JPH02233515A - Production of silica fume - Google Patents

Production of silica fume

Info

Publication number
JPH02233515A
JPH02233515A JP5281589A JP5281589A JPH02233515A JP H02233515 A JPH02233515 A JP H02233515A JP 5281589 A JP5281589 A JP 5281589A JP 5281589 A JP5281589 A JP 5281589A JP H02233515 A JPH02233515 A JP H02233515A
Authority
JP
Japan
Prior art keywords
sio2
silica fume
silica
vapor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5281589A
Other languages
Japanese (ja)
Other versions
JPH0798658B2 (en
Inventor
Toshiyuki Takegawa
敏之 竹川
Tomonori Koyama
智規 小山
Masayasu Sakai
正康 坂井
Nobuyuki Ikeda
信之 池田
Yoshinori Oki
大木 良典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1052815A priority Critical patent/JPH0798658B2/en
Publication of JPH02233515A publication Critical patent/JPH02233515A/en
Publication of JPH0798658B2 publication Critical patent/JPH0798658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Abstract

PURPOSE:To produce ultrafine particles of SiO2 (silica fume) having high purity and chemical reactivity by evaporating an SiO2containing mineral at a high temperature and quenching and condensing the generated SiO2 vapor. CONSTITUTION:An SiO2-containing mineral (e.g. quartzite or quartz) is supplied to an ultra-high-temperature field heated at a temperature above the boiling point of SiO2 (2230 deg.C) to effect the evaporation of SiO2 existing in the mineral. The vapor of SiO2 is condensed by quenching with a cooling gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コンクリート,セメントの混和材,吸着剤等
の素材として適用されるシリカヒュームの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing silica fume, which is used as a material for concrete, cement admixtures, adsorbents, and the like.

〔従来の技術〕[Conventional technology]

従来のシリカヒ為一ムの製造方法では、フエロシリコン
やシリコンメタルの製造時発生する廃ガス中のSiOが
、空気中で酸化されてS10■になりたものを集塵機で
捕集している。この方法においては、還元剤としてカー
ボンを使用するため、回収シリカヒi−ム中に未燃カー
ボンが含まれる。
In the conventional method for producing silica resin, SiO in the waste gas generated during the production of ferrosilicon or silicon metal is oxidized to S10 in the air and collected using a dust collector. In this method, since carbon is used as a reducing agent, unburnt carbon is contained in the recovered silica film.

この未燃カーボンを除去するのには高温処理することが
必要であって、この目的に電気炉を使用するため多量の
エネルギを要する。
Removing this unburned carbon requires high-temperature treatment, and the use of an electric furnace for this purpose requires a large amount of energy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来のシリカ℃ユームの製造方法によるシリカヒュ
ームには、製品に適用する場合下記の問題点がある。
The silica fume produced by the above-mentioned conventional method for producing silica fume has the following problems when applied to products.

(1)従来の製造方法によるシリカヒλ−ムは、フェロ
シリコン製造通糧における副製品であって、炭素を含む
ために製品適用時反応性が阻害される。
(1) The silica film produced by the conventional manufacturing method is a by-product in the production of ferrosilicon, and contains carbon, which inhibits the reactivity when applied to the product.

(2)従来の製造方法によるシリカヒ,−ムは、製造温
度が低く、これによって粒径が太き《プレーン値が低い
ため製品適用時の反応性が劣る。
(2) Silica particles produced by conventional manufacturing methods have low manufacturing temperatures, resulting in large particle sizes and low plain values, resulting in poor reactivity when applied to products.

(3)従来の製造方法によるシリカヒ,−ムは、製造温
度が低く、また冷却速度が低いため、結晶性シリカが多
《製品適用時の反応性が劣る。
(3) Silica films produced by conventional manufacturing methods have a low manufacturing temperature and a low cooling rate, so they contain a large amount of crystalline silica and have poor reactivity when applied to the product.

本発明は、以上の従来のシリカヒュームの製造方法の問
題点を解決することのできるシリカヒ2?ムの製造方法
を提供しようとするものである。
The present invention provides silica fume 2? The purpose of this paper is to provide a method for manufacturing a film.

〔課題を解決するための手段〕[Means to solve the problem]

上記した課題を解決するため、本発明は、シリカヒ2−
ムの製造方法として次の手段を採用した。
In order to solve the above-mentioned problems, the present invention provides silica
The following method was adopted to manufacture the film.

即ち、原料としてシリカヒ,−ムの主成分であるS1o
■を含む鉱物質たとえば硅石,石英等を使用し、この鉱
物質をS102の沸点(2,230℃)以上の温度をも
つ超高温場に供給して、ここで蒸発・気化させ、S10
■蒸気を急冷却して凝結させシリカヒュームとする。
That is, S1o, which is the main component of silica, is used as a raw material.
(2) A mineral material containing silica, quartz, etc. is used, and this mineral material is supplied to an ultra-high temperature field with a temperature higher than the boiling point of S102 (2,230°C), where it is evaporated and vaporized.
■Quickly cools the steam and condenses it to form silica fume.

〔作 用〕[For production]

本発明では、SiO2を含む鉱物質を、S 102の沸
点以上の温度の高温場で処理すること【より、S102
 を蒸発気化させ、更にS1o2蒸気を急冷却し、S1
0■蒸気を凝結させることにより、次の特性を有する超
微粒子Sin2(シリカヒューム)が製造される。
In the present invention, mineral materials containing SiO2 are treated in a high temperature field at a temperature higher than the boiling point of S102.
is evaporated, and further the S1o2 vapor is rapidly cooled to form S1
By condensing the vapor, ultrafine particles Sin2 (silica fume) having the following characteristics are produced.

(1》  カーボン等の未燃分がな《粒径0.1μ以下
の純度の高い超微粒子が得られる。
(1) Highly pure ultrafine particles with a particle size of 0.1 μm or less are obtained, with no unburned components such as carbon.

(2)比表面積の大きいシリカヒ鳥一ムが得られる。(2) Shirikahi torimu with a large specific surface area can be obtained.

(3)製造温度が高く、かつ冷却速度が高いために、得
られたシリカヒ1−ムは、非晶質性を有し、化学反応活
性が高い。
(3) Since the production temperature is high and the cooling rate is high, the obtained silica film has amorphous property and high chemical reaction activity.

本発明によって得られたシリカヒュームは、上記(1)
〜(3)の特性により、コンクリートの強度向上,水密
性,施工性向上等の目的に使用される混和剤および反応
表面積および活性を要求する吸着剤等として最適のもの
である。
The silica fume obtained according to the present invention is as described in (1) above.
Due to the properties (3) to (3), it is most suitable as an admixture used for the purpose of improving the strength, watertightness, and workability of concrete, and as an adsorbent that requires a high reaction surface area and activity.

〔実施例〕〔Example〕

本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described with reference to FIG.

冷却管2で構成された燃焼炉1へ燃料としてのプロパン
により、石炭灰ホツ/ξ3の石炭灰を燃料供給管4より
ガス搬送供給し、酸素を酸素供給管5より供給した。こ
れにより燃焼炉l内で、プロパンが燃焼して2600〜
2800℃の高温燃焼が行なわれ、石炭灰中のSiO2
は、蒸発気化され排ガス中にSiO2蒸気ともに排出さ
れる。一方、燃焼炉1内φ石炭灰中のAfi203(沸
点3,5 0 0℃)は沸点以下の温度であるために蒸
発・気化せず、溶融するのみで、燃焼炉1下部より溶融
スラグ10とし?下方の溶融スラグチャンパ9へ流下排
出される。
Using propane as fuel, coal ash/ξ3 of coal ash was gas-conveyed and supplied through a fuel supply pipe 4 to a combustion furnace 1 constituted by a cooling pipe 2, and oxygen was supplied through an oxygen supply pipe 5. As a result, propane is burned in the combustion furnace l, and the
High-temperature combustion at 2800°C was carried out, and SiO2 in the coal ash was
is evaporated and discharged together with SiO2 vapor into the exhaust gas. On the other hand, Afi203 (boiling point 3.500°C) in the φ coal ash inside the combustion furnace 1 does not evaporate or vaporize but only melts because the temperature is below the boiling point. ? The molten slag is discharged downward into the molten slag chamber 9.

排ガスに含有されたS10■蒸気は、空気を用いた冷却
ガスを冷却ガス供給管6により、燃焼炉1の上部に連設
された高温ガス配管7において、排ガス温度とともに冷
却,凝結され、SiO■超微粒子が生成され、捕集装置
8により捕集されシリカヒューム11が製造される。S
tO■超微粒子が分離された排ガスは煙突へ排出される
The S10 steam contained in the exhaust gas is cooled and condensed together with the exhaust gas temperature in the high temperature gas pipe 7 connected to the upper part of the combustion furnace 1 through a cooling gas supply pipe 6 using cooling gas using air. Ultrafine particles are generated and collected by the collection device 8 to produce silica fume 11. S
The exhaust gas from which the ultrafine particles have been separated is discharged into the chimney.

本実施例によって得られたシリカヒュームの性状を、従
来方法で生成したシリカヒュームの性状と比較して第1
表に示す。
The properties of the silica fume obtained in this example were compared with the properties of silica fume produced by the conventional method.
Shown in the table.

第1表 本発明によるシリカヒューム 本実施例によって得られたシリカヒュームは、第1表に
示す通り、下記の特徴をもっている。
Table 1 Silica fume according to the present invention The silica fume obtained in this example has the following characteristics as shown in Table 1.

(1)  未燃カーボンが存在しない。(1) There is no unburned carbon.

!21  50%平均粒径が0.07μ惟と従来方法に
よるものの半分以下である。
! 21 The 50% average particle size is 0.07μ, less than half of that obtained by the conventional method.

(3)比表面積が103m″4であり、従来方法による
ものと比較して十分大きい。
(3) The specific surface area is 103 m″4, which is sufficiently large compared to the conventional method.

(4)x線回折法で調査した結果非品質であることが判
明した。
(4) As a result of investigation using x-ray diffraction, it was found that the product was of poor quality.

なお、本実施例では原料として石炭灰を使用したが、S
102を多く含む硅石等を使用してもよく、また、燃料
としてはプロパンに限らず他の気体燃料、石炭の固体燃
料を使用してもよい。
Although coal ash was used as the raw material in this example, S
Silica stone or the like containing a large amount of 102 may be used, and the fuel is not limited to propane, but other gaseous fuels and solid fuels such as coal may also be used.

また、本実施例では、S1o2の蒸気をガスによって急
冷しているが、S102蒸気を排ガスと共に断熱膨張さ
せて急冷する等他の急冷手段を採用することもできる。
Further, in this embodiment, the S102 vapor is quenched with gas, but other quenching means may be employed, such as quenching the S102 vapor by adiabatically expanding it together with the exhaust gas.

また、冷却ガスを用いる場合、冷却ガスとしては空気の
外に、N2,水蒸気,その他の不活性ガスを使用するこ
ともできる。
Furthermore, when using a cooling gas, in addition to air, N2, water vapor, or other inert gas can also be used as the cooling gas.

?た更に、本実施例では、高温場の温度を2600〜2
800℃としたが、実用可能な温度としては2400〜
3000℃の範囲を採用することができる。2400℃
以下ではSiO■が蒸発気化しに《《、また、3000
℃以上ではSiO■以外の他の鉱物質までが蒸発・気化
してシリカヒ、一ムの純度を低下させる不具合がある。
? Furthermore, in this example, the temperature of the high temperature field is set to 2600 to 2
Although it was set at 800℃, the practical temperature is 2400~
A range of 3000°C can be adopted. 2400℃
In the following, SiO■ is evaporated and
If the temperature exceeds .degree. C., minerals other than SiO2 may evaporate or vaporize, resulting in a problem of lowering the purity of silica.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明はSiO2を含む鉱物質を
SiO2の沸点以上の高温物に供給して$102を蒸発
・気化させ、このSiO■蒸気を急冷するという簡単な
工程によって、純度が高く粒径が小さい超微粒状であり
、比表面積が太き《、かつ、化学反応活性の高い非晶質
性のシリカヒュームを得ることができる。
As explained above, the present invention can produce minerals with high purity through a simple process of supplying mineral materials containing SiO2 to a substance at a high temperature higher than the boiling point of SiO2, evaporating $102, and rapidly cooling this SiO2 vapor. It is possible to obtain amorphous silica fume that is ultrafine in size, has a large specific surface area, and has high chemical reaction activity.

従って、本発明によって製造されたシリカヒ2一ムは、
その性状からコンクリートの混和剤、あるいは吸着剤と
して適用した場合下記の効果を有し、産業上有用なもの
である。
Therefore, the silica film produced according to the present invention is
Due to its properties, when applied as a concrete admixture or adsorbent, it has the following effects and is industrially useful.

(1》  未燃分がないので、コンクリートの混和剤と
して適用した場合、混合剤として併用する高性能減水剤
の吸着を少なくする傾向にあり、減水剤の性能低下を招
かない。
(1) Since there is no unburned matter, when applied as an admixture for concrete, it tends to reduce the adsorption of a high-performance water reducer used in combination as an admixture, and does not cause a decrease in the performance of the water reducer.

(2)平均粒径が小さく且つ比表面積が大きいので、コ
ンクリート混剤、又は吸着剤として使用する際の物理的
な反応面積を増すため結果として反応性が向上する。
(2) Since the average particle size is small and the specific surface area is large, the physical reaction area increases when used as a concrete mixture or adsorbent, resulting in improved reactivity.

(3)非品質であるので、化学的反応活性が増す。(3) Due to non-quality, chemical reaction activity increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に使用される装置の系統図で
ある。 1・・・燃焼炉,3・・・石炭灰ホッパ,4・・・燃料
供給管,5・・・酸素供給管,    6・・・冷却ガ
ス供給管,7・・・高温ガス配管,   8・・・捕集
装置,9・・・溶融スラグチャンバ,10・・・溶融ス
ラグ,l1・・・シリカ℃,−ム。 代埋入 弁理士 坂 間   暁 外2名
FIG. 1 is a system diagram of an apparatus used in an embodiment of the present invention. 1... Combustion furnace, 3... Coal ash hopper, 4... Fuel supply pipe, 5... Oxygen supply pipe, 6... Cooling gas supply pipe, 7... High temperature gas piping, 8. ... Collection device, 9 ... Molten slag chamber, 10 ... Molten slag, l1 ... Silica °C, -m. Substituted Patent Attorneys Akira Sakama and 2 people

Claims (1)

【特許請求の範囲】[Claims] SiO_2を含む鉱物質をSiO_2の沸点以上の温度
をもつ高温場に供給し上記鉱物質に含まれるSiO_2
を蒸発気化させ、このSiO_2蒸気を冷却ガスにより
急冷し凝結させることを特徴とするシリカヒュームの製
造方法。
A mineral material containing SiO_2 is supplied to a high temperature field having a temperature higher than the boiling point of SiO_2, and the SiO_2 contained in the mineral material is
A method for producing silica fume, which comprises evaporating SiO_2 vapor and rapidly cooling and condensing the SiO_2 vapor using a cooling gas.
JP1052815A 1989-03-07 1989-03-07 Silica fume manufacturing method Expired - Fee Related JPH0798658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052815A JPH0798658B2 (en) 1989-03-07 1989-03-07 Silica fume manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052815A JPH0798658B2 (en) 1989-03-07 1989-03-07 Silica fume manufacturing method

Publications (2)

Publication Number Publication Date
JPH02233515A true JPH02233515A (en) 1990-09-17
JPH0798658B2 JPH0798658B2 (en) 1995-10-25

Family

ID=12925343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052815A Expired - Fee Related JPH0798658B2 (en) 1989-03-07 1989-03-07 Silica fume manufacturing method

Country Status (1)

Country Link
JP (1) JPH0798658B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067510A (en) * 1997-08-11 1998-03-10 Chisso Corp Silica
JP2004512943A (en) * 2000-11-09 2004-04-30 サイプラス・アマックス・ミネラルズ・カンパニー Method and apparatus for producing molybdenum oxide nanoparticles
US7883673B2 (en) 2000-11-09 2011-02-08 Cyprus Amax Minerals Company Apparatus for producing nano-particles of molybdenum oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067510A (en) * 1997-08-11 1998-03-10 Chisso Corp Silica
JP2004512943A (en) * 2000-11-09 2004-04-30 サイプラス・アマックス・ミネラルズ・カンパニー Method and apparatus for producing molybdenum oxide nanoparticles
US7622098B2 (en) * 2000-11-09 2009-11-24 Cyprus Amax Minerals Company Method for producing nano-particles of metal oxide
US7749463B2 (en) 2000-11-09 2010-07-06 Cyprus Amax Minerals Company Apparatus for producing nano-particles of molybdenum oxide
US7829060B2 (en) 2000-11-09 2010-11-09 Cyprus Amax Minerals Company Nano-particles of molybdenum oxide
US7883673B2 (en) 2000-11-09 2011-02-08 Cyprus Amax Minerals Company Apparatus for producing nano-particles of molybdenum oxide

Also Published As

Publication number Publication date
JPH0798658B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
An et al. A green route to preparation of silica powders with rice husk ash and waste gas
Haslinawati et al. Effect of temperature on ceramic from rice husk ash
JP3234160B2 (en) Pyrolytic silicic acid, its production method and fillers, rheology modifiers, catalyst carriers, quartz raw materials, electronic packaging materials and dispersion raw materials composed thereof
JP2011157260A (en) Synthetic amorphous silica powder and method for producing same
RU2195427C1 (en) Method and device for production of amorphous silica from silicon and silicon-containing materials
TW201132590A (en) Synthetic amorphous silica powder
JP2012211070A (en) Synthetic amorphous silica powder and method for producing the same
EP0972577B1 (en) Method for recovering phosphorus from organic sludge
JPS6015569B2 (en) Equipment for pyrolytically producing silicon dioxide
JPH06509272A (en) Method for purifying flue gas highly contaminated with mercury
JPH02233515A (en) Production of silica fume
JP2011157259A (en) Synthetic amorphous silica powder and method for producing the same
Zhao et al. Utilization of Coal gasification fine ash for construction material: From physical and chemical properties to the hydration activity of thermally modified CGFA
JPS6481889A (en) Production of molded ferrocoke
JPH101339A (en) System for utilizing coal ash
US9108884B2 (en) Metakaolin production and enhancement of industrial minerals
US3996340A (en) Method of producing aluminum fluoride
JPS6217012A (en) Production of silicon tetrachloride
TWI766802B (en) Method for manufacturing metal silicon from amorphous silica
Topateş Recycling of waste flat glass in the fabrication of Si3N4 powder by the carbo‐thermal reduction and nitridation
Pavlov et al. Pyrometallurgical processing of the hydromica schist with producing foam materials
EP0765291B1 (en) Process for treating zircon
US1111881A (en) Method for making alkali-silico-aluminate richer in alkali than feldspar.
SU503828A1 (en) Raw mix for the production of fused alumina cement
JP3391259B2 (en) Method for reforming incinerated ash containing phosphorus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees