JPH02233555A - Production of compound laminated mica ceramic - Google Patents

Production of compound laminated mica ceramic

Info

Publication number
JPH02233555A
JPH02233555A JP1055602A JP5560289A JPH02233555A JP H02233555 A JPH02233555 A JP H02233555A JP 1055602 A JP1055602 A JP 1055602A JP 5560289 A JP5560289 A JP 5560289A JP H02233555 A JPH02233555 A JP H02233555A
Authority
JP
Japan
Prior art keywords
mica
slurry
films
ceramic
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055602A
Other languages
Japanese (ja)
Inventor
Kazutoshi Iizuka
飯塚 効才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1055602A priority Critical patent/JPH02233555A/en
Publication of JPH02233555A publication Critical patent/JPH02233555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To maintain characteristics and function of mica without the presence of foreign materials by applying a slurry substance of mica composition to collected mica films consisting of fluophlogopite, laminating the obtained films, calcining the resultant laminate and forming a new mica between layers. CONSTITUTION:One or more are selected from silica sol, alumina sol, potassium silicate and lithium silicate prepared by forming SiO2, Al2O3 K2O and Li2O into sols. The resultant sols are then mixed with other oxides and fluorides required to synthesizer a mica to provide a slurry substance, which is then used as a binder and applied to collected mica films consisting of fluophlogopite and laminated. The resultant laminate is then calcined to crystallize the above- mentioned binder and form the new mica between mutual films. Thereby, a mica ceramic laminated together with the fluophlogopite is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁性、耐熱性を有し、機械加工が容易な複合
雲母積層セラミックの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a composite mica laminated ceramic having insulation properties, heat resistance, and easy machining.

[従来の技術〕 従来、雲母を使用して製作されている製品には、天然雲
母を素材とした集成マイカを用い、これを積層したマイ
力積層板や、集成マイ力の補強用にガラスクロスを接着
して製作されるガラスマイカ等がある。これらの製品は
すべて合成樹脂を接着剤として製作されており、主に電
気絶縁材料として使用される。
[Conventional technology] Conventionally, products manufactured using mica include laminated mica, which is made from natural mica, and laminated sheets made of laminated mica, and glass cloth for reinforcing the laminated mica. There are glass mica etc. which are made by gluing . All of these products are manufactured using synthetic resin as an adhesive and are primarily used as electrical insulation materials.

特に耐熱性を要求される製品ではケイ素樹脂が使用され
る。
Silicone resin is especially used in products that require heat resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これらの製法ではいづれも接着剤が合成樹脂であるから
、耐熱的には200〜300℃以上の高温を期待するこ
とはできない。
Since the adhesive in all of these manufacturing methods is a synthetic resin, high temperatures of 200 to 300° C. or higher cannot be expected in terms of heat resistance.

また、天然雲母自体が600〜800℃に至れば結晶構
造中の水酸基を水として放出し、結晶が崩壊してしまう
から、天然雲母を素材とした製品に800℃以上の耐熱
性を要求するのは極めてむずかし《、従って従来技術で
は800℃以上の耐熱性を有する雲母積層物の製作はで
きない。
Furthermore, if natural mica itself reaches a temperature of 600 to 800°C, it will release the hydroxyl groups in its crystal structure as water and the crystal will collapse, so products made from natural mica are required to have heat resistance of 800°C or higher. Therefore, it is not possible to produce a mica laminate having a heat resistance of 800° C. or higher using conventional techniques.

本発明はこのような従来技術の問題点を解決するために
なされたもので、高温度特性に優れ、しかも成形後の加
工が容易な複合雲母積層セラミックの製造方法を提供す
ることを目的とする。
The present invention has been made to solve the problems of the prior art, and aims to provide a method for manufacturing a composite mica multilayer ceramic that has excellent high-temperature properties and is easy to process after forming. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明が採用する構成は、
雲母の合成に必要な素材となる酸化物中、Sx O w
 * Aβ*Os,K−0又はLi2 0をゾル化して
なるシリカゾル,アルミナゾル,ケイ酸カリ又はケイ酸
リチウムのうちの少な《とも1つを用い、組成上必要な
他の酸化物及びフッ化物と共に混合してスラリー物とす
る工程と、該スラリー状物をフッ素金雲母からなる集成
マイカフィルムにフィルム相互間の結合剤として塗布し
て積層する工程と、この積層物を加熱して焼結すること
により、フィルム相互間の結合剤を結晶化させて新たな
雲母を生成せしめフッ素金雲母と共に積層された雲母セ
ラミックを形成する工程とからなる. 〔発明の具体的説明] 本発明で用いられるスラリ一物の組成は、一般式XO.
I〜l.O ym〜m Z4 01GFIで表わされる
もので、x,y,zの位置に置換できるイオンとして、 X: (層間位置)配位数12の陽イオンL.,N.,
K” .Rb .C一〇 82° B.1 Y: (八面***置)配位数6の陽イオンL l * 
M M” + F @″” , N , ! ” . 
M , aAβso  F.s* Z: (四面***置)配位数4の陽イオン81″″+ 
G @” + ( S l′ゝの一部をAβ” ” ,
 F .@ + , s s *,等のフッ素雲母群と
、他にバーミキュライト群中(DKays Mg?7s
L +azsMg+O +oFa + モ’Jモリロナ
イト群中のK l/l M ga7sL II/aM 
1140 10F *等である。
In order to achieve the above object, the configuration adopted by the present invention is as follows:
Among the oxides that are necessary materials for the synthesis of mica, Sx O w
* Using at least one of silica sol, alumina sol, potassium silicate, or lithium silicate formed by solizing Aβ*Os, K-0, or Li20, together with other oxides and fluorides necessary for the composition. A step of mixing to form a slurry, a step of applying the slurry to a composite mica film made of fluorine phlogopite as a bonding agent between the films and laminating it, and heating and sintering this laminate. This process involves crystallizing the binder between the films to generate new mica and forming a laminated mica ceramic with fluorophlogopite. [Detailed Description of the Invention] The composition of the slurry used in the present invention has the general formula XO.
I~l. It is represented by O ym~m Z4 01GFI, and the ions that can be substituted at the x, y, and z positions are: X: (Interlayer position) A cation with a coordination number of 12 L. ,N. ,
K".Rb.C1082° B.1 Y: (octahedral position) cation with coordination number 6 L l *
M M” + F @””, N, !”.
M, aAβsoF. s* Z: (tetrahedral position) cation with coordination number 4 81″″+
G @” + (part of S l′ゝ as Aβ” ”,
F. Fluorine mica group such as @ +, s s *, etc., and other vermiculite group (DKays Mg?7s
L +azsMg+O +oFa + K l/l in Mo'J morillonite group M ga7sL II/aM
1140 10F* etc.

これらを合成するには、夫々の組成に従った酸化物、及
びフッ化物を計量混合して溶融合成するのが一般的製法
であるが、本発明の製造方法では素材となる酸化物中、
S.Ox ,Aβsrs,K20又はLtiOをゾル化
してなるシリカゾル,アルミナゾル,ケイ酸カリ又はケ
イ酸リチウムのうちの少な《とも1つを用い、組成に必
要な他の酸化物、およびフッ化物と混合しスラリ一物と
して調整する。
In order to synthesize these, the general manufacturing method is to measure and mix oxides and fluorides according to their respective compositions and melt-synthesize them, but in the manufacturing method of the present invention,
S. At least one of silica sol, alumina sol, potassium silicate, or lithium silicate, which is formed by solizing Ox, Aβsrs, K20, or LtiO, is used and mixed with other oxides and fluoride necessary for the composition to form a slurry. Adjust as one thing.

この際、例えばシリカゾル、アルミナゾル、ケイ酸リチ
ウム等はフッ化物、又はマグネシャなどと会合すると、
一方アルミナゾル及びケイ酸カリ等は炭酸リチウムと会
合すると凝固し、ついには固化する。この凝固は夫々の
組み合わせの量および質的関係において差異を生じる。
At this time, for example, when silica sol, alumina sol, lithium silicate, etc. combine with fluoride or magnesia,
On the other hand, alumina sol, potassium silicate, etc. coagulate when combined with lithium carbonate, and are finally solidified. This coagulation causes differences in the quantity and qualitative relationship of each combination.

本発明に係る雲母組成スラリ一物は凝固が極めて短時間
に起る場合から数10分間に亘ってゲル化が緩徐に進行
し増粘するが、ある時間の経過と共に急激に凝固が起り
硬化して固化する。
In the case where the mica composition slurry according to the present invention solidifies in a very short time, gelation progresses slowly over several tens of minutes and the viscosity increases, but after a certain period of time, solidification rapidly occurs and hardens. and solidify.

そこで、本発明は前述のように調整したスラリ一物を、
増粘が始まる前にフッ素金雲母からなる集成マイカフィ
ルムに塗布しつつ希望の厚さに積層し、成形して放置す
ればスラリーは素材相互間の作用により硬化して積層物
を形成する。
Therefore, the present invention uses the slurry prepared as described above,
Before thickening begins, the slurry is applied to a composite mica film made of fluorine phlogopite and laminated to the desired thickness, molded and left to stand, and the slurry hardens due to the interaction of the materials to form a laminate.

そして、この積層物を放置して固化させた後、これをl
OoO〜1350℃、望マシ《ハ1150〜1250℃
に炉中で加熱すれば、スラリ一物の硬化層は焼結される
と同時に結晶化して新たなフッ素雲母が合成される。
After leaving this laminate to solidify, it is
OoO~1350℃, Desirable《Ha 1150~1250℃
When heated in a furnace, the hardened layer of the slurry is sintered and simultaneously crystallized to synthesize new fluorine mica.

フッ素金雲母フィルムはこの合成されたフッ素雲母を介
して強固に境結されて一体化し、フッ素金雲母と新たに
合成されたフッ素雲母が交互に積層された層状の複合雲
母セラミックとなる。
The fluorine phlogopite film is strongly bound and integrated through the synthesized fluorine mica, resulting in a layered composite mica ceramic in which fluorine phlogopite and newly synthesized fluorine mica are alternately laminated.

この複合雲母積層セラミックは機械加工が容易であるこ
とは勿論、耐熱性、特に熱衝撃性に優れた特性を有する
。又、電気絶縁材料としては雲母が積層された形態から
して最も好ましいセラミックである。
This composite mica laminated ceramic is not only easy to machine, but also has excellent heat resistance, especially thermal shock resistance. Ceramic is the most preferred electrically insulating material because of its laminated form of mica.

このように、本発明}こ係る製造方法によれば、常温で
必要な形状に積層し、しかも加熱して填結させる焼結法
であるから、製作工程は極めて簡単で効率よく、しかも
安全に作業が進められる.又、着色された複合雲母積層
セラミックを製作する場合は、雲母組成素材の他に着色
剤として、例えば銅,鉄,ニッケル,マンガン2コバル
トなどの酸化物か、又はこれらの塩類を適量添加し、混
合したスラリ一物を集成マイカフィルムに塗布した後境
結すれば着色された複合雲母積層セラミックが製作でき
る。
As described above, according to the manufacturing method of the present invention, the manufacturing process is extremely simple, efficient, and safe since it is a sintering method in which layers are laminated into the required shape at room temperature and then heated and sealed. Work continues. In addition, when producing a colored composite mica multilayer ceramic, in addition to the mica composition material, an appropriate amount of oxides such as copper, iron, nickel, manganese di cobalt, or salts thereof are added as a coloring agent. A colored composite mica multilayer ceramic can be produced by applying the mixed slurry to a composite mica film and bonding it.

このように、本発明の製造方法によれば、後の機械加工
が容易な複合雲母積層セラミックが容易に製作できる。
As described above, according to the manufacturing method of the present invention, a composite mica multilayer ceramic that can be easily machined later can be easily manufactured.

以上により、本発明に関して述べたが、フッ素雲母を合
成した時に析出する結晶の大きさを、用途目的によって
異にする必要がある。即ち結晶が大きい状態のマイカセ
ラミックは硬さが軟らかく、加工し易い反面、機械強度
が低下する。又非品質では材質が硬く加工困難となるの
みならず耐熱衝撃性も著しく低下する。
Although the present invention has been described above, the size of the crystals that are precipitated when fluorinated mica is synthesized needs to be varied depending on the intended use. That is, mica ceramic with large crystals has a soft hardness and is easy to process, but its mechanical strength is reduced. In addition, if the quality is poor, the material will not only be hard and difficult to process, but also have a significantly reduced thermal shock resistance.

そこで、以下その対応について述べる。Therefore, we will discuss our countermeasures below.

一般に、雲母結晶のよく成長したものが得られるのはフ
ッ素金雲母であるが、1350℃以下、望ましくは12
50℃以下の温度条件で焼結し結晶化させるには、四ケ
イ素雲母系が適当である。
In general, fluorine phlogopite provides well-grown mica crystals;
Tetrasilicon mica is suitable for sintering and crystallization at a temperature of 50° C. or lower.

四ケイ素雲母の組成中、前掲した一般式において層間イ
オンにK0を用いた場合に、雲母結晶は成長し易《、例
えばB.″を用いた場合は小結晶に止め得る。又、バー
ミキュライト系.モンモリロナイト系の組成となした場
合は、更に微小結晶に止め得るから、用途目的に応じ K M tz. sS 140 1。F.で表わされる
カリ四ケイ素雲母の組成に従ってスラリーを製作するか
、B al/2M gi SS +40 1。F2で表
わされるバリウム四ケイ素雲母の組成でスラリーを製作
し、これを単独で、又はカリ四ケイ素雲母と適当な比率
で混合して使用する。
In the composition of tetrasilicon mica, when K0 is used as an interlayer ion in the above-mentioned general formula, mica crystals tend to grow (for example, B. If a composition of vermiculite or montmorillonite is used, the crystals can be kept even smaller, so K M tz.sS 140 1.F. A slurry is prepared according to the composition of barium tetrasilicon mica represented by B al/2M gi SS +40 1. A slurry is prepared according to the composition of barium tetrasilicon mica represented by F2, and this is used alone or Use by mixing with appropriate ratio.

バーミキュライト系では K a/s Mg?ysL I.isS +aO +o
F zモンモリ口ナイト系では K l/3 M gezsL l+zs3 140 1
0F 2の組成式に従って計算し、カリ四ケイ素雲母組
成と適当な比率で混合すれば結晶は微細に止め得る。
Ka/s Mg in vermiculite type? ysL I. isS +aO +o
For F z Montmori Kuchinite system, K l/3 M gezsL l+zs3 140 1
If it is calculated according to the composition formula of 0F 2 and mixed with the potassium tetrasilicon mica composition in an appropriate ratio, the crystals can be kept fine.

単にカリ四ケイ素雲母の組成の配合割合を変えるとか、
又はガラス貿が生成されるであろう他の酸化物を添加す
るなどすると、確かに結晶の成長を止められるが、反面
材質が硬《なり加工性は低下する。
Simply changing the blending ratio of potassium tetrasilicon mica,
Alternatively, adding other oxides that would cause glass formation will certainly stop the growth of crystals, but on the other hand, the material will become harder and workability will be reduced.

以上のことから、結晶の成長が抑制される雲母組成スラ
リーと、生長性のよい雲母組成スラリーの2種類を混合
して用い,これを集成マイカフィルムに塗布し、加熱境
結して結晶化せしめれば、その配合比率によっては用途
目的に対し、最も適合した加工性を有する複合雲母積層
セラミックを製作し得る。
Based on the above, we mixed two types of mica composition slurry: a mica composition slurry that suppresses crystal growth and a mica composition slurry that has good growth properties, applied this to a composite mica film, and heated and bonded it to crystallize it. Then, depending on the blending ratio, it is possible to produce a composite mica laminated ceramic having processability most suitable for the purpose of use.

〔実施例] (実施例1) K M g2. sS ,−0 ,。F2に従って計算
し、酸化物基準で、K.Oを8%と、M, Fa をt
 O%と、M,Oを10%と、S.O. を24%と、
及ヒ?.O.を30%含むシリカゾル48%とを用いて
スラリー物を調整した。そして、このスラリ一物を厚さ
0.05mmのフッ素金雲母の集成マイカフィルムに塗
布しつつ積層して厚さ30層の積層物とした。この積層
物を放置することによって固化させて一体化せしめた。
[Example] (Example 1) K M g2. sS ,−0,. Calculated according to F2, on oxide basis, K. O is 8%, M, Fa is t
O%, M, O at 10%, S. O. 24%,
Hey? .. O. A slurry was prepared using 48% silica sol containing 30%. Then, this slurry was applied to a 0.05 mm thick fluorophlogopite mica film and laminated to form a laminate having a thickness of 30 layers. This laminate was left to stand to solidify and integrate.

さらに、この積層物を加熱炉に入れて 1250℃で30分加熱することによって焼結せしめた
。焼結したフッ素金雲母のフィルム層間には新たな雲母
結晶が良好に生成し、フッ素金雲母と共に積層され、機
械加工性の良好な複合雲母積層セラミックを得た。
Further, this laminate was placed in a heating furnace and heated at 1250° C. for 30 minutes to sinter it. New mica crystals were successfully formed between the sintered fluorophlogopite film layers, and were laminated together with fluorophlogopite to obtain a composite mica laminated ceramic with good machinability.

(実施例2) K M ,..うS ..O .。F2に従って計算し
、酸化物基準で、M,F.を10%と、MgOを10%
と、S,0■を23%と、Shosを30%含むシリカ
ゾル24%と、およびKiOを23%.S102を29
%含むケイ酸カリ32%と、着色剤としてCuOを1%
とを使用してスラリ一物を調整した。そして、実施例l
と同様の手法で集成?イカフィルムに塗布した後、焼結
することにより、緑色層状の複合雲母積眉セラミックを
得た。
(Example 2) K M ,. .. S. .. O. . Calculated according to F2, on oxide basis, M,F. 10% and MgO 10%
, 23% S,0■, 24% silica sol containing 30% Shos, and 23% KiO. S102 29
% Potassium silicate containing 32% and CuO as a coloring agent 1%
The slurry was prepared using And Example l
Compiled using a similar method? After applying it to a squid film, it was sintered to obtain a green layered composite mica cumulus ceramic.

(実施例3) K M giL t S L40 1。F2に従って計
算し、酸化物基準でM g F *を7%と、M,Oを
5%と、SiO■を15%と、K,0を6%と、および
L +aOを2.9%、S.O.を20%含むケイ酸リ
チウム67%とを用いてスラリー物を調整した。そして
、このスラリ一物を実施例1と同様の手法で集成マイカ
フィルムに塗布し、1220℃にて30分焼結せしめ、
加工性の良好な複合雲母積層セラミックを得た。
(Example 3) K M gi L t S L40 1. Calculated according to F2, on oxide basis M g F * is 7%, M,O is 5%, SiO■ is 15%, K,0 is 6%, and L + aO is 2.9%, S. O. A slurry was prepared using 67% lithium silicate containing 20%. Then, this slurry was applied to a composite mica film in the same manner as in Example 1, and sintered at 1220°C for 30 minutes.
A composite mica laminated ceramic with good workability was obtained.

(実施例4) K M tzL IS .0 +oF xに従って計算
し、酸化物基準で、KaOを7%と、M,F*を9%と
、M,Oを6%と、Ll.0を2%と、S,O.をl7
%と、およびS,0■を30%含むシリカゾル59%と
を用いてスラリ一物を調整した.そして、実施例lと同
様の手法によって塗布し、1220℃にて30分焼結す
ることにより、加工?の良好な複合雲母積層セラミック
を得た。
(Example 4) K M tzL IS . Calculated according to 0 +oF 0 to 2%, S, O. l7
% and 59% silica sol containing 30% S,0■ were used to prepare a slurry. Then, it was applied by the same method as in Example 1, and processed by sintering at 1220°C for 30 minutes. A composite mica laminated ceramic with good properties was obtained.

(実施例5) K M ga. sS 140 toF *およびB 
1/,Mgl sS 140 +。F8が1=1となる
如く、各組成式に従って計算し、酸化物基準でK30を
4%と、B.Oを5%と、M,Oを8%と、M,F.を
9%と、S.O.を1S%と、およびS102を30%
含むシリカゾル59%とを用いてスラリ一物を調整した
。そして、実施例1と同様の手法により塗布し、焼結す
ることによって、加工性の良好な複合雲母積層セラミッ
クを得た。
(Example 5) K M ga. sS 140 toF * and B
1/, Mgl sS 140 +. Calculated according to each composition formula so that F8 is 1=1, K30 is 4% on an oxide basis, and B. 5% O, 8% M,O, M,F. 9% and S. O. with 1S% and S102 with 30%
A slurry was prepared using 59% silica sol. Then, by coating and sintering using the same method as in Example 1, a composite mica laminated ceramic with good workability was obtained.

(実施例6) K M ax. Is l40 10F xおよびK 
l/l M gazaL 口zaS 140 10F 
怠が1;1となる如《各組成式に従って計算し、酸化物
基準でKsOを5%、M,Oを9%、WigFmを9%
、L目Oを1%、S102を17%、およびSlO■を
30%含むシリカゾル59%とを用いてスラリ一物を調
整した。そして、前記各実施例と同様の手法で塗布し、
1200℃にて30分境結することによって加工性の良
好な複合雲母積層セラミックを得た。
(Example 6) K Max. Is l40 10F x and K
l/l M gazaL 口zaS 140 10F
So that the ratio is 1:1 (calculated according to each compositional formula, KsO is 5%, M, O is 9%, WigFm is 9% on an oxide basis)
A slurry was prepared using 59% silica sol containing 1% L-O, 17% S102, and 30% SlO■. Then, it is applied in the same manner as in each of the above examples,
A composite mica laminated ceramic with good workability was obtained by binding at 1200° C. for 30 minutes.

〔発明の効果J 本発明に係る複合雲母積層セラミックの製造方法は以上
詳細に述べた如くであって、フッ素雲母組成のスラリ一
物を調整した後にフッ素金雲母の集成マイカフィルムに
塗布して積層物となし、この積層物を焼成することによ
って、1間に新たな雲母を生成せしめて眉状に積層した
層状セラミックを製造する構成としたから、雲母質以外
の接着剤を使用することなく、従って異物となる物の介
在がないから雲母本来の特性及び機能を全く損なうこと
がない。さらに合成されたとき析出する結晶の大きさを
用途目的に応じて選択可能であり、しかも焼結後の層状
セラミックは機械加工が簡単であるばかりでなく、耐熱
性、耐熱衝撃に優れた特性を与え、かつ電気絶縁材料と
しても好ましい形態とすることができる等の効果を奏す
る。
[Effects of the Invention J The method for manufacturing the composite mica laminated ceramic according to the present invention is as described in detail above, in which a slurry having a fluorine mica composition is prepared, and then coated on a fluorine phlogopite composite mica film and laminated. By firing this laminate, new mica is generated between the layers to produce a layered ceramic layered in an eyebrow shape, so there is no need to use adhesives other than mica. Therefore, since there is no intervening foreign matter, the original characteristics and functions of mica are not impaired at all. Furthermore, the size of the crystals that precipitate during synthesis can be selected depending on the purpose of use, and the layered ceramic after sintering is not only easy to machine, but also has excellent heat resistance and thermal shock resistance. It has the following effects: it can be used as an electrically insulating material, and it can also be used as an electrically insulating material.

Claims (1)

【特許請求の範囲】 雲母の合成に必要な素材となる酸化物中、 SiO_2,Al_2O_3,K_2O又はLi_2O
をゾル化してなるシリカゾル,アルミナゾル,ケイ酸カ
リ又はケイ酸リチウムのうちの少なくとも1つを用い、
組成上必要な他の酸化物及びフッ化物と共に混合してス
ラリー物とする工程と、該スラリー状物をフッ素金雲母
からなる集成マイカフィルムにフィルム相互間の結合剤
として塗布して積層する工程と、この積層物を加熱して
焼結することにより、フィルム相互間の結合剤を結晶化
させて新たな雲母を生成せしめフッ素金雲母と共に積層
された雲母セラミックを形成する工程とからなる複合雲
母積層セラミックの製造方法。
[Claims] Among the oxides that are necessary materials for mica synthesis, SiO_2, Al_2O_3, K_2O or Li_2O
using at least one of silica sol, alumina sol, potassium silicate, or lithium silicate formed by solizing
A step of mixing with other oxides and fluorides necessary for the composition to form a slurry, and a step of applying the slurry to a composite mica film made of fluorine phlogopite as a bonding agent between the films and laminating them. , by heating and sintering this laminate, the binder between the films is crystallized and new mica is produced, forming a mica ceramic laminated with fluorine phlogopite. Ceramic manufacturing method.
JP1055602A 1989-03-08 1989-03-08 Production of compound laminated mica ceramic Pending JPH02233555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055602A JPH02233555A (en) 1989-03-08 1989-03-08 Production of compound laminated mica ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055602A JPH02233555A (en) 1989-03-08 1989-03-08 Production of compound laminated mica ceramic

Publications (1)

Publication Number Publication Date
JPH02233555A true JPH02233555A (en) 1990-09-17

Family

ID=13003325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055602A Pending JPH02233555A (en) 1989-03-08 1989-03-08 Production of compound laminated mica ceramic

Country Status (1)

Country Link
JP (1) JPH02233555A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144163A (en) * 1986-12-05 1988-06-16 吉沢 正男 Congregated mica sheet and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144163A (en) * 1986-12-05 1988-06-16 吉沢 正男 Congregated mica sheet and manufacture

Similar Documents

Publication Publication Date Title
WO2021135992A1 (en) Microcrystalline glass with high crystal content and preparation method therefor
CN104736126A (en) Lithium silicate glass ceramics and lithium silicate glass containing caesium oxide
EP0543065B1 (en) High density leucite and/or pollucite based ceramics from zeolite
US4297139A (en) Inorganic gels and ceramic papers, films, fibers, boards, and coatings made therefrom
WO2019127324A1 (en) Microcrystalline glass and preparation method therefor, and composite grinding wheel bonding agent containing microcrystalline glass, preparation method therefor and use thereof
CN105236747A (en) Mechanical force arm
US4339540A (en) Inorganic gels and ceramic papers, films, fibers, boards, and coating made therefrom
US2675853A (en) Fabrication of synthetic fluorine-micas
JPH0269335A (en) Alkaline earth metal aluminoborate glass ceramic and production thereof
JPH02233555A (en) Production of compound laminated mica ceramic
JP2012001402A (en) Electric resistance material
JP6301176B2 (en) Glass ceramic composition and glass ceramic sintered body
El-Meliegy et al. Machinable mica dental glass-ceramics
JPH02233573A (en) Production of composite ceramic
JPS61146735A (en) Manufacture of glass ceramic
JPH0376642A (en) Glass-porcelain composite and preparation thereof
US2040051A (en) Method and means for preparing refractories and refractory masses so produced
JPH11106252A (en) Low-temperature baked glass ceramic material
JP3017829B2 (en) Calcium silicate sintered body and method for producing the same
JPH02233554A (en) Production of fluoromica ceramic
JPH0114193B2 (en)
JPH0440286B2 (en)
WO2024021282A1 (en) Inorganic mineral composition capable of being vitrified at low temperature
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation
KR20240086566A (en) Lithium silicate glass ceramic with easy machinability