JPH02234021A - Fuel flow rate measuring method for automobile - Google Patents

Fuel flow rate measuring method for automobile

Info

Publication number
JPH02234021A
JPH02234021A JP5689289A JP5689289A JPH02234021A JP H02234021 A JPH02234021 A JP H02234021A JP 5689289 A JP5689289 A JP 5689289A JP 5689289 A JP5689289 A JP 5689289A JP H02234021 A JPH02234021 A JP H02234021A
Authority
JP
Japan
Prior art keywords
exhaust gas
flow rate
fuel flow
concentration
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5689289A
Other languages
Japanese (ja)
Inventor
Yoshitaka Hayata
善孝 早田
Hiroji Kamisaka
博二 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP5689289A priority Critical patent/JPH02234021A/en
Publication of JPH02234021A publication Critical patent/JPH02234021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To simply measure a fuel flow rate by calculating an exhaust gas discharge derived by using a dilute stream method from exhaust gas concentration and exhaust gas flow rate data, by a carbon balance method. CONSTITUTION:The total quantity of exhaust gas G from an automobile which allows a running state to appear by using a simulation running testing device is led into a CVS device 1 together with dilution use air A. Subsequently, a part of the gas G diluted by the air A is fed as diluted exhaust gas G' to an exhaust gas concentration measuring part 11 through a gas supply duct line 8. Also, from the device 1, an inlet temperature, pressure, etc. of a venturi 2 are outputted as exhaust gas flow rate data (a), and inputted to a fuel flow rate measuring arithmetic unit 15. Moreover, the total CO2 concentration detected by a CO2 analysis meter 13 is inputted as exhaust gas (b) to the unit 15. Subsequently, in the unit 15, the data (a), the concentration (b) and atmospheric pressure data (c) are processed by a dilute stream method, the total CO2 exhaust weight is determined, and also, the total CO2 exhaust weight is processed by a carbon balance method, and a fuel flow rate is measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車の燃料流量計測方法に関する。[Detailed description of the invention] [Industrial application field] TECHNICAL FIELD The present invention relates to a method for measuring fuel flow rate in an automobile.

(従来の技術) 自動車の燃料流量を計測するのに、従来は自動車の燃料
タンクとキャブレタとの間の燃料供給配管に流量センサ
を取り付け、この流量センサによって計測を行うように
していた. 〔発明が解決しようとする課題〕 しかしながら、上記従来の自動車の燃料流量計測方法は
次のような問題点があった. すなわち、上記計測方法は、自動車の試験時においては
流量センサを取り付けるのに対し、一般のユーザが自動
車を運転する場合には、前記流量センサを取り付けず、
自動車の実際の走行態様に則したものでないこと、そし
て、流量センサを取り付けた場合と、これを取り付けな
い場合とでは配管経路が相違し、この相違に起因して、
流量特性を含めた自動車の性能(例えば加減速応答性や
出力特性)に少なからぬ差が生ずるといった問題点があ
った.また、上記計測方法においては、自動車の試験を
行うために、メーカなどにおいて流量センサを取り付け
たり取り外したりする必要があるなど計測以外の作業を
必要とし、大変面倒であるといった問題点もある. 本発明は、上述の事柄に留意してなされたもので、その
目的とするところは、通常の走行状態と同じ条件で、つ
まり、自動車の性能に何ら影響を及ぼすことなく、しか
も、計測以外の作業を殆ど必要としないで、自動車の燃
料流量を簡単に計測できる方法を提供することにある。
(Prior Art) Conventionally, to measure the fuel flow rate of a car, a flow rate sensor was attached to the fuel supply pipe between the car's fuel tank and the carburetor, and the measurement was performed using this flow rate sensor. [Problems to be Solved by the Invention] However, the above-mentioned conventional method for measuring fuel flow rate in automobiles has the following problems. That is, in the above measurement method, a flow rate sensor is attached when testing a car, whereas when a general user drives a car, the flow rate sensor is not attached.
In addition, the piping route is different when a flow sensor is installed and when it is not installed, and due to this difference,
The problem was that there were considerable differences in vehicle performance, including flow characteristics (e.g. acceleration/deceleration response and output characteristics). In addition, the above measurement method has the problem that it requires work other than measurement, such as the need for the manufacturer to install and remove the flow rate sensor in order to test the vehicle, which is very troublesome. The present invention has been made with the above-mentioned considerations in mind, and its purpose is to operate under the same conditions as normal driving conditions, that is, without affecting the performance of the vehicle in any way, and to perform measurements other than measurement. To provide a method for easily measuring the fuel flow rate of an automobile without requiring much work.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するため、本発明に係る自動車の燃料
流量計測方法は、自動車からの排気ガスをCVS装置を
介して分析針に供給して排気ガス濃度を求め、この排気
ガス濃度と、前記CVS装置からの排気ガス流量データ
とをダイリエートストリーム法を用いて演算処理するこ
とにより排気ガス排出重量を求め、さらに、この徘気ガ
ス排出重量をカーボンバランス法を応用して演算処理す
ることにより瞬時燃料流量を計測するようにしてなるも
のである. 〔作用〕 自動車からの排気ガスの一部をCVS装置を介して例え
ば008分析計に供給し、排気ガスのCOオ濃度を計測
する.そして、このcoal度とCVS装置からの排気
ガス流量データ(例えばベンチェリ入口の温度および圧
力など)や大気圧データなどをダイリエートストリーム
法を用いて演算処理して排気ガス排出重量を求め、さら
に、この排気ガス排出重量をカーボンバランス法を応用
して演算処理することにより瞬時燃料流量を求めるよう
にしているので、流量センサを燃料供給配管に取り付け
る必要がなく、通常の運転時と同じ条件の下で自動車の
性能を評価することができる.〔実施例〕 以下、本発明の実施例を、図面を参照しながら説明する
. 第1図は本発明に係る自動車の燃料流量計測方法を実施
するための装置の概略構成を示し、この図において、l
は図外の自動車からの排気ガスGをサンプリングするた
めのCVS装置で、定流量を得るためのベンチュリ2.
ブロア3などを備えている.ベンチェリ2の上流側には
排気ガスGを導入するための管路4と希釈用空気Aを導
入するための管路5とが点6において接続された状態で
設けられるとともに、前記接続点6とベンチュリ2との
間の点7にガス供給管路8が接続されている.9はガス
供給管路8に介装された三方弁で、その第1ポート9a
が前記接続点7側に、第2ポート9bが後述する排気ガ
ス濃度測定部ll側にそれぞれ接続されるとともに、第
3ポート9cは接続管路10を介して前記空気導入管5
に接続されている。
In order to achieve the above-mentioned object, the method for measuring the fuel flow rate of an automobile according to the present invention supplies exhaust gas from the automobile to an analysis needle via a CVS device to determine the exhaust gas concentration, and calculates the exhaust gas concentration and the above-mentioned The exhaust gas exhaust weight is calculated by calculating the exhaust gas flow rate data from the CVS device using the dilute stream method, and the weight of the wandering gas exhaust is calculated by applying the carbon balance method. It is designed to measure instantaneous fuel flow rate. [Operation] A portion of the exhaust gas from a car is supplied to, for example, a 008 analyzer via a CVS device, and the CO2 concentration of the exhaust gas is measured. Then, this coal degree, exhaust gas flow rate data from the CVS device (for example, temperature and pressure at the ventilator inlet), atmospheric pressure data, etc. are processed using the dilute stream method to determine the exhaust gas discharge weight, and further, Since the instantaneous fuel flow rate is determined by calculating the weight of exhaust gas emissions using the carbon balance method, there is no need to attach a flow rate sensor to the fuel supply piping, and the fuel flow rate is calculated under the same conditions as during normal operation. It is possible to evaluate the performance of a car. [Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an apparatus for carrying out the method for measuring fuel flow rate of an automobile according to the present invention, and in this figure, l
1 is a CVS device for sampling exhaust gas G from a car (not shown), and includes a venturi 2. to obtain a constant flow rate.
Equipped with blower 3, etc. A pipe line 4 for introducing exhaust gas G and a pipe line 5 for introducing dilution air A are provided on the upstream side of the ventilator 2 and are connected at a point 6. A gas supply line 8 is connected to a point 7 between the venturi 2 and the venturi 2. 9 is a three-way valve installed in the gas supply pipe 8, and its first port 9a
is connected to the connection point 7 side, and the second port 9b is connected to the exhaust gas concentration measuring section ll side, which will be described later.
It is connected to the.

そして、このCVS装置lには、シャシダイナモなどの
模擬走行試験装置(図外)を用いて例えば所定の10モ
ード走行状態を現出させた自動車からの排気ガスGの全
量が希釈用空気Aとともに導入される.そして、希釈用
空気Aによって適宜希釈された排気ガスGの一部は、希
釈排気ガスG′としてガス供給管路Bを介して排気ガス
濃度測定部11に送られる.また、このCVS装″Il
lからはベンチュリ2の入口温度およびその圧力などが
排気ガス流量データaとして出力され、このデータaは
後述する燃料流量計測演算装置15に入力される.1l
は排気ガス濃度測定部で、前記希釈排気ガスG′中に含
まれるCOおよびHC系ガスの全てを酸化してCO!に
変換する例えば酸化触媒などの酸化手段l2と、この酸
化手段12によって得られたCO,と希釈排気ガスG′
中にもともと含まれていたCO,との和の濃度、つまり
、希釈排気ガスG′中の総coal度を分析するC O
 z分析計13と、吸引用のポンプ14などを備えてい
る.そして、前記008分析計13によって検出された
mCO.濃度は排気ガス濃度bとして後述する燃−料流
量計測演算装置15に入力される.15は燃料流量計測
演算装置で、例えばCPUよりなり、前記CVS装置1
からの徘気ガス流量データa,排気ガス濃度測定部11
からの排気ガス濃度bなどや大気圧データCを入力とし
て取り込み、これらのデータa,b,cを、ダイリエー
トストリーム法を応用して処理することにより、排気ガ
ス排出重量としての総C O x徘出重量を求め、さら
に、この総CO露徘出重量を、カーボンバランス法を応
用して処理することにより、燃料流量を求めるように構
成されている. すなわち、前記総CO!排出重量を求めるには、ダイリ
エートストリーム法により、 Cot  g(t)=ρ・QM(t)(Cot M(t
)−CO!  D(t))      ・・・・・・(
1)なる式を用いて演算を行うのである. なお、ここに、 Cow g(t): I−一タルCO.排出重量(g/
t)D:CO*密度Cg/1) COx M(t):希釈排気ガスCO!9a度〔%〕c
ot D(t):希釈用空気中のCOt濃度〔%〕QM
(t): CVS総流量(f/t)をそれぞれ表し、さ
らに、前記QM(t)は、・・・・・・《2》 なる式で表される. なお、ここに、 C,:CVSベンチェリ流量係敗 Tw ;CVSベンチュリ人口温度〔゜C〕Pv :C
VSベンチェリ入口圧力(閣Hg)P,:大気圧〔■H
g) をそれぞれ表す. そして、瞬時燃料流量を求めるには、カーボンバランス
法を応用して ?FE なる式を用いて演算を行うのである。
In this CVS device 1, the total amount of exhaust gas G from a car that has been made to exhibit, for example, a predetermined 10-mode driving condition using a simulated driving test device (not shown) such as a chassis dynamometer, is stored together with dilution air A. be introduced. Then, a part of the exhaust gas G suitably diluted with the dilution air A is sent to the exhaust gas concentration measuring section 11 via the gas supply pipe B as the diluted exhaust gas G'. In addition, this CVS equipment "Il
The inlet temperature of the venturi 2, its pressure, etc. are outputted from l as exhaust gas flow rate data a, and this data a is input to a fuel flow rate measurement/arithmetic device 15, which will be described later. 1l
is an exhaust gas concentration measuring section that oxidizes all of the CO and HC gases contained in the diluted exhaust gas G' to produce CO! oxidation means l2 such as an oxidation catalyst, CO obtained by this oxidation means 12, and diluted exhaust gas G'
The total coal concentration in the diluted exhaust gas G' is analyzed.
It is equipped with a z analyzer 13, a pump 14 for suction, etc. Then, mCO. detected by the 008 analyzer 13. The concentration is inputted as exhaust gas concentration b to a fuel flow rate measurement and calculation device 15, which will be described later. Reference numeral 15 denotes a fuel flow rate measurement/arithmetic device, which is composed of, for example, a CPU, and is connected to the CVS device 1.
Wandering gas flow rate data a from exhaust gas concentration measuring section 11
The total CO It is configured to calculate the fuel flow rate by determining the weight of CO exposed and further processing this total weight of exposed CO by applying the carbon balance method. That is, the total CO! To calculate the discharge weight, use the dilute stream method as follows: Cot g(t)=ρ・QM(t)(Cot M(t
)-CO! D(t)) ・・・・・・(
The calculation is performed using the formula 1). In addition, here, Cow g(t): I-Ital CO. Discharge weight (g/
t) D: CO*Density Cg/1) COx M(t): Diluted exhaust gas CO! 9a degrees [%] c
ot D(t): COt concentration in dilution air [%] QM
(t): Represents the CVS total flow rate (f/t), and furthermore, the QM(t) is expressed by the following formula. In addition, here, C, :CVS Venturi flow rate failure Tw ;CVS Venturi population temperature [°C]Pv :C
VS Vencheri inlet pressure (Hg) P,: Atmospheric pressure [■H
g) respectively. And to find the instantaneous fuel flow rate, apply the carbon balance method? The calculation is performed using the formula FE.

なお、ここに、 e<t>:瞬時燃料流量(1/t) KCO.:CO!中のカーボン重量比 KFE :燃料12中のカーボン重量(g/j!)をそ
れぞれ表す. 従って、上記(1)〜(3)式によって所望の燃料流量
を求めることができるのである。
In addition, here, e<t>: Instantaneous fuel flow rate (1/t) KCO. :CO! Carbon weight ratio KFE: represents the carbon weight (g/j!) in the fuel 12. Therefore, the desired fuel flow rate can be determined using the above equations (1) to (3).

上述の実施例においては、希釈排気ガスG′中に含まれ
るCOおよびHC系ガスを全てCO2に変換し、希釈排
気ガスG′中の総CO■濃度に基づいて燃料流量を求め
るようにしていたが、本発明はこれに限られるものでは
なく、希釈排気ガスG′中のcoi1度、CO濃度およ
びHC系ガス濃度をそれぞれ個別に測定し、これらの濃
度を燃料流量計測演算装置l5に入力し、所定の演算を
行?ようにしてもよい. すなわち、第2図はこのように構成された装置の概略構
成を示し、この図における排気ガス濃度測定部11には
、CO分析部21.CO■分析部22,}{C分析部2
3が互いに並列に設けてあり、24, 25.26は前
記各分析部21, 22. 23にそれぞれ設けられる
CO分析計,CO,分析計,IC分析計、また、27〜
29は吸引用のンプである. そして、分析計24〜26において検出されたCO濃度
、CO!濃度、HC系ガス濃度はそれぞれ燃料流量計測
演算装置15に入力されるようにしてある. 而して、この実施例において燃料流量を求めるには、先
ず、CO,CO, 、HC系ガスの排出重量をダイリエ
ートストリーム法により、Cog(L)−Co密度・Q
M(t)(COM(t)−COD(t)l      
 ・・・・・・(4)CO! g(t)−Cot密度・
QM(t)(Co,M(t)−CO意D(t))   
 ・・・・・・(5)HCg(t)−HC密度・QM(
t)(HcM(t)?HCD(t)1 なる式を用いて演算を行うのである. なお、ここに、 QM(t): CVS総流量(ffi/t)COM(t
)+希釈排気ガスCO濃度( ppm)Co.M(t)
:希釈排気ガスCOt濃度〔%〕HCM(t):希釈排
気ガスHC濃度(ppsc)COD(t):希釈用空気
中CO濃度( ppm)coi D(t)?希釈用空気
中CO■濃度(%)}1cD(t)+希釈用空気中HC
iJ度(ppmc)をそれぞれ表し、さらに、前記QM
(t)は、・・・・・・(6) ・・・・・・(7》 なる式で表される。
In the above embodiment, all CO and HC gases contained in the diluted exhaust gas G' are converted into CO2, and the fuel flow rate is determined based on the total CO2 concentration in the diluted exhaust gas G'. However, the present invention is not limited to this, and the coi 1 degree, CO concentration, and HC gas concentration in the diluted exhaust gas G' are individually measured, and these concentrations are input to the fuel flow rate measurement calculation device 15. , perform a given operation? You can do it like this. That is, FIG. 2 shows a schematic configuration of the apparatus configured as described above, and the exhaust gas concentration measurement section 11 in this figure includes a CO analysis section 21. CO ■ analysis section 22,} {C analysis section 2
3 are provided in parallel with each other, and 24, 25.26 are the respective analysis units 21, 22. CO analyzer, CO analyzer, IC analyzer installed in 23, and 27~
29 is a suction pump. Then, the CO concentration detected in the analyzers 24 to 26, CO! The concentration and the HC gas concentration are respectively input to the fuel flow rate measurement calculation device 15. Therefore, in order to determine the fuel flow rate in this example, first, the exhaust weight of CO, CO, HC gas is calculated using the dilute stream method, and Cog(L)-Co density/Q
M(t)(COM(t)-COD(t)l
・・・・・・(4) CO! g(t)-Cot density・
QM(t)(Co,M(t)−COiD(t))
......(5) HCg(t)-HC density・QM(
The calculation is performed using the formula: t) (HcM(t)?HCD(t)1. Here, QM(t): CVS total flow rate (ffi/t) COM(t
) + diluted exhaust gas CO concentration (ppm) Co. M(t)
: Diluted exhaust gas COt concentration [%] HCM (t): Diluted exhaust gas HC concentration (ppsc) COD (t): CO concentration in air for dilution (ppm) coi D (t)? CO in the air for dilution ■ Concentration (%)} 1 cD (t) + HC in the air for dilution
iJ degree (ppmc), and furthermore, the QM
(t) is expressed by the following formula.

なお、ここに、 c.:CVSベンチュリ流量係数 Ty:CVSベンチェリ入口温度(’C)Pv :CV
Sベンチェリ入口圧力(mHg)P.:大気圧(一〇g
) をそれぞれ表す. そして、瞬時燃料流量を求めるには、カーボンバランス
法を応用して j! ( t ) − ( K C O−C O g 
( t ) + K C O t  ・CO.(t)+
KHC − HCg(t)) /KFE・・・・・・(
8)なる式を用いて演算を行うのである。
In addition, here, c. :CVS venturi flow coefficient Ty:CVS venturi inlet temperature ('C)Pv :CV
S Vencheri inlet pressure (mHg) P. :Atmospheric pressure (10g
) respectively. Then, to find the instantaneous fuel flow rate, apply the carbon balance method to determine the instantaneous fuel flow rate. (t) - (K C O - C O g
(t) + K C O t ・CO. (t)+
KHC − HCg(t)) /KFE・・・・・・(
The calculation is performed using the formula 8).

なお、ここに、 j!(t):瞬時燃料流量(ffi/t)KCO j 
Co中のカーボン重量比 KCO.jco.中のカーボン重量比 KHC S HC中のカーボン重量比 KFE :燃料ll中のカーボン重量(g/j!)をそ
れぞれ表す. 従って、上記(4)〜(8)式によって所望の燃料流量
を求めることができるのである. 〔発明の効果〕 以上説明したように、本発明によれば、燃料供給流路に
流量センサを取り付けたりする必要がなく、言わば非接
触状態で瞬時燃料流量を計測できるので、通常の走行状
態と同じ条件で、つまり、自動車の性能に何ら影響を及
ぼすことなく、しかも、計測以外の作業を殆ど必要とし
ないで、自動車の燃料流量を簡単に計測できる.
In addition, here, j! (t): Instantaneous fuel flow rate (ffi/t) KCO j
Carbon weight ratio in Co KCO. jco. Carbon weight ratio in HC S Carbon weight ratio in HC KFE: Represents the weight of carbon in 1 liter of fuel (g/j!). Therefore, the desired fuel flow rate can be determined using equations (4) to (8) above. [Effects of the Invention] As explained above, according to the present invention, there is no need to attach a flow rate sensor to the fuel supply flow path, and the instantaneous fuel flow rate can be measured in a so-called non-contact state. The fuel flow rate of a car can be easily measured under the same conditions, that is, without any effect on the car's performance, and with almost no work other than measurement required.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims]  自動車からの排気ガスをCVS装置を介して分析計に
供給して排気ガス濃度を求め、この排気ガス濃度と、前
記CVS装置からの排気ガス流量データとをダイリュー
トストリーム法を用いて演算処理することにより排気ガ
ス排出重量を求め、さらに、この排気ガス排出重量をカ
ーボンバランス法を応用して演算処理することにより瞬
時燃料流量を計測するようにしたことを特徴とする自動
車の燃料流量計測方法。
Exhaust gas from a car is supplied to an analyzer via a CVS device to determine the exhaust gas concentration, and this exhaust gas concentration and exhaust gas flow rate data from the CVS device are processed using a dilute stream method. 1. A method for measuring a fuel flow rate of an automobile, characterized in that the weight of exhaust gas discharged is obtained by calculating the weight of exhaust gas discharged, and the instantaneous fuel flow rate is measured by calculating the weight of exhaust gas discharged by applying a carbon balance method.
JP5689289A 1989-03-08 1989-03-08 Fuel flow rate measuring method for automobile Pending JPH02234021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5689289A JPH02234021A (en) 1989-03-08 1989-03-08 Fuel flow rate measuring method for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5689289A JPH02234021A (en) 1989-03-08 1989-03-08 Fuel flow rate measuring method for automobile

Publications (1)

Publication Number Publication Date
JPH02234021A true JPH02234021A (en) 1990-09-17

Family

ID=13040088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5689289A Pending JPH02234021A (en) 1989-03-08 1989-03-08 Fuel flow rate measuring method for automobile

Country Status (1)

Country Link
JP (1) JPH02234021A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155962A (en) * 2011-03-04 2011-08-17 奇瑞汽车股份有限公司 System and method for accurately measuring instantaneous oil consumption value of automobile
DE202014004223U1 (en) 2014-05-20 2014-06-16 Horiba Ltd. Fuel consumption measuring device
DE202014006185U1 (en) 2013-08-12 2014-11-26 Horiba Ltd. Fuel consumption calculation unit, fuel consumption calculation program, fuel consumption meter and exhaust gas meter
US9453751B2 (en) 2013-05-22 2016-09-27 Horiba, Ltd. Fuel consumption measuring instrument
CN109883495A (en) * 2019-01-31 2019-06-14 山东理工大学 A kind of engine fuel consumption rate calculation method based on Carbon balance principle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155962A (en) * 2011-03-04 2011-08-17 奇瑞汽车股份有限公司 System and method for accurately measuring instantaneous oil consumption value of automobile
US9453751B2 (en) 2013-05-22 2016-09-27 Horiba, Ltd. Fuel consumption measuring instrument
DE202014006185U1 (en) 2013-08-12 2014-11-26 Horiba Ltd. Fuel consumption calculation unit, fuel consumption calculation program, fuel consumption meter and exhaust gas meter
US10132225B2 (en) 2013-08-12 2018-11-20 Horiba, Ltd. Fuel consumption calculation unit, fuel consumption measuring apparatus, and exhaust gas measuring apparatus
DE202014004223U1 (en) 2014-05-20 2014-06-16 Horiba Ltd. Fuel consumption measuring device
CN109883495A (en) * 2019-01-31 2019-06-14 山东理工大学 A kind of engine fuel consumption rate calculation method based on Carbon balance principle

Similar Documents

Publication Publication Date Title
JP3268783B2 (en) Flow control and measurement correction in an emission analyzer based on water content
US6200819B1 (en) Method and apparatus for providing diluent gas to exhaust emission analyzer
US5184501A (en) Exhaust sampler and control means
US5756360A (en) Method and apparatus for providing diluted gas to exhaust emission analyzer
US10955398B2 (en) Calibration method for gas analysis apparatus, gas analysis system, and pressure varying device
US8527179B2 (en) Method and device for measuring the emissions of engines
US5821435A (en) Exhaust gas measuring apparatus
CN102749378B (en) Vehicle mass analysis system standard device for simulating exhaust emission
CN108226387B (en) Vehicle-mounted exhaust gas analysis system, inspection method thereof, storage medium, and inspection system
JPH01143932A (en) Proportional exhaust sampling system
JP4176309B2 (en) Gas mixing system and method
Foote et al. Evaluation of partial flow dilution methodology for light duty particulate mass measurement
JP4925489B1 (en) Gas analyzer
JPH02234021A (en) Fuel flow rate measuring method for automobile
EP0936467B1 (en) Exhaust gas analyzer and modal mass analysis method by gas trace process using the analyzer thereof
JP2002214082A (en) Simultaneity correction apparatus for ensuring simultaneity in measurement of mass emission or fuel consumption quantity by high speed continuous measurement of flow rate and composition of exhaust gas
JPH11344425A (en) Device for analyzing exhaust gas of internal combustion engine using gas trace method
McKee Effects of engine parameters and catalyst composition on vehicle sulfate emissions
JP4300350B2 (en) Exhaust gas measuring device and exhaust gas measuring method
Mick et al. Weighing automotive exhaust emissions
JP2003172698A (en) Exhaust gas measuring system
JP2001264223A (en) Sampling device for exhaust gas
WO2022130853A1 (en) Brake dust measurement device, brake dust measurement method, and brake dust measurement program
JPS61124849A (en) Apparatus for measuring exhaust gas of engine
JP2005127735A (en) Partially diluting tunnel device