)). Thereafter, a gate oxide film 3b is formed by thermal oxidation, and polysilicon is deposited thereon to form a polysilicon film 7 (see FIG. 1(b)).

RIE(反応性イオンエツチング)を行うことによりゲ
ート電極15の、側面だけにポリシリコン膜7を残す。
By performing RIE (reactive ion etching), polysilicon film 7 is left only on the side surfaces of gate electrode 15.

レジストを塗布してマスク(図示せず)を形成し、この
マスクを用いてn型拡散層側のポリシリコン膜7をCD
E (反応性ドライエツチング)などで除去する。する
とゲート電極15の、n型拡散層2と反対側の側面だけ
にポリシリコン膜7aが残る(第1図(C)参照)。
A resist is applied to form a mask (not shown), and using this mask, the polysilicon film 7 on the n-type diffusion layer side is formed by CD.
Remove by E (reactive dry etching) etc. Then, the polysilicon film 7a remains only on the side surface of the gate electrode 15 opposite to the n-type diffusion layer 2 (see FIG. 1(C)).

その後、イオン注入することによりn型拡散層2中にn
型拡散層9を形成するとともに、p型半導体基板1のチ
ャネルとなる領域をn型拡散層2と挾むようにソースと
なるn型拡散層8をそれぞれ形成する(第1図(C)参
照)。そして層間絶縁膜20を堆積し、n型拡散層2と
n型拡散層9との共用接続孔、およびゲート電極15と
の接続孔、ならびにn型拡散層8との接続孔を開孔し、
これらの接続孔にAllなどの金属を埋め込み、電極2
1a、21b、21cを形成する(第1図(d)参照)
Thereafter, ions are implanted into the n-type diffusion layer 2.
At the same time as forming the type diffusion layer 9, the n-type diffusion layer 8 which becomes the source is formed so as to sandwich the region of the p-type semiconductor substrate 1 which becomes the channel with the n-type diffusion layer 2 (see FIG. 1C). Then, an interlayer insulating film 20 is deposited, and a common connection hole between the n-type diffusion layer 2 and the n-type diffusion layer 9, a connection hole with the gate electrode 15, and a connection hole with the n-type diffusion layer 8 are opened,
Fill these connection holes with metal such as Al, and connect the electrode 2.
1a, 21b, and 21c are formed (see FIG. 1(d)).
.

第2図に本発明による不揮発性半導体記憶装置の一実施
例を示す。この実施例の不揮発性半導体記憶装置(以下
、半導体装置という)は、p型シリコン基板1の表面層
内に、チャネルとなる領域を挟んでn型トランジスタの
ドレインおよびソースとなるn型拡散層2および8が形
成されている。
FIG. 2 shows an embodiment of a nonvolatile semiconductor memory device according to the present invention. The non-volatile semiconductor memory device (hereinafter referred to as a semiconductor device) of this embodiment has an n-type diffusion layer 2 that serves as the drain and source of an n-type transistor in the surface layer of a p-type silicon substrate 1, with a region that will become a channel sandwiched therebetween. and 8 are formed.

そして、ドレインとなるn型拡散層2の一部にp型トラ
ンジスタのソースとなるn型拡散層9が形成されている
。また、p型シリコン基板1のチャネルとなる領域とn
型拡散層2とにまたがるように形成されたゲート酸化膜
3a上にポリシリコンからなる浮遊ゲート4、絶縁膜5
、およびポリシリコンからなる制御ゲート6を有するゲ
ート電極15が形成されている。そして、ソースとなる
n型拡散層8と浮遊ゲート4との間に絶縁膜3bを介し
てポリシコンからなる浮遊ゲート7aが配置されている
An n-type diffusion layer 9, which will become a source of a p-type transistor, is formed in a part of the n-type diffusion layer 2, which will become a drain. In addition, a region that becomes a channel of the p-type silicon substrate 1 and an n
A floating gate 4 made of polysilicon and an insulating film 5 are formed on the gate oxide film 3a formed so as to span the type diffusion layer 2.
, and a gate electrode 15 having a control gate 6 made of polysilicon. A floating gate 7a made of polysilicon is placed between the n-type diffusion layer 8 serving as a source and the floating gate 4 with an insulating film 3b interposed therebetween.

次に、上記実施例の半導体装置の書き込みおよび読み出
しの動作原理を第3図および第4図を用いて説明する。
Next, the operating principle of writing and reading of the semiconductor device of the above embodiment will be explained with reference to FIGS. 3 and 4.

第3図において、書き込み時は、制御ゲート6に10数
Vの電圧を印加し、n型拡散層2とn型拡散層9を同電
位で数Vの電圧を印加する。そしてp型シリコン基板1
とソースとなるn型拡散層8を接地する。この時、容量
比により浮遊ゲート4および7aにプラスの電位が生じ
、反転層11が形成される。そして、ドレインとなるn
型拡散層2に印加された数Vの電圧のほとんどは、絶縁
物3b直下のp型シリコン基板1に生じている空乏層1
0に掛り、高電界を生じる。このため空乏層10中で電
子および正孔が発生し、電子は浮遊ポリシリコンゲート
4にゲート酸化膜3aを通して注入される。
In FIG. 3, during writing, a voltage of several tens of volts is applied to the control gate 6, and a voltage of several volts is applied to the n-type diffusion layer 2 and the n-type diffusion layer 9 at the same potential. and p-type silicon substrate 1
The n-type diffusion layer 8, which becomes the source, is grounded. At this time, a positive potential is generated in floating gates 4 and 7a due to the capacitance ratio, and inversion layer 11 is formed. Then, n becomes the drain.
Most of the voltage of several volts applied to the type diffusion layer 2 is absorbed by the depletion layer 1 generated in the p-type silicon substrate 1 directly under the insulator 3b.
0, producing a high electric field. Therefore, electrons and holes are generated in depletion layer 10, and the electrons are injected into floating polysilicon gate 4 through gate oxide film 3a.

これに対して読み出し時は、第4図に示すように制御ゲ
ート6、およびn型拡散層8、ならびにp型シリコン基
板1を接地し、ドレイン、となるn型拡散層2、および
n型拡散層9を同電位とし、数■の電圧を印加する。こ
の時、浮遊ゲート4に電子が注入されていなければ正孔
の反転層10が形成されず、電流は流れない。また、電
子が注入されていれば正孔の反転層12が形成され、n
型拡散層9、反転層12、p型シリコン基板の径路で電
流が流れる。
On the other hand, at the time of reading, as shown in FIG. Layer 9 is brought to the same potential and a voltage of several square meters is applied. At this time, if electrons are not injected into the floating gate 4, the hole inversion layer 10 will not be formed and no current will flow. Furthermore, if electrons are injected, a hole inversion layer 12 is formed, and n
A current flows through the path between the type diffusion layer 9, the inversion layer 12, and the p-type silicon substrate.

以上述べたことから本実施例によれば、書き込みは、ド
レインとなるn型拡散層2とソースとなるn型拡散層8
との間をチャネルとするn型トランジスタで行い、読み
出しはp型シリコン基板1とソースとなるn型拡散層9
との間のn型拡散層2をチャネルとするp型トランジス
タで行うことにより読み出し時の誤書き込みを生じさせ
ないばかりでなく書き込み動作中に読み出し電流の低下
を生じさせないこととなる。
As described above, according to this embodiment, writing is performed between the n-type diffusion layer 2 which becomes the drain and the n-type diffusion layer 8 which becomes the source.
Reading is performed by an n-type transistor whose channel is between the p-type silicon substrate 1 and the n-type diffusion layer 9 that serves as the source.
By using a p-type transistor whose channel is the n-type diffusion layer 2 between the write operation and the write operation, not only does erroneous writing during reading not occur, but also no drop in read current occurs during the write operation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、読み出し時に誤書き込み動作を発生さ
せないばかりでなく、書き込み動作中に読み出し電流の
低下を生じさせないことにより信頼性の向上を計ること
ができる。
According to the present invention, reliability can be improved by not only preventing an erroneous write operation from occurring during a read operation, but also preventing a drop in read current from occurring during a write operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による不揮発性半導体記憶装置の製造工
程を示す断面図、第2図は本発明による不揮発性半導体
記憶装置の一実施例を示す断面図、第3図および第4図
は本発明による不揮発性半導体記憶装置の動作を説明す
る断面図、第5図は従来の不揮発性半導体記憶装置を示
す断面図、第6図は従来の不揮発性半導体記憶装置の動
作を説明する断面図である。 1・・・p型シリコン基板、2・・・n型拡散層(ドレ
イン)、3a・・・ゲート酸化膜、4・・・ポリシリコ
ン膜(浮遊ゲート)、5・・・絶縁膜、6・・・ポリシ
リコン膜(制御ゲート)、7・・・ポリシリコン膜、7
a・・・浮遊ゲート、8・・・n型拡散層(ソース)、
9・・・n型拡散層、15・・・ゲート電極、20・・
・層間絶縁膜、21 a s 2 l b % 21 
c ・・・電極。 出願人代理人  佐  藤  −雄
FIG. 1 is a cross-sectional view showing the manufacturing process of a non-volatile semiconductor memory device according to the present invention, FIG. 2 is a cross-sectional view showing an embodiment of the non-volatile semiconductor memory device according to the present invention, and FIGS. FIG. 5 is a cross-sectional view illustrating the operation of the non-volatile semiconductor memory device according to the invention; FIG. 5 is a cross-sectional view illustrating the conventional non-volatile semiconductor memory device; FIG. be. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... N-type diffusion layer (drain), 3a... Gate oxide film, 4... Polysilicon film (floating gate), 5... Insulating film, 6... ...Polysilicon film (control gate), 7...Polysilicon film, 7
a: floating gate, 8: n-type diffusion layer (source),
9... N-type diffusion layer, 15... Gate electrode, 20...
・Interlayer insulating film, 21 a s 2 l b % 21
c...electrode. Applicant's agent Mr. Sato

Claims (1)

【特許請求の範囲】 1、p型半導体基板上の所定に領域の第1のn型拡散層
を形成する工程と、前記p型半導体基板上に第1のゲー
ト酸化膜を形成する工程と、前記第1のゲート酸化膜上
に第1ポリシリコン膜、絶縁膜、および第2ポリシリコ
ン膜を順次積層する工程と、前記第1ポリシリコン膜、
絶縁膜、および第2ポリシリコン膜からなる積層膜をパ
ターニングして前記第1のn型拡散層の境界の一部を含
む近傍領域上にゲート電極を形成する工程と、前記ゲー
ト電極直下以外の前記第1のゲート酸化膜を除去する工
程と、前記p型半導体基板のゲート電極形成面側に第2
のゲート酸化膜および第3ポリシリコン膜を順次積層す
る工程と、前記第1のn型拡散層側の第3ポリシリコン
膜を除去する工程と、前記ゲート電極を挟んで第1のn
型拡散層と反対側のp型半導体基板上に第2のn型拡散
層を形成する工程と、前記第1のn型拡散層中にp型拡
散層を形成する工程と、全面に層間絶縁膜を堆積する工
程と、前記ゲート電極との接続孔および前記第2のn型
拡散層との接続孔、ならびに前記第1のn型拡散層とp
型拡散層との共用接続孔をそれぞれ開孔する工程と、開
孔された接続孔に金属を埋め込む工程とを備えているこ
とを特徴とする不揮発性半導体記憶装置の製造方法。 2、p型半導体基板上のチャネルとなる領域を挟んでソ
ースおよびドレインとなるn型拡散層を前記p型半導体
基板上に形成し、前記ドレインとなるn型拡散層中に前
記p型半導体基板をドレインとし、前記ドレインとなる
n型拡散層をチャネルとする領域を挟んでソースとなる
p型拡散層を形成し、前記p型半導体基板上のチャネル
となる領域の一部と前記n型拡散層のチャネルとする領
域とにまたがるようにゲート酸化膜を介して第1の浮遊
ゲートを形成し、この第1の浮遊ゲート上に絶縁膜を介
して制御ゲートを形成し、前記ソースとなるn型拡散層
と第1の浮遊ゲートとの間の、前記p型半導体基板上の
チャネルとなる領域上に、前記p型半導体基板とはゲー
ト酸化膜を介し、前記第1の浮遊ゲートとは絶縁膜を介
して第2の浮遊ゲートを形成したことを特徴とする不揮
発性半導体記憶装置。
[Claims] 1. A step of forming a first n-type diffusion layer in a predetermined region on a p-type semiconductor substrate; a step of forming a first gate oxide film on the p-type semiconductor substrate; a step of sequentially laminating a first polysilicon film, an insulating film, and a second polysilicon film on the first gate oxide film, the first polysilicon film,
patterning a laminated film consisting of an insulating film and a second polysilicon film to form a gate electrode on a neighboring region including a part of the boundary of the first n-type diffusion layer; removing the first gate oxide film; and removing a second gate oxide film on the gate electrode forming surface side of the p-type semiconductor substrate.
a step of sequentially stacking a gate oxide film and a third polysilicon film; a step of removing the third polysilicon film on the side of the first n-type diffusion layer;
A step of forming a second n-type diffusion layer on the p-type semiconductor substrate on the opposite side to the type diffusion layer, a step of forming a p-type diffusion layer in the first n-type diffusion layer, and an interlayer insulating layer on the entire surface. a step of depositing a film, a connection hole with the gate electrode, a connection hole with the second n-type diffusion layer, and a connection hole with the first n-type diffusion layer;
1. A method of manufacturing a nonvolatile semiconductor memory device, comprising the steps of: opening common connection holes with a type diffusion layer; and filling the opened connection holes with metal. 2. Form an n-type diffusion layer that will become a source and a drain on the p-type semiconductor substrate across a region that will become a channel on the p-type semiconductor substrate, and form the p-type semiconductor substrate in the n-type diffusion layer that will become the drain. forming a p-type diffusion layer serving as a source across a region in which the n-type diffusion layer serving as the drain serves as a drain, and a region serving as a channel on the p-type semiconductor substrate and a portion of the n-type diffusion layer serving as a channel on the p-type semiconductor substrate. A first floating gate is formed via a gate oxide film so as to span the region of the layer that is to be a channel, a control gate is formed on the first floating gate via an insulating film, and the n A region between the type diffusion layer and the first floating gate, which will become a channel on the p-type semiconductor substrate, is connected to the p-type semiconductor substrate through a gate oxide film and is insulated from the first floating gate. A nonvolatile semiconductor memory device characterized in that a second floating gate is formed through a film.
JP17354288A 1988-07-12 1988-07-12 Non-volatile semiconductor memory device and manufacture thereof Pending JPH0223671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17354288A JPH0223671A (en) 1988-07-12 1988-07-12 Non-volatile semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17354288A JPH0223671A (en) 1988-07-12 1988-07-12 Non-volatile semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0223671A true JPH0223671A (en) 1990-01-25

Family

ID=15962462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17354288A Pending JPH0223671A (en) 1988-07-12 1988-07-12 Non-volatile semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0223671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533546A (en) * 1991-07-25 1993-02-09 Sanyo Electric Co Ltd Hinge
US5488245A (en) * 1993-03-19 1996-01-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device capable of electrically erasing and writing information
JPH10184115A (en) * 1996-10-04 1998-07-14 Federal Hoffmann Inc Handle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533546A (en) * 1991-07-25 1993-02-09 Sanyo Electric Co Ltd Hinge
US5488245A (en) * 1993-03-19 1996-01-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device capable of electrically erasing and writing information
US5683923A (en) * 1993-03-19 1997-11-04 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device capable of electrically erasing and writing information and a manufacturing method of the same
JPH10184115A (en) * 1996-10-04 1998-07-14 Federal Hoffmann Inc Handle device

Similar Documents

Publication Publication Date Title
EP0305741B1 (en) Semiconductor device with floating gate
US4945068A (en) Manufacturing method of semiconductor nonvolatile memory device
JP4225728B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPH0883854A (en) Fabrication of semiconductor device
JPH08330454A (en) Floating gate type nonvolatile semiconductor storage device
US6872624B2 (en) Method of fabricating nonvolatile semiconductor memory device
KR930001888B1 (en) Non-volatile semiconductor memory device
JPH0223671A (en) Non-volatile semiconductor memory device and manufacture thereof
JPH0334578A (en) Nonvolatile semiconductor storage device and manufacture thereof
JPS60113460A (en) Dynamic memory element
JPS6329979A (en) Semiconductor memory device
JPH04349670A (en) Manufacture of nonvolatile semiconductor storage device
JPH07312394A (en) Nonvolatile memory and its manufacturing method
JPS6358876A (en) Non-volatile semiconductor device
JP2950557B2 (en) Semiconductor device and manufacturing method thereof
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH0227773A (en) Manufacture of nonvolatile semiconductor memory
JPS60113461A (en) Manufacture of semiconductor device
JP2755579B2 (en) Manufacturing method of semiconductor nonvolatile memory device
JP2797466B2 (en) Nonvolatile semiconductor memory device
JPH02180079A (en) Semiconductor nonvolatile memory and manufacture thereof
JPH1174388A (en) Semiconductor device and manufacture therefor
JPH06302783A (en) Semiconductor storage device
JP3141492B2 (en) Method for manufacturing nonvolatile memory element
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory