JPH0223639A - Diamond multilayer circuit substrate - Google Patents

Diamond multilayer circuit substrate

Info

Publication number
JPH0223639A
JPH0223639A JP17259488A JP17259488A JPH0223639A JP H0223639 A JPH0223639 A JP H0223639A JP 17259488 A JP17259488 A JP 17259488A JP 17259488 A JP17259488 A JP 17259488A JP H0223639 A JPH0223639 A JP H0223639A
Authority
JP
Japan
Prior art keywords
diamond
substrate
multilayer
multilayer circuit
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17259488A
Other languages
Japanese (ja)
Other versions
JP2689986B2 (en
Inventor
Kazuaki Kurihara
和明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63172594A priority Critical patent/JP2689986B2/en
Publication of JPH0223639A publication Critical patent/JPH0223639A/en
Application granted granted Critical
Publication of JP2689986B2 publication Critical patent/JP2689986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To make the thermal resistance of a circuit substrate low and increase a heat radiation property and then, contrive high performance, high reliability, and simplification of maintenance services by forming a diamond interlayer insulation layer between a base substrate and multilayer interconnection with a vapor phase synthetic technique. CONSTITUTION:A multilayer circuit substrate is composed of: a diamond base substrate 1; wiring layers 2, 3, 4 and 5; and diamond interlayer insulation layers 6, 7 and 8. The base substrate 1 and the interlayer insulation layers 6, 7 and 8 consist of films which are manufactured by a vapor phase synthetic technique and then, its technique synthesizes diamond on the substrate at great speed in such a way that a reaction gas (hydrocarbon gas and hydrogen gas) is blown out as a plasma jet by D.C. arc discharge with a D.C. plasma jet CVD process and its process makes the above gas collide with a substrate which is cooled down properly. The resultant thermal resistance of a diamond multilayer substrate is about one-eighty as large as the thermal resistance of the substrate where alumina and dielectric glass are used for a base substrate and an interlayer insulating layer respectively and then, the diamond multilayer substrate has an exceedingly high heat radiation effect in comparison with conventional multilayer circuit substrates having the same construction of the substrate.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置搭載用多層回路基板、より詳しくは、ダイヤ
モンドの絶縁性と放熱特性とを利用したダイヤモンドの
多層回路基板に関し、 従来よりも熱伝導率の高い多層回路基板を提供し、かつ
極めて高い素子実装密度の高性能電子機器に適する多層
回路基板を提供することを目的とし、 気相合成法によって作製されたダイヤモンド下地基板と
、該下地基板の表面上に形成された多層配線と、これら
多層配線の間にあって気相合成法によって形成されたダ
イヤモンドの層間絶縁層とからなることを特徴とするダ
イヤモンド多層回路基板に構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a multilayer circuit board for mounting semiconductor devices, more specifically, a diamond multilayer circuit board that utilizes the insulating properties and heat dissipation properties of diamond. With the aim of providing circuit boards and multilayer circuit boards suitable for high-performance electronic devices with extremely high element packaging density, we have developed a diamond base substrate produced by vapor phase synthesis, and A diamond multilayer circuit board is constructed, comprising the formed multilayer wiring and a diamond interlayer insulating layer formed by vapor phase synthesis between the multilayer wiring.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置搭載用多層回路基板、より詳しく
は、ダイヤモンドの絶縁性と放熱特性とを利用したダイ
ヤモンドの多層回路基板に関する。
The present invention relates to a multilayer circuit board for mounting semiconductor devices, and more particularly, to a multilayer circuit board made of diamond that utilizes the insulating properties and heat dissipation properties of diamond.

〔従来の技術〕[Conventional technology]

科学技術計算用の超高速コンピュータ(いわゆるスーパ
ーコンピュータ)等の高性能電子機器では、その性能を
上げるために、半導体素子(装置)を高密度に実装しな
ければならず、素子の発熱が多くなり、この発熱をいか
に逃がす(放熱する)かが重要な問題である。
In high-performance electronic devices such as ultra-high-speed computers for scientific and technical calculations (so-called supercomputers), in order to improve their performance, semiconductor elements (devices) must be mounted in high density, which causes the elements to generate a lot of heat. An important issue is how to release (radiate) this heat.

従来、半導体素子を直接載せる基板(多層回路基板)に
はアルミナ(熱伝導率20W/mK)製が多く、それよ
りも熱伝導率の高い窒化アルミナや炭化珪素(熱伝導率
200W/mK)製を、近年、用いるようにもなってき
た。
Conventionally, substrates (multilayer circuit boards) on which semiconductor elements are directly mounted are often made of alumina (thermal conductivity 20 W/mK), but are also made of alumina nitride or silicon carbide (thermal conductivity 200 W/mK), which have higher thermal conductivity. has come to be used in recent years.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

現状では、さらに熱伝導率の高い材料で作られた回路基
板が求められている。
Currently, there is a demand for circuit boards made of materials with even higher thermal conductivity.

また、高性能電子機器における実装では、放熱の他に半
導体素子間の高密度配線も考慮する必要がある。従来は
放熱サイドと配線サイドを素子に対して分離する方法(
例えば、素子の表側を配線サイドとし裏側から冷却する
)を採用することが多く、この場合には、実装形態がた
いへん複雑となる欠点があった。
Furthermore, when mounting in high-performance electronic equipment, it is necessary to consider not only heat radiation but also high-density wiring between semiconductor elements. Conventionally, the method of separating the heat dissipation side and the wiring side with respect to the element (
For example, it is often the case that the front side of the device is used as the wiring side and the device is cooled from the back side.In this case, there is a drawback that the mounting form becomes very complicated.

本発明の目的は、従来よりも熱伝導率の高い多層回路基
板を提供し、かつ極めて高い素子実装密度の高性能電子
機器に適する多層回路基板を提供することである。
An object of the present invention is to provide a multilayer circuit board that has higher thermal conductivity than conventional ones and is suitable for high-performance electronic equipment with extremely high element packaging density.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的が、気相合成法によって作製されたダイヤモ
ンド下地基板と、該下地基板の表面上に形成された多層
配線と、これら多層配線の間にあって気相合成法によっ
て形成されたダイヤモンドの層間絶縁層とからなること
を特徴とするダイヤモンド多層回路基板によって達成さ
れる。
The above purpose is to provide a diamond base substrate produced by vapor phase synthesis, a multilayer wiring formed on the surface of the base substrate, and a diamond interlayer insulation formed by vapor phase synthesis between these multilayer wiring. This is achieved by a diamond multilayer circuit board characterized in that it consists of layers.

〔作 用〕[For production]

ダイヤモンドは、その熱伝導率が2,0OOW/mKと
窒化アルミや炭化珪素の10倍、冬さらに銅の4倍にも
相当するほど大きいので、放熱性の優れた多層回路基板
が得られる。また、ダイモンドは絶縁性も優れ、かつ低
誘導率(5〜6)であるので、これらの点からも多層回
路基板として望ましい。
Diamond has a thermal conductivity of 2,000 W/mK, which is 10 times that of aluminum nitride and silicon carbide, and four times that of copper, so a multilayer circuit board with excellent heat dissipation can be obtained. Additionally, diamond has excellent insulation properties and a low dielectric constant (5 to 6), so it is desirable as a multilayer circuit board from these points as well.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の実施態様例によって
本発明をより詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in more detail by way of embodiments with reference to the accompanying drawings.

第1図は本発明に係るダイヤモンド多層回路基板の部分
断面図であり、該多層回路基板はダイヤモンド下地基板
1と、配線層2. 3. 4および5と、ダイヤモンド
層間絶縁層6.7および8とからなる。
FIG. 1 is a partial sectional view of a diamond multilayer circuit board according to the present invention, and the multilayer circuit board includes a diamond base substrate 1, a wiring layer 2. 3. 4 and 5, and diamond interlayer insulating layers 6.7 and 8.

下地基板1および層間絶縁層6. 7. 8はダイヤモ
ンドの気相合成法で作られる膜であり、特に本出願人が
特願昭62−83318号および62−220437号
の特許出願にて提案したダイヤモンドの気相合成方法(
以下、直流プラズマジェットCVD法と呼ぶ)を用いて
製膜するのが好ましい。この直流プラズマジェッ)CV
D法においては、反応ガス(炭化水素ガスおよび水素ガ
ス)を直流アーク放電によりプラズマジェットとして噴
出させ、これを冷却した適切な基板にぶつけて、ダイヤ
モンドを基板上に高速に合成させることができる。
Base substrate 1 and interlayer insulating layer 6. 7. 8 is a film made by a diamond vapor phase synthesis method, and in particular, the diamond vapor phase synthesis method proposed by the present applicant in patent applications No. 62-83318 and No. 62-220437
It is preferable to form the film using a direct current plasma jet CVD method (hereinafter referred to as DC plasma jet CVD method). This DC plasma jet)CV
In the D method, reactive gases (hydrocarbon gas and hydrogen gas) are ejected as a plasma jet by direct current arc discharge, and the plasma jet is bombarded with a suitable cooled substrate, thereby making it possible to synthesize diamond on the substrate at high speed.

多層配線2. 3. 4はダイヤモンド層間絶縁層6、
 7. 8によって被覆されることになるので、モリブ
デン(L) 、タングステン(W)、これら金属のシリ
サイドなど高融点導体材料で作られる。
Multilayer wiring 2. 3. 4 is a diamond interlayer insulating layer 6;
7. 8, it is made of a high melting point conductive material such as molybdenum (L), tungsten (W), or silicide of these metals.

そして、最上層の配線5は素子との接続が容易にかつ確
実にできるように金(Au) 、アルミニウム(A1)
などの金属で作られるのが好ましく、例えば、第1図に
示すように、チタン(TI)層5A、白金(pt)層5
BおよびAu層5Cの三層構造の密着力の高い配線5と
することができる。
The wiring 5 on the top layer is made of gold (Au) or aluminum (A1) so that it can be easily and reliably connected to the elements.
For example, as shown in FIG. 1, titanium (TI) layer 5A, platinum (PT) layer 5A, etc.
The wiring 5 can have a three-layer structure of B and Au layers 5C with high adhesion.

本発明に係る多層回路基板が次のようにして直流プラズ
マジェッ)CVD装置(第2図)を用いて次のように製
造される。
A multilayer circuit board according to the present invention is manufactured as follows using a DC plasma jet CVD apparatus (FIG. 2).

この直流プラズマジェッ)CVD装置は、真空ポンプ(
図示せず)の排気系につながった排気管11を有するチ
ャンバ12の内部に、プラズマトーチ13、基板ホルダ
14および基板マニニプレーク15を備えている。プラ
ズマトーチ13はアークを発生させる直流電源16に接
続され、原料ガスの導入管17および冷却水用管18が
取付けられ、さらに、チャンバ12の天井からトーチマ
ニュプレーク19によって可動に投首されている。
This DC plasma jet) CVD equipment uses a vacuum pump (
A plasma torch 13, a substrate holder 14, and a substrate manifold plate 15 are provided inside a chamber 12 having an exhaust pipe 11 connected to an exhaust system (not shown). The plasma torch 13 is connected to a DC power supply 16 that generates an arc, has a raw material gas introduction pipe 17 and a cooling water pipe 18 attached, and is movably extended from the ceiling of the chamber 12 by a torch manipulator 19. .

プラズマトーチ13の下方にある基板ホルダ14は冷却
水用管21が取付けられかつその下の基板マニュプレー
タ15によって前後・左右・上下方向に移動可能となっ
ている。
A cooling water pipe 21 is attached to a substrate holder 14 located below the plasma torch 13, and the substrate holder 14 is movable back and forth, left and right, and up and down by a substrate manipulator 15 below.

まず、上述した直流プラズマジェッ)CVD装置(第2
図)の基板ホルダ14の上にシリコン基板(50x50
xl舶)22を搭載した。チャンバ12内部を排気して
から原料ガスとして水素ガス(50A/m1n)および
メタンガス(0,84! /m1n)を導入管17を通
してプラズマトーチ13へ流し、チャンバ12内圧力を
減圧状態(50Torr)に維持した。
First, the above-mentioned DC plasma jet) CVD equipment (second
A silicon substrate (50x50
xl ship) 22. After exhausting the inside of the chamber 12, hydrogen gas (50A/m1n) and methane gas (0.84!/m1n) are flowed as raw material gases through the introduction pipe 17 to the plasma torch 13, and the pressure inside the chamber 12 is reduced to a reduced pressure state (50 Torr). Maintained.

直流電源16よりプラズマトーチ13の陽極および陰極
(図示せず)間に直流電流(5kW)を流してアークを
発生させ、プラズマジェット24を発生させた。シリコ
ン基板22とプラズマトーチ13との距離を一定(40
+nm)に保って、基板マニュプレータ15によって前
後・左右に移動させながらダイヤモンド膜をシリコン基
板22上に合成く形成した)。合成時間20時間で厚さ
1.2mmのダイヤモンド膜を作製した。そして、CV
D装置から取出し、YへGレーダによってダイヤモンド
膜を所定寸法(40X 40 mm )にカットし、シ
リコン基板22よりはがし、ダイヤモンド表面を研摩し
してダイヤモンド下地基板1  (40X40 X 1
. Omm)を得た。
A DC current (5 kW) was passed between the anode and cathode (not shown) of the plasma torch 13 from the DC power supply 16 to generate an arc and generate a plasma jet 24 . The distance between the silicon substrate 22 and the plasma torch 13 is kept constant (40
+nm) and was moved back and forth and left and right by the substrate manipulator 15 to form a diamond film on the silicon substrate 22). A diamond film with a thickness of 1.2 mm was produced in a synthesis time of 20 hours. And CV
Take it out from the D device, cut the diamond film to a predetermined size (40 x 40 mm) using the G radar, peel it off from the silicon substrate 22, and polish the diamond surface to form a diamond base substrate 1 (40 x 40 x 1).
.. Omm) was obtained.

次に、第3A図に示すように、ダイヤモンド下地基板1
上に真空蒸着(又はスパッタリング)によってW層(厚
さ5馳)を全面形成し、フォトリングラフイーによって
所定配線パターン(線幅20μ、線間隙125ja)の
第1配線2を形成した。
Next, as shown in FIG. 3A, the diamond base substrate 1
A W layer (5 mm thick) was formed on the entire surface by vacuum evaporation (or sputtering), and the first wiring 2 of a predetermined wiring pattern (line width 20 μm, line gap 125 ja) was formed by photophosphorography.

そして、再び直流プラズマジェッ)CVD装置内にセッ
トして、第3B図に示すように、第1配線2を覆うよう
に下地基板1を含必全面に上述した直流プラズマジェッ
トCVD法によってダイヤモンド膜(厚さ50廂)の第
1層間絶縁層6を形成した。このときのダイヤモンドの
製膜条件は、メタンガスを0.5β/min 、そして
、基板・トーチ間距離を50mmとした他は同じにして
、下地基板のダイヤモンド結晶粒よりも細かいダイヤモ
ンド膜が得られた。そして、配線相互間のコンタクトを
とるためのバイアホールの位置にYAGレーザを酸素含
有雰囲気下で照射してその部分を焼失させて、バイアホ
ール9を形成した。このときに、バイアホールの表面は
グラファイト化されて導電性を有するので、都合良い。
Then, it is set in the DC plasma jet CVD apparatus again, and as shown in FIG. A first interlayer insulating layer 6 having a thickness of 50 cm was formed. The diamond film forming conditions at this time were the same except that methane gas was used at 0.5β/min and the distance between the substrate and the torch was 50 mm, and a diamond film that was finer than the diamond crystal grains on the base substrate was obtained. . Then, the via hole 9 was formed by irradiating a YAG laser in an oxygen-containing atmosphere to the position of the via hole for making contact between the wirings to burn out that part. At this time, the surface of the via hole is graphitized and has conductivity, which is convenient.

第3C図に示すように、上述したW配線形成、ダイヤモ
ンド層間絶縁層形成およびバイアホール形成を繰り返し
て、第2配線3、第2層間絶縁層7、第3配線4、第3
層間絶縁層8およびパイヤホール10を形成した。
As shown in FIG. 3C, by repeating the above-described W wiring formation, diamond interlayer insulation layer formation, and via hole formation, the second wiring 3, the second interlayer insulation layer 7, the third wiring 4, and the third
An interlayer insulating layer 8 and a pie hole 10 were formed.

次に、最上層の配線5として、第1図に示すように、T
1層(0,5r厚)5A、Pt層(1gn厚)5Bおよ
びAu層(5r厚)5Cの三層構造配線を公知の方法で
形成した。配線5として別な層構造でも形成できる。こ
のようにして本発明に係るダイヤモンド多層回路基板が
得られた。
Next, as the uppermost layer wiring 5, as shown in FIG.
A three-layer wiring structure consisting of a single layer (0.5r thickness) 5A, a Pt layer (1gn thickness) 5B, and an Au layer (5r thickness) 5C was formed by a known method. The wiring 5 can also be formed with a different layer structure. In this way, a diamond multilayer circuit board according to the present invention was obtained.

作成した多層回路基板31をマルチチップキャリアに応
用した例を第4図に示す。この場合には、ダイヤモンド
多層回路基板(40X40 X 1.15mm) 31
の表面に半導体素子チップ(5×5ωmサイズ)32を
複数個(9個)AH−5uはんだでグイボンディングし
、チップ32のパッドと回路基板31の最上層配線とを
ワイヤー33(AIワイヤ〉で接続した。
FIG. 4 shows an example in which the produced multilayer circuit board 31 is applied to a multichip carrier. In this case, a diamond multilayer circuit board (40X40X1.15mm) 31
A plurality (9 pieces) of semiconductor element chips (5 x 5 ωm size) 32 are bonded to the surface of the board using AH-5U solder, and the pads of the chip 32 and the top layer wiring of the circuit board 31 are connected using wires 33 (AI wires). Connected.

チップを保護するために、アルミ製キャップ34が取付
けられ、そして接続のためにピン(Be −Cu製、2
.5 mmピッチで2列に、計128本)35が付けら
れていた。
An aluminum cap 34 is installed to protect the chip, and pins (made of Be-Cu, 2
.. A total of 128) 35 were attached in two rows at a 5 mm pitch.

得られたダイヤモンド多層回路基板の熱抵抗を調べたと
ころ、従来の同様な構成の多層回路基板と比較して、下
地基板にアルミナを、層間絶縁層に誘電体ガラスを用い
た基板の約1780と、また、下地基板にSicを、層
間絶縁層にシリカガラスを用いた基板の約176と小さ
く、極めて放熱効果の高いことがわかった。
When we investigated the thermal resistance of the resulting diamond multilayer circuit board, we found that it was approximately 1,780 yen lower than that of a conventional multilayer circuit board with a similar configuration, and that of a board that uses alumina for the base substrate and dielectric glass for the interlayer insulating layer. Moreover, it was found that the substrate using SIC as the base substrate and silica glass as the interlayer insulating layer was as small as about 176 mm, and had an extremely high heat dissipation effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多層回路基板はあらゆる物質中で最も
熱伝導率の高いダイヤモンドを使用しているので、回路
基板の熱抵抗が極めて小さく、放熱性に優れており、発
熱量の多い高速素子や、集積度の高い素子を実装する超
大型コンピュータ、スーパーコンピュータなどにおいて
使用するのに適し、高性能化、高信頼性化、保守の簡素
化に寄与する。
According to the present invention, the multilayer circuit board uses diamond, which has the highest thermal conductivity of all materials, so the circuit board has extremely low thermal resistance and excellent heat dissipation, and is capable of handling high-speed elements that generate a large amount of heat. It is suitable for use in ultra-large computers, supercomputers, etc. that implement highly integrated elements, and contributes to higher performance, higher reliability, and simpler maintenance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るダイヤモンド多層回路基板の部
分断面図であり、 第2図は、直流プラズマジェットCVD法のダイヤモン
ド気相合成装置の概略図であり、第3A図、第3B図お
よび第3C図は、本発明に係るダイヤモンド多層回路基
板の製造工程を説明する該回路基板の部分断面図であり
、第4図は、本発明に係るダイヤモンド多層回路基板を
用いたマルチツブキャリアの概略断面図である。 1・・・ダイヤモンド下地基板、 2、3.4.5・・・配線、 6、7.8・・・ダイヤモンド層間絶縁層。 本発明のダイヤモンド多層回路基板の断面図第1図 6.7.8 ターイヤモンド層間杷祿I曽 第3A図 第3B図 13C図 第 図
FIG. 1 is a partial sectional view of a diamond multilayer circuit board according to the present invention, FIG. 2 is a schematic diagram of a diamond vapor phase synthesis apparatus using the DC plasma jet CVD method, and FIGS. 3A, 3B, and FIG. 3C is a partial sectional view of a diamond multilayer circuit board according to the present invention, illustrating the manufacturing process of the circuit board, and FIG. 4 is a schematic diagram of a multitub carrier using the diamond multilayer circuit board according to the present invention. FIG. 1... Diamond base substrate, 2, 3.4.5... Wiring, 6, 7.8... Diamond interlayer insulating layer. Cross-sectional view of the diamond multilayer circuit board of the present invention Fig. 1 6.7.8 Fig. 3A Fig. 3B Fig. 13C Fig.

Claims (1)

【特許請求の範囲】[Claims] 1.気相合成法によって作製されたダイヤモンド下地基
板と、該下地基板の表面上に形成された多層配線と、こ
れら多層配線の間にあって気相合成法によって形成され
たダイヤモンドの層間絶縁層とからなることを特徴とす
るダイヤモンド多層回路基板。
1. Consisting of a diamond base substrate produced by vapor phase synthesis, multilayer wiring formed on the surface of the base substrate, and a diamond interlayer insulating layer formed by vapor phase synthesis between these multilayer interconnects. A diamond multilayer circuit board featuring:
JP63172594A 1988-07-13 1988-07-13 Electronic equipment Expired - Lifetime JP2689986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172594A JP2689986B2 (en) 1988-07-13 1988-07-13 Electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172594A JP2689986B2 (en) 1988-07-13 1988-07-13 Electronic equipment

Publications (2)

Publication Number Publication Date
JPH0223639A true JPH0223639A (en) 1990-01-25
JP2689986B2 JP2689986B2 (en) 1997-12-10

Family

ID=15944743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172594A Expired - Lifetime JP2689986B2 (en) 1988-07-13 1988-07-13 Electronic equipment

Country Status (1)

Country Link
JP (1) JP2689986B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239746A (en) * 1991-06-07 1993-08-31 Norton Company Method of fabricating electronic circuits
US5300810A (en) * 1990-10-03 1994-04-05 Norton Company Electronic circuit and method with thermal management
WO1994020985A1 (en) * 1993-03-11 1994-09-15 Harris Corporation Bonded wafer process incorporating diamond insulator
EP0632499A2 (en) * 1993-05-28 1995-01-04 Sumitomo Electric Industries, Ltd Substrate for semiconductor device
EP1119045A3 (en) * 2000-01-19 2007-11-07 Japan Fine Ceramics Center Diamond interconnection substrate and a manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206289B4 (en) 2012-04-17 2016-02-25 Forschungsverbund Berlin E.V. Semiconductor device composite structure with heat dissipation structure and associated manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168144U (en) * 1982-05-01 1983-11-09 株式会社テクニスコ Heat dissipation board
JPS60128697A (en) * 1983-12-15 1985-07-09 住友電気工業株式会社 Multilayer circuit board for placing semiconductor element
JPS60208852A (en) * 1984-04-03 1985-10-21 Agency Of Ind Science & Technol Semiconductor solid circuit element
JPS62224048A (en) * 1986-03-26 1987-10-02 Res Dev Corp Of Japan Semiconductor subsrate made of diamond film
JPS62232193A (en) * 1986-03-31 1987-10-12 鐘淵化学工業株式会社 Multilayer high thermal conductivity insulating substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168144U (en) * 1982-05-01 1983-11-09 株式会社テクニスコ Heat dissipation board
JPS60128697A (en) * 1983-12-15 1985-07-09 住友電気工業株式会社 Multilayer circuit board for placing semiconductor element
JPS60208852A (en) * 1984-04-03 1985-10-21 Agency Of Ind Science & Technol Semiconductor solid circuit element
JPS62224048A (en) * 1986-03-26 1987-10-02 Res Dev Corp Of Japan Semiconductor subsrate made of diamond film
JPS62232193A (en) * 1986-03-31 1987-10-12 鐘淵化学工業株式会社 Multilayer high thermal conductivity insulating substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300810A (en) * 1990-10-03 1994-04-05 Norton Company Electronic circuit and method with thermal management
US5239746A (en) * 1991-06-07 1993-08-31 Norton Company Method of fabricating electronic circuits
US5371407A (en) * 1991-06-07 1994-12-06 Norton Company Electronic circuit with diamond substrate and conductive vias
WO1994020985A1 (en) * 1993-03-11 1994-09-15 Harris Corporation Bonded wafer process incorporating diamond insulator
EP0632499A2 (en) * 1993-05-28 1995-01-04 Sumitomo Electric Industries, Ltd Substrate for semiconductor device
EP0632499A3 (en) * 1993-05-28 1995-03-29 Sumitomo Electric Industries Substrate for semiconductor device.
US5682063A (en) * 1993-05-28 1997-10-28 Sumitomo Electric Industries, Ltd. Substrate for semiconductor device
EP1119045A3 (en) * 2000-01-19 2007-11-07 Japan Fine Ceramics Center Diamond interconnection substrate and a manufacturing method therefor

Also Published As

Publication number Publication date
JP2689986B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
KR100754757B1 (en) Method for multilevel copper interconnects for ultra large scale integration
JP3445393B2 (en) Method of making electronic component with heat sink and electronic component
EP0715352B1 (en) Substrate, semiconductor device, element-mounted device
JP3309492B2 (en) Substrate for semiconductor device
JPH0223639A (en) Diamond multilayer circuit substrate
CN101437355B (en) Circuit substrate and manufacturing method thereof
JP2004047863A (en) Heat dissipation circuit board and its manufacturing method
JP2010253730A (en) Heat dissipation material, printed board, and method for manufacturing printed board
US5250327A (en) Composite substrate and process for producing the same
TWM407489U (en) IC carrier board with high thermal conductivity, packaging IC carrier board, and electronic devices
JPH0536847A (en) Manufacture of diamond multilayer wiring board
JPS60128625A (en) Base board for mounting of semiconductor element
JPS6355238B2 (en)
JPS58103156A (en) Substrate for semiconductor device
JPS61240629A (en) Manufacture of substrate
JPS60128697A (en) Multilayer circuit board for placing semiconductor element
JPH0513610A (en) Board for mounting semiconductor integrated circuit device
JPS59184586A (en) Circuit board for placing semiconductor element
JPS61108191A (en) Multilayer circuit substrate
JP3620908B2 (en) Circuit board and semiconductor device including the circuit board
JP3059658B2 (en) High-density circuit wiring board, manufacturing method thereof, and multi-chip module using high-density circuit wiring board
Wang et al. Pattern metallization on diamond thick film substrate
JPS638284A (en) High heat conductivity substance
Malshe et al. Diamond heat spreaders and thermal management
JPS62219693A (en) Thin film multilayer ceramic circuit board